Дисертації з теми "Crop water"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Crop water".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Watson, J., and M. Sheedy. "Crop Water Use Estimates." College of Agriculture, University of Arizona (Tucson, AZ), 1995. http://hdl.handle.net/10150/210312.
Повний текст джерелаSubedi-Chalise, Kopila. "Impacts of Crop Residue and Cover Crops on Soil Hydrological Properties, Soil Water Storage and Water Use Efficiency of Soybean Crop." Thesis, South Dakota State University, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10265200.
Повний текст джерелаCover crops and crop residue play a multifunctional role in improving soil hydrological properties, soil water storage and water use efficiency (WUE). This study was conducted to better understand the role of crop residue and cover crop on soil properties and soil water dynamics. The study was conducted at the USDA-ARS North Central Agricultural Research Laboratory, located in Brookings, South Dakota. Two residue removal treatments that include low residue removal (LRR) and high residue removal (HRR) were established in 2000 with randomized complete block design under no-till corn (Zea mays L.) and soybean (Glycine max L.) rotation. In 2005, cover crop treatments which include cover crops (CC) and no cover crops (NCC) were integrated into the overall design. Soil samples were collected in 2014, 2015 and 2016. Data from this study showed that LRR treatment resulted in lower bulk density (BD) by 7 and 9% compared to HRR in 2015 and 2016, respectively, for 0-5 cm depth. Similarly, LRR treatment significantly reduced soil penetration resistance (SPR) by 25% in 0-5 cm depth compared with HRR treatment. In addition to this, LRR treatment significantly increased soil organic carbon (SOC) concentrations and total nitrogen (TN) by 22 and 17%, respectively, in 0-5 cm. Similarly, CC treatment resulted in lower BD and SPR by 7% and 23%, respectively, in 0-5 cm depth in 2015 compared with NCC treatment. The LRR significantly increased soil water infiltration by 66 and 22% compared to HRR in 2014 and 2015, respectively. Similarly, the CC treatment significantly increased infiltration by 82 and 22% compared to the NCC in 2014 and 2015, respectively. The significant impact of a crop residue was observed on soil water retention (SWR) in 2014 and 2015 for the 0-5 cm depth. The LRR and CC treatments increased the soil volumetric moisture content (VMC) and soil water storage (SWS) on the surface 0-5 cm depth. However, the trend was not always significant during the growing season. The CC treatment significantly impacted the soybean yield by 14% and WUE by 13% compared with NCC treatment. Some interaction of residue by cover crops was observed on BD, SPR, VMC, and SWS, which showed that the use of cover crops with LRR can be beneficial in improving the soil properties.
Khandker, Md Humayun Kabir. "Crop growth and water-use from saline water tables." Thesis, University of Newcastle Upon Tyne, 1994. http://hdl.handle.net/10443/580.
Повний текст джерелаHassan, Ahmad. "The contribution by the water table to crop water use." Thesis, University of Newcastle Upon Tyne, 1990. http://hdl.handle.net/10443/142.
Повний текст джерелаDalton, James A. "Contribution of upward soil water flux to crop water requirements." Thesis, University of Southampton, 2006. https://eprints.soton.ac.uk/344938/.
Повний текст джерелаSedibe, Moosa Mahmood. "Optimising water use efficiency for crop production." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53541.
Повний текст джерелаENGLISH ABSTRACT: Poor water management and poor water use efficiency (WUE) have been identified as one of the major problems experienced by vegetable growers in most of the developing countries, including South Africa. This poor management and poor utilization of water have led to a drastic decline in the quality and quantity of available water. In South Africa agriculture uses about 50% of available water. Increasing water demand for domestic, industrial and mining uses, may decrease agriculture's share to less than the current 50%, henceforth, better utilization of this resource is imperative. Selection of a good irrigation system can limit water loss considerably. Some irrigation systems have a potential to save more water than others do. Since irrigation systems affect the WUE of crops, care should be taken when selecting an irrigation system under conditions of limited water quantity. Ebb-and- Flood watering systems have been introduced for effective sub-irrigation and nutrient delivery within closed systems. Such a system was adapted in South Africa, to develop a vegetable production unit for use by families in rural communities, while saving substantial amounts of water. A need to further improve the WUE of this system was subsequently identified. Two studies were conducted at the experimental farm of the University of Stellenbosch (Department of Agronomy). The first trial was conducted under controlled conditions in a glasshouse, and the second under open field conditions. In the first trial, Beta vulgaris (Swiss chard) and Amaranthus spp. ('Imbuya') were grown in two root media; gravel and pumice. In addition, an 'Ebb-and-Flood' and a 'Constant level' system were used with nutrient solutions at two electrical (EC) conductivity levels 1.80 and 3.60 mS cm-I. The results of this (2x2x2x2) factorial experiment indicated that a combination of the 'Ebb-and-Flood' system with gravel as a root medium produced the best results at a low EC, when 'imbuya' was used. A high total WUE was found with 'imbuya', (7.35 g L-I) at EC 1.80 mS cmicompared to a relatively low WUE of 5. 90 g L-I when the 3.60 mS cm-I nutrient solution was used. In the second trial, 'Imbuya's' foliage dry mass, leaf area and WUE was evaluated under field conditions at the Stellenbosch University experimental farm, during the summer of2002. The experimental farm (33°55'S, 18°52'E) is situated in the cooler coastal wine grape-producing region of South Africa with a relatively high annual winter rainfall. This trial was conducted on an alluvial soil, with clay content of 25% and a pH of 5.9 (KC!). A closed 'Ebb-and-Flood' system was compared with two open field irrigation systems ('Drip' and 'Flood') using nutrient solutions at two electrical conductivity levels (1.80 and 3.60 mS cm-i) in all three cases. Foliage dry mass, leaf area as well as WUE was best with 'Drip' irrigation, when a nutrient solution with an electrical conductivity of 3.60 mS cm-i was used. In spite of the fact that additional ground water was available for the soil grown 'Drip' and 'Flood' treatments, the 'Ebb-and-Flood' system outperformed the 'Flood' treatment, especially when the nutrient solution with an EC of 3.6 mS cm-i was used. Insufficient root aeration in the flooded soil could have been a contributing factor. The fact that the 'Ebb-and-Flood' and 'Drip' systems gave the best results when the high EC solution was used to fertigate the plants, may indicate that the plants could have hardened due to the mild EC stress, better preparing them to adapt to the extreme heat that was experienced in the field.
AFRIKAANSE OPSOMMING: Swak: bestuur van water en 'n swak: water-gebruik-doeltreffendheid (WOD) is as een van die belangrikste probleme geïdentifiseer wat deur groente produsente in die meeste ontwikkelende lande, insluitend Suid-Afrika, ervaar word. Hierdie swak bestuur en benutting van water het daartoe bygedra dat 'n drastiese afname in die kwaliteit asook in die kwantiteit van beskikbare water ervaar word. In Suid-Afrika gebruik die landbou-sektor ongeveer 50% van die beskikbare water. Toenemende water behoeftes vir huisgebruik, industrieë en die mynbou mag hierdie 50% aandeel van die landbou sektor laat krimp. Beter benutting van hierdie skaars hulpbron is dus noodsaaklik. Die keuse van goeie besproeiingsisteme mag waterverliese merkbaar beperk aangesien sekere sisteme se water-besparingspotensiaal beter as ander is. Aangesien besproeiingstelsels die WOD van gewasse beïnvloed, is spesiale sorg nodig waar 'n besproeiingstelsel onder hierdie toestande van beperkte waterbronne gekies moet word. 'Ebb-en-Vloed' sisteme kan aangewend word om water en voedingselemente van onder in 'n wortelmedium te laat opstoot en in 'n geslote sisteem te laat terugdreineer. So 'n sisteem is in Suid-Afrika ontwikkel waarmee groente vir families in landelike gebiede geproduseer kan word terwyl water bespaar word. 'n Behoefte om die WOD van hierdie produksiesisteem verder te verbeter is egter geïdentifiseer. Twee ondersoeke is by die Universiteit van Stellenbosch se proefplaas (Departement Agronomie) gedoen. Die eerste proef is onder beheerde omgewingstoestande in 'n glashuis uitgevoer en die tweede onder veld toestande. In die eerste proef is Beta vulgaris (Snybeet) en Amaranthus spp. ('Imbuya') in twee tipes wortelmedia; gruis en puimsteen verbou. 'n 'Ebb-en-Vloed' asoook 'n 'Konstante vlak' besproeiingsisteem is gebruik terwyl voedingsoplossings ook by twee peile van elektriese geleiding (EC) teen 1.80 en 3.60 mS cm-I toegedien is. Die resultate van hierdie (2x2x2x2) fakroriaal eksperiment het aangetoon dat 'n kombinasie van die 'Ebb-en-Vloed' sisteem met gruis as 'n wortelmedium die beste resultate teen 'n lae EC lewer waar 'imbuya' gebruik is. Die WOD met 'imbuya' was hoog (7.35 g L-1) by 'n EC van 1.80 mS cm-I, vergeleke met 'n relatief lae WOD van 5. 90 g L-1 waar die 3.60 mS cm-I voedingsoplossing gebruik is. In die tweede proef is 'Imbuya' se droë blaarmassa, blaar oppervlakte en WOD onder veldtoestande op die Universiteit van Stellenbsoch se proefplaas in die somer van 2002 ge-evalueer. Die proefplaas (33°55'S, 18°52'E) is in die koeler kusstreke van die wyndruif produksiegebied in die winterreëngebied van Suid-Afrika geleë. Hierdie proef is op alluviale grond met 25% klei en 'n pH van 5.9 (KCi) uitgevoer. 'n Geslote 'Ebb-en-Vloed' sisteem is met twee veld-besproeiingsisteme vergelyk ('Drup' en 'Vloed') terwyl voedingsoplossings teen twee peile van elektriese geleiding (1.80 en 3.60 mS cm-I) in al drie gevalle gebruik is. Blaar droëmassa, blaaroppervlakte asook die WGD was die beste met 'Drup' besproeiing waar die EC van die voedingsoplossing 3.60 mS cm-I was. Ten spyte van die feit dat ekstra grondwater vir die 'Drup' and 'Vloed' behandelings beskikbaar was, het die 'Ebben- Vloed' stelsel beter as die 'Vloed' behandeling gedoen veral waar die voedingsoplossing se EC 3.6 mS cm-I was. Swak wortelbelugting was waarskynlik die rede waarom vloedbesproeiing swak produksie gelewer het. Die feit dat die 'Drup' en die 'Ebb-en-Vloed' behandelings in die veldproef die beste gedoen het waar die EC hoog was, mag moontlik met die gehardheid van die plante verband hou wat aan ekstreem warm en dor toestande blootgestel was.
Ping, Zhang. "The partitioning of water loss between crop transpiration and soil evaporation in potato crops." Thesis, University of Reading, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303926.
Повний текст джерелаHector, D. J. "Capture of soil water by crop root systems." Thesis, University of Nottingham, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378493.
Повний текст джерелаKazemi, Hossein V. "Estimating crop water requirements in south-central Kansas." Thesis, Kansas State University, 1985. http://hdl.handle.net/2097/9859.
Повний текст джерелаPerez, Jose 1950. "WATER AND NITROGEN EFFECTS ON THE CROP WATER STRESS INDEX OF COTTON." Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/275339.
Повний текст джерелаArnet, Kevin Broc. "Cover crops in no-tillage crop rotations in eastern and western Kansas." Thesis, Manhattan, Kan. : Kansas State University, 2010. http://hdl.handle.net/2097/4086.
Повний текст джерелаLena, Bruno Patias. "Crop evapotranspiration and crop coefficient of jatropha from first to fourth year." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/11/11152/tde-06012017-111443/.
Повний текст джерелаA determinação de coeficiente de cultivo (Kc) com metodologia adequada é essencial para quantificar o consumo hídrico de cultivos em diferentes regiões. Valores de Kc do pinhão-manso (Jatropha curcas L.) ainda não foram determinados e essa informação é muito importante para auxiliar o manejo de irrigação de maneira adequada. O objetivo desse estudo foi determinar a evapotranspiração (ETc) e Kc do 1º ao 4º ano de cultivo do pinhão-manso, e correlacionar Kc com o índice de área foliar (IAF) e a soma da unidade térmica (SUT). O experimento foi realizado de março de 2012 à agosto de 2015 na Escola Superior de Agricultura \"Luiz de Queiroz\" (ESALQ)/Universidade de São Paulo (USP), na cidade de Piracicaba, SP, Brasil. O experimento foi divido nos tratamentos irrigados por pivô central, gotejamento e sem irrigação. Foram utilizados dois lisímetros de pesagem (12 m2 de superfície em cada lisímetro) por tratamento para realizar a determinação de ETc (uma planta por lisímetros). A evapotranspiração de referência (ET0) foi determinado pelo método de Penman-Monteith a partir de dados meteorológicos coletados na estação meteorológica localizada ao lado do experimento. Valores diários de Kc foram determinados nos tratamentos irrigados pela razão entre ETc e ET0 (Kc=ETc/ET0). IAF foi determinado utilizando o equipamento LAI-2200 Plant Canopy Analyzer, que foi previamente calibrado para adequar as características do dossel do pinhão-manso. Em todos os anos avaliados, o IAF foi quase zero durante o início do período vegetativo, aumentando os valores conforme a planta começou a se desenvolver até atingir valores máximos durante o período produtivo, decrescendo os valores até zero no estádio de desenvolvimento de senescência foliar. A variação anual de ETc no 2º, 3º e 4º ano foi muito similar, explicado pelos diferentes períodos de desenvolvimento da cultura e a variação de IAF no ano. No 1º ano, Kc foi 0,47 para os dois tratamentos irrigados. No 2º, 3º e 4º ano, Kc variou de 0,15 a 1,38 no tratamento irrigado por pivô central e de 0,15 a 1,15 no tratamento irrigado por gotejamento. A média dos valores de Kc no 2º, 3º e 4º ano durante os períodos vegetativos e produtivos foi de 0,77, 0,93 e 0,82 no tratamento irrigado por pivô central, respectivamente, e 0,69, 0,79 e 0,74 no tratamento irrigado por gotejamento, respectivamente. A relação entre Kc e IAF mostrou, para o tratamento irrigado por pivô central, um ajuste logaritmo com coeficiente de determinação (R2) e somatória do erro médio ao quadrado (SEMQ) de 0,7643 e 0,334, respectivamente, e 0,8443 e 0,2079 para o tratamento irrigado por gotejamento, respectivamente. Nos três anos analisados, Kc correlacionado com SUT mostrou o melhor ajuste à equação polinomial de 2ª ordem para os dois tratamentos.
Cusimano, Jeremy, Jean E. McLain, Susanna Eden, and Channah M. Rock. "Agricultural Use of Recycled Water for Crop Production in Arizona." College of Agriculture, University of Arizona (Tucson, AZ), 2015. http://hdl.handle.net/10150/561235.
Повний текст джерелаAgriculture is by far the largest water-demanding sector in Arizona, accounting for 70% of water demand (ADWR, 2009). Arizona’s agriculture industry is extremely diversified, producing many crops that can legally be irrigated with recycled water, including cotton, alfalfa, wheat, citrus, and vegetables. Throughout the State, farming communities are taking advantage of increasing supplies of recycled water.
Mutiso, Samuel Kituku. "Water resources and crop production in Machakos District, Kenya." Thesis, University of Reading, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.262188.
Повний текст джерелаKern, James D. "Water Quality Impacts of Cover Crop/Manure Management Systems." Diss., Virginia Tech, 1997. http://hdl.handle.net/10919/40385.
Повний текст джерелаPh. D.
Abel, David Scott. "Cover crop effects on soil moisture and water quality." Thesis, Kansas State University, 2016. http://hdl.handle.net/2097/34650.
Повний текст джерелаDepartment of Agronomy
Nathan O. Nelson
Eutrophication of freshwater lakes and streams is linked to phosphorus (P) fertilizer loss from agriculture. Cover crops could help mitigate P loss but producers are concerned that they may use too much water. This study was conducted to better understand the effects cover crops have on soil moisture and P loss. Volumetric water content (θ) was measured at the Kansas Cover Crop Water Use research area at 10 depths throughout a 2.74 m soil profile in 5 cover crop treatments and compared to θ measured from a chemical fallow control. Total profile soil moisture in sorghum sudangrass (1.02 m) and forage soybean (1.03 m) did not significantly differ from chemical fallow (1.05 m) at the time of spring planting. However, water deficits were observed in double-crop soybean (1.01 m), crimson clover (0.99 m), and tillage radish (0.99 m). At the Kansas Agricultural Watersheds, runoff was collected and analyzed for total suspended solids, total P, and DRP from 6 cover crop/fertilizer management treatments over two years. In the first water year the cover crop reduced runoff, sediment, and total P loss by 16, 56, and 52% respectively. There was a significant cover by fertilizer interaction for DRP loss. When P fertilizer was broadcasted in the fall with a cover crop, DRP loss was reduced by 60% but was unaffected in the other two P fertilizer treatments. Results were different in the second water year. The cover crop reduced sediment loss (71% reduction), as was seen in year one, but neither the cover crop nor the fertilizer management had a significant effect on runoff volume or total P loss overall. Contrary to the 2014-2015 results, cover crop increased DRP load by 48% in 2015-2016. DRP load was 2 times greater in the fall broadcast treatment than it was in the spring injected treatment but there was not a significant fertilizer by cover crop interaction. In order to determine the long term effects of cover crops and P fertilizer management P loss parameters should be tracked for several more years.
Barnes, Frank. "Estimating Crop Water Requirements in Arizona and New Mexico." Thesis, The University of Arizona, 2011. http://hdl.handle.net/10150/203501.
Повний текст джерелаOttman, Michael. "Crop Coefficients for Estimating Small Grain Water Use, 2002." College of Agriculture, University of Arizona (Tucson, AZ), 2008. http://hdl.handle.net/10150/203652.
Повний текст джерелаOttman, Michael. "Crop Coefficients for Estimating Small Grain Water Use, 2003." College of Agriculture, University of Arizona (Tucson, AZ), 2008. http://hdl.handle.net/10150/203653.
Повний текст джерелаOttman, Michael. "Crop Coefficients for Estimating Small Grain Water Use, 2004." College of Agriculture, University of Arizona (Tucson, AZ), 2008. http://hdl.handle.net/10150/203654.
Повний текст джерелаRisley, John C., and C. Brent Cluff. "Crop Consumptive Use Simulation Using a Water Harvesting Model." Water Resources Research Center. The University of Arizona, 2013. http://hdl.handle.net/10150/306487.
Повний текст джерелаAldakheel, Yousef Yacoub. "Remote sensing of crop water stress : measurements and modelling." Thesis, University of Salford, 1998. http://usir.salford.ac.uk/43021/.
Повний текст джерелаMartin, Edward C., Donald C. Slack, and E. J. Pegelow. "Water Use in Vegetables - Cauliflower." College of Agriculture, University of Arizona (Tucson, AZ), 2014. http://hdl.handle.net/10150/333141.
Повний текст джерелаMartin, Edward C., Donald C. Slack, and E. J. Pegelow. "Water Use in Vegetables - Carrots." College of Agriculture, University of Arizona (Tucson, AZ), 2014. http://hdl.handle.net/10150/333162.
Повний текст джерелаManamathela, Sibongile Amelia. "The water footprint of selected crops within the Olifants/Doorn Catchment, South Africa." University of the Western Cape, 2014. http://hdl.handle.net/11394/4751.
Повний текст джерелаRapidly increasing global population is adding more pressure to the agricultural sector to produce more food to meet growing demands. However the sector is already faced with a challenge to reduce freshwater utilisation as this sector is currently using approximately 70% of global water freshwater resources. In South Africa, the agriculture sector utilizes approximately 62% of freshwater resources and contributes directly about5% to the Gross Domestic Product. South Africa is a water scarce country receiving less than 500mm/year of precipitation in most parts of the country, and consequently approximately 90% of the crops are grown under irrigation. Studies have evaluated irrigation practices and crop water use in the country. However information is lacking on the full impact of South African horticultural products on freshwater resources. The water footprint concept can be used to indicate the total and source (blue/green) of water used to produce the crops. Information about water footprint (WF) can be used for identifying opportunities to reduce the water consumption associated with production of vegetables and fruits at the field to farm- gate levels, including the more effective use of rainfall (green water) as opposed to water abstracted from rivers and groundwater (Blue water). It can also be used to understand water related risks associated with the production of crops and facilitate water allocation and management at catchment/water management scale. While the potential value of water footprint information is well recognized there is still inadequate knowledge on how best to determine the water footprints of various crops within a local context. The aim of this study was to determine the water footprint and the crop water productivity of navel oranges, pink lady apples and potatoes produced with the Olifant/Doorn water management area in South Africa.The water footprint of the navel oranges, pink lady apples and potatoes assessed following the water footprint network method was 125 litres/ kg, 108 litres/kg and 65 litres/ kg respectively. The study concluded that water footprint studies should be carried out on the whole catchment instead of one farm in order to assess the sustainability of the process.
Copeland, Stephen Mark 1955. "Soil water potential as related to the Crop Water Stress Index of irrigated cotton." Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/276940.
Повний текст джерелаEnger, Matthew. "IMPACTS OF CONCENTRATED FLOW PATHS ON CROP YIELDS AND WATER QUALITY IN SOUTHERN ILLINOIS ROW CROP AGRICULTURE." OpenSIUC, 2018. https://opensiuc.lib.siu.edu/theses/2380.
Повний текст джерелаNambuthiri, Susmitha Surendran. "Soil water and crop growth processes in a farmer's field." Lexington, Ky. : [University of Kentucky Libraries], 2010. http://hdl.handle.net/10225/1140.
Повний текст джерелаTitle from document title page (viewed on May 12, 2010). Document formatted into pages; contains: xii, 310 p. : ill. (some col.). Includes abstract and vita. Includes bibliographical references (p. 298-309).
McGinley, Susan. "New Barley Variety:"Low- Input" Crop Uses Less Water, Fertilizer." College of Agriculture and Life Sciences, University of Arizona (Tucson, AZ), 2007. http://hdl.handle.net/10150/622139.
Повний текст джерелаMoberly, Joseph. "Crop water production functions for grain sorghum and winter wheat." Thesis, Kansas State University, 2016. http://hdl.handle.net/2097/32560.
Повний текст джерелаAgronomy
Robert Aiken
Xiaomao Lin
Productivity of water-limited cropping systems can be reduced by untimely distribution of water as well as cold and heat stress. The research objective was to develop relationships among weather parameters, water use, and grain productivity to produce production functions to forecast grain yields of grain sorghum and winter wheat in water-limited cropping systems. Algorithms, defined by the Kansas Water Budget (KSWB) model, solve the soil water budget with a daily time step and were implemented using the Matlab computer language. The relationship of grain yield to crop water use, reported in several crop sequence studies conducted in Bushland, TX; Colby, KS and Tribune, KS were compared against KSWB model results using contemporary weather data. The predictive accuracy of the KSWB model was also evaluated in relation to experimental results. Field studies showed that winter wheat had stable grain yields over a wide range of crop water use, while sorghum had a wider range of yields over a smaller distribution of crop water use. The relationship of winter wheat yield to crop water use, simulated by KSWB, was comparable to relationships developed for four of five experimental results, except for one study conducted in Bushland that indicated less crop water productivity. In contrast, for grain sorghum, experimental yield response to an increment of water use was less than that calculated by KSWB for three of five cases; for one study at Colby and Tribune, simulated and experimental yield response to water use were similar. Simulated yield thresholds were consistent with observed yield thresholds for both wheat and sorghum in all but one case, that of wheat in the Bushland study previously mentioned. Factors in addition to crop water use, such as weeds, pests, or disease, may have contributed to these differences. The KSWB model provides a useful analytic framework for distinguishing water supply constraints to grain productivity.
Newby, Adam F. "Increasing Water Application Efficiency in Greenhouse Crop Production UsingGravimetric Data." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366376123.
Повний текст джерелаJalali-Farahani, Hamid Reza 1960. "Crop water stress parameters for turfgrass and their environmental dependability." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/191950.
Повний текст джерелаSilvertooth, J. C., S. W. Stedman, and J. Tollefson. "Interaction of Pima Cotton Defoliation and Crop Water Stress Index." College of Agriculture, University of Arizona (Tucson, AZ), 1990. http://hdl.handle.net/10150/208291.
Повний текст джерелаSciarresi, Cintia Soledad. "OPTIMIZING COVER CROP ROTATIONS FOR WATER, NITROGEN AND WEED MANAGEMENT." UKnowledge, 2019. https://uknowledge.uky.edu/pss_etds/122.
Повний текст джерелаYeap, Simon Guo Hong. "Implications of soil water repellence for crop growth and nutrition." Thesis, Yeap, Simon Guo Hong (2020) Implications of soil water repellence for crop growth and nutrition. PhD thesis, Murdoch University, 2020. https://researchrepository.murdoch.edu.au/id/eprint/59040/.
Повний текст джерелаMunyaradzi, Sipho Musevenzo Ward Andrew D. "Predicting soil water deficits and crop yields for Seneca County 1988 /." Connect to resource, 1991. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1145449951.
Повний текст джерелаDoria, Rufa. "Impact of climate change on crop water requirements in Eastern Canada." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=104583.
Повний текст джерелаLa production agricole est très dépendante du climat; par conséquent, les futurs changements climatiques globaux pourraient avoir des effets adverses sur la population mondiale en plein essor. L'objectif principal de cette étude était de prédire les conséquences du changement climatique sur l'agriculture. Puisque les projections climatiques actuelles utilisent des modèles de circulation générale à une échelle globale, un modèle statistique de réduction (MSR) a été utilisé pour réduire ces données à l'échelle locale, ce qui est essentiel pour des simulations de production agricole.En reliant les changements du climat locaux prédits (modélisation) aux propriétés du sol et les caractéristiques des cultures (études sur le terrain et en laboratoire), les seuils du contenu en humidité du sol pour la planification d'un horaire d'irrigation efficace ont été définis, et un modèle de besoin en irrigation (MBI) a été développé. En utilisant ce modèle, l'irrigation était déclenchée lorsque l'humidité du sol était de 24 ou 18 mm pour les pêchers croissant en sols sablonneux ou argileux, respectivement, et a été déclenchée à 56 mm pour les vignes croissant en sol argileux. Il était remarquable que le MBI a réduit le besoin en irrigation de 20 to 25% sans affecter le rendement en pêches (50 to 60 kg/arbre).Concernant les augmentations de températures et les variabilités de précipitations prédites, le scénario SDMS-HadCM3 A2 prédit les plus fortes hausses, environ 3.5 et 2.5oC en moyenne pour les températures mensuelles maximum et minimum, respectivement, pendant la saison de croissance (comparé à une période de base 1961-1990). De plus, des précipitations plus fréquentes (8 to 30%) et plus intenses (10 to 50% durant les mois de croissance ont aussi été prédites.Avec ces scénarios de changements climatiques futurs, le rendement en pêches irriguées pourrait augmenter de 5 to 20%, puisque la transpiration des arbres a atteint 0.8 kg/h (comparé à un maximum de 0.4 kg/h sans irrigation). De plus, avec l'irrigation, la fermeté des fruits, le meilleur indicateur du mûrissement et prédicateur du potentiel d'entreposage des pêches, devrait s'améliorer de 20% (valeur actuelle, 340 kPa).L'aspect le plus novateur de cette étude a été le développement du modèle MBI, qui a prédit l'irrigation optimale requise pour maintenir ou augmenter le rendement et la qualité des cultures tout en conservant l'eau.
Nyamudeza, Phibion. "Water and fertility management for crop production in semi-arid Zimbabwe." Thesis, University of Nottingham, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.243687.
Повний текст джерелаFlint, C. E. "Chemical regulation of crop growth and water use in winter cereals." Thesis, University of Reading, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.334018.
Повний текст джерелаMunyaradzi, Sipho Musevenzo. "Predicting soil water deficits and crop yields for Seneca County 1988." The Ohio State University, 1991. http://rave.ohiolink.edu/etdc/view?acc_num=osu1145449951.
Повний текст джерелаZeywar, Nadim Shukry. "Water use and crop coefficient determination for irrigated cotton in Arizona." Diss., The University of Arizona, 1992. http://hdl.handle.net/10150/185887.
Повний текст джерелаRude, Peter Heinz 1961. "Water management and crop selection for intensive gardens in arid regions." Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/192004.
Повний текст джерелаGarrot, Donald J. Jr, Delmar D. Fangmeier, and Stephen H. Husman. "Scheduling Irrigations on Cotton Based on the Crop Water Stress Index." College of Agriculture, University of Arizona (Tucson, AZ), 1987. http://hdl.handle.net/10150/204489.
Повний текст джерелаMa, Qifu. "Soil salinity and water stress modify crop sensitivity to SO2 exposure." Thesis, Ma, Qifu (1993) Soil salinity and water stress modify crop sensitivity to SO2 exposure. PhD thesis, Murdoch University, 1993. https://researchrepository.murdoch.edu.au/id/eprint/42300/.
Повний текст джерелаKhan, M. F. "Rooting patterns, water use and productivity in wheat, rye and triticale." Thesis, University of Nottingham, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234680.
Повний текст джерелаMartin, Edward C., Donald C. Slack, and E. J. Pegelow. "Water Use in Vegetables - Dry Bulb Onions." College of Agriculture, University of Arizona (Tucson, AZ), 2014. http://hdl.handle.net/10150/333152.
Повний текст джерелаFangmeier, D. D., S. H. Husman, and D. J. Jr Garrot. "Irrigation Scheduling Based on the Crop Water Stress Index and Precision Water Application for High Cotton Yield." College of Agriculture, University of Arizona (Tucson, AZ), 1986. http://hdl.handle.net/10150/219764.
Повний текст джерелаA modified, low- pressure linear move irrigation system was used to irrigate cotton at the Marana Agricultural Center, University of Arizona in 1985. Irrigations were scheduled using the Crop Water Stress Index (CWSI) for timing and a neutron probe to determine soil moisture deficits. Irrigations were applied when the CWSI reached 0.1 resulting in minimal seasonal water stress. Yields ranged from 3.14 bales /acre to 2.73 bales/acre from 2 acre plots. Total applied water ranged from 31.3 inches to 32.3. Total seasonal rainfall was 2.90 inches.
Mallah, Abdul Nabi. "Effects of water stress and salinity on contrasting wheat genotypes." Thesis, Bangor University, 1991. https://research.bangor.ac.uk/portal/en/theses/effects-of-water-stress-and-salinity-on-contrasting-wheat-genotypes(d16c3b0e-d0a0-44e3-ada1-79fce0bd31ce).html.
Повний текст джерелаGueneau, Arthur. "Crop water stress under climate change uncertainty : global policy and regional risk." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/78495.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 113-121).
Fourty percent of all crops grown in the world today are grown using irrigation, and shifting precipitation patterns due to climate change are viewed as a major threat to food security. This thesis examines, in the framework of the MIT Integrated Global System Model, the potential impacts of climate change on crop water stress and the risk implications for policy makers due to underlying uncertainty in climate models. This thesis presents the Community Land Model - Agriculture module (CLM-AG) that models crop growth and water stress. It is a global generic crop model built in the framework of the Community Land Model and was evaluated for maize, cotton and spring wheat. A full climate model, the IGSM-CAM, was first used to force CLM-AG and show the regional disparity of the response to climate change. Some areas like the Midwest or Equatorial Africa benefit from the higher precipitations associated to climate change while others like Europe or Southern Africa see the irrigation need for crops increase. The effect of a mitigation policy appeared contrasted, as water-stress for some areas (including Europe and Africa) is increased if greenhouse gases emissions are limited while for other areas (Central Asia, United States) it is reduced. A second analysis was carried in Central Zambia using uncertainty ensembles. The ensembles demonstrate the notable extent of the uncertainty stemming from different climate sensitivities and different regional patterns in climate models. Crops are impacted differently but a consistent result is that climate mitigation policies reduce uncertainty in crop water stress, making it easier to plan for any anticipated future climate change.
by Arthur Gueneau.
S.M.in Technology and Policy
Alyemeny, Mohammed N. "Water use of the alfalfa crop under desert conditions in Saudi Arabia." Thesis, University of Edinburgh, 1989. http://hdl.handle.net/1842/11973.
Повний текст джерела