Добірка наукової літератури з теми "Curvature tensor U_jkh^i"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Curvature tensor U_jkh^i".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Curvature tensor U_jkh^i"

1

Abdalstar, A. Saleem Alaa A. Abdallah and Ammar Z. Hussein. "Study on Generalized U_(|l|m) - Birecurrent Finsler Space." International Journal of Advanced Scientific and Technical Research 15, no. 2 (2025): 15–27. https://doi.org/10.5281/zenodo.15369382.

Повний текст джерела
Анотація:
<strong>Abstract: </strong>In this paper, we got the necessary and sufficient condition for some tensors to be generalized birecurrent. The relationship between the curvature tensors have been studied. Also, some results in the projection on indicatrix with respect to Cartan connection have been discussed. &nbsp;
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chandru, K., and S. K. Narasimhamurthy. "The Study of Decomposition of Curvature Tensor Field in a Kaehlerian Recurrent Space of First Order." Journal of the Tensor Society 3, no. 00 (2009): 11–18. http://dx.doi.org/10.56424/jts.v3i01.9967.

Повний текст джерела
Анотація:
Takano [2] have studied decomposition of curvature tensor in a recurrent space. Sinha and Singh [3] have been studied and defined decomposition of recurrent curvature tensor field in a Finsler space. Singh and Negi studied decomposition of recurrent curvature tensor field in a Kaehlerian space. Negi and Rawat [6] have studied decomposition of recurrent curvature tensor field in a Kaehlerian space. Rawat and Silswal [11] studied and defined decomposition of recurrent curvature tensor fields in a Tachibana space. In the present paper, we have studied the decomposition of curvature tensor fields
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Chandru, K., and S. K. Narasimhamurthy. "The Study of Decomposition of Curvature Tensor Field in a Kaehlerian Recurrent Space of First Order." Journal of the Tensor Society 3, no. 01 (2009): 11–18. http://dx.doi.org/10.56424/jts.v3i00.9967.

Повний текст джерела
Анотація:
Takano [2] have studied decomposition of curvature tensor in a recurrent space. Sinha and Singh [3] have been studied and defined decomposition of recurrent curvature tensor field in a Finsler space. Singh and Negi studied decomposition of recurrent curvature tensor field in a Kaehlerian space. Negi and Rawat [6] have studied decomposition of recurrent curvature tensor field in a Kaehlerian space. Rawat and Silswal [11] studied and defined decomposition of recurrent curvature tensor fields in a Tachibana space. In the present paper, we have studied the decomposition of curvature tensor fields
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Baishya, Kanak Kanti, and Partha Roy Chowdhury. "Deszcz Pseudo Symmetry Type LP-Sasakian Manifolds." Annals of West University of Timisoara - Mathematics and Computer Science 54, no. 1 (2016): 35–53. http://dx.doi.org/10.1515/awutm-2016-0003.

Повний текст джерела
Анотація:
Abstract Recently the present authors introduced the notion of generalized quasi-conformal curvature tensor which bridges Conformal curvature tensor, Concircular curvature tensor, Projective curvature tensor and Conharmonic curvature tensor. This paper attempts to charectrize LP-Sasakian manifolds with ω(X, Y) · 𝒲 = L{(X ∧ɡ Y) · 𝒲}. On the basis of this curvature conditions and by taking into account, the permutation of different curvature tensors we obtained and tabled the nature of the Ricci tensor for the respective pseudo symmetry type LP-Sasakian manifolds.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Acet, Bilal Eftal, Erol Kılıç, and Selcen Yüksel Perktaş. "Some Curvature Conditions on a Para-Sasakian Manifold with Canonical Paracontact Connection." International Journal of Mathematics and Mathematical Sciences 2012 (2012): 1–24. http://dx.doi.org/10.1155/2012/395462.

Повний текст джерела
Анотація:
We study canonical paracontact connection on a para-Sasakian manifold. We prove that a Ricci-flat para-Sasakian manifold with respect to canonical paracontact connection is anη-Einstein manifold. We also investigate some properties of curvature tensor, conformal curvature tensor,W2-curvature tensor, concircular curvature tensor, projective curvature tensor, and pseudo-projective curvature tensor with respect to canonical paracontact connection on a para-Sasakian manifold. It is shown that a concircularly flat para-Sasakian manifold with respect to canonical paracontact connection is of constan
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rawat, K. S., and Sandeep Chauhan. "Study on Einstein-Sasakian Decomposable Recurrent Space of First Order." Journal of the Tensor Society 12, no. 01 (2009): 85–92. http://dx.doi.org/10.56424/jts.v12i01.10589.

Повний текст джерела
Анотація:
Takano [2] have studied decomposition of curvature tensor in a recurrent space. Sinha and Singh [3] have been studied and defined decomposition of recurrent curvature tensor field in a Finsler space. Singh and Negi studied decomposition of recurrent curvature tensor field in a K¨aehlerian space. Negi and Rawat [6] have studied decomposition of recurrent curvature tensor field in K¨aehlerian space. Rawat and Silswal [11] studied and defined decomposition of recurrent curvature tensor fields in a Tachibana space. Rawat and Kunwar Singh [12] studied the decomposition of curvature tensor field in
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bhattacharyya, A., та C. Patra. "Some Curvature Tensors of a Semi Symmetric Metric φ−Connection in an LSP-Sasakian Manifold". Journal of the Tensor Society 5, № 01 (2007): 67–75. http://dx.doi.org/10.56424/jts.v5i01.10440.

Повний текст джерела
Анотація:
The purpose of this paper is to investigate the conditions for the pseudo- projective curvature tensor and quasi-conformal curvature tensor of a semi- symmetric metric Á-connection to be the pseudo-projective curvature tensor and quasi-conformal curvature tensor of a Levi-Civita connection on LSP-Sasakian manifold. Also we shall discuss the behavior of conharmonic curvature ten- sor and Tachibana concircular curvature tensor with respect to semi-symmetric metric Á-connection on LSP-Sasakian manifold.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

ÖZTÜRK, Hakan. "The Investigation of Some Tensor Conditions for α-Kenmotsu Pseudo-Metric Structures". Afyon Kocatepe University Journal of Sciences and Engineering 22, № 6 (2022): 1314–22. http://dx.doi.org/10.35414/akufemubid.1169777.

Повний текст джерела
Анотація:
This paper aims to study some semi-symmetric and curvature tensor conditions on α-Kenmotsu pseudo-metric manifolds. Some conditions of semi-symmetric, locally symmetric, and the Ricci semi-symmetric are considered on such manifolds. Also, the relationships between the M-projective curvature tensor and conformal curvature tensor, concircularly curvature tensor, and conharmonic curvature tensor are investigated. Finally, an example of α-Kenmotsu pseudo-metric structure is given.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Güler, Sinem, and Sezgin Demirbağ. "On some classes of generalized quasi Einstein manifolds." Filomat 29, no. 3 (2015): 443–56. http://dx.doi.org/10.2298/fil1503443g.

Повний текст джерела
Анотація:
In the present paper, we investigate generalized quasi Einstein manifolds satisfying some special curvature conditions R?S = 0,R?S = LSQ(g,S), C?S = 0,?C?S = 0,?W?S = 0 and W2?S = 0 where R, S, C,?C,?W and W2 respectively denote the Riemannian curvature tensor, Ricci tensor, conformal curvature tensor, concircular curvature tensor, quasi conformal curvature tensor and W2-curvature tensor. Later, we find some sufficient conditions for a generalized quasi Einstein manifold to be a quasi Einstein manifold and we show the existence of a nearly quasi Einstein manifolds, by constructing a non trivia
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Rawat, K. S., and Sandeep Chauhan. "Study on Einstein-K ̈aehlerian Decomposable Recurrent Space of First Order." Journal of the Tensor Society 9, no. 01 (2007): 45–51. http://dx.doi.org/10.56424/jts.v9i01.10567.

Повний текст джерела
Анотація:
Takano [2] have studied decomposition of curvature tensor in a recurrent space. Sinha and Singh [3] have been studied and defined decomposition of recurrent curvature tensor field in a Finsler space. Singh and Negi studied decomposition of recurrent curvature tensor field in a K¨aehlerian space. Negi and Rawat [6] have studied decomposition of recurrent curvature tensor field in K¨aehlerian space. Rawat and Silswal [11] studied and defined decomposition of recurrent curvature tensor fields in a Tachibana space. Further, Rawat and Kunwar Singh [12] studied the decomposition of curvature tensor
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Curvature tensor U_jkh^i"

1

Stavrov, Iva. "Spectral geometry of the Riemann curvature tensor /." view abstract or download file of text, 2003. http://wwwlib.umi.com/cr/uoregon/fullcit?p3095275.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of Oregon, 2003.<br>Typescript. Includes vita and abstract. Includes bibliographical references (leaves 236-241). Also available for download via the World Wide Web; free to University of Oregon users.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Benas, Konstantinos. "The Lanczos tensor in spacetime geometry and the canonical formulation of general relativity." Thesis, Imperial College London, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249589.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Carvalho, Marcos Tulio Alves de. "Soluções invariantes para o tensor de Schouten e tensor curvatura prescritos em variedades localmente conformemente planas." Universidade Federal de Goiás, 2018. http://repositorio.bc.ufg.br/tede/handle/tede/8635.

Повний текст джерела
Анотація:
Submitted by Erika Demachki (erikademachki@gmail.com) on 2018-06-29T18:43:00Z No. of bitstreams: 2 Tese - Marcos Tulio Alves de Carvalho - 2018.pdf: 2579945 bytes, checksum: 29a08a3db199f6061cf6020d90ce9213 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)<br>Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-03T15:18:43Z (GMT) No. of bitstreams: 2 Tese - Marcos Tulio Alves de Carvalho - 2018.pdf: 2579945 bytes, checksum: 29a08a3db199f6061cf6020d90ce9213 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)<br>M
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Friday, Brian Matthew. "VANISHING LOCAL SCALAR INVARIANTS ON GENERALIZED PLANE WAVE MANIFOLDS." CSUSB ScholarWorks, 2019. https://scholarworks.lib.csusb.edu/etd/884.

Повний текст джерела
Анотація:
Characterizing a manifold up to isometry is a challenging task. A manifold is a topological space. One may equip a manifold with a metric, and generally speaking, this metric determines how the manifold “looks". An example of this would be the unit sphere in R3. While we typically envision the standard metric on this sphere to give it its familiar shape, one could define a different metric on this set of points, distorting distances within this set to make it seem perhaps more ellipsoidal, something not isometric to the standard round sphere. In an effort to distinguish manifolds up to isometr
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Santos, Almir Rogério Silva. "A construction of constant scalar curvature manifolds with delaunay-type ends." reponame:Repositório Institucional da UFS, 2009. https://ri.ufs.br/handle/riufs/825.

Повний текст джерела
Анотація:
Foi provado por Byde que é possível adicionar um fim do tipo Delaunay a uma variedade compacta não degenerada de curvatura escalar constante positiva; desde que ela seja localmente conformemente plana em alguma vizinhança do ponto de colagem. A variedade resultante é não-compacta e possui a mesma curvatura escalar constante. O principal objetivo desta tese é generalizar este resultado. Construiremos uma família a um parâmetro de soluções para o problema de Yamabe singular positivo em qualquer variedade compacta não degenerada cujo tensor de Weyl anula-se até uma ordem suficientemente grande no
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Saienko, Mykhailo [Verfasser], Andreas [Akademischer Betreuer] [Gutachter] Bernig, and Gil [Gutachter] Solanes. "Tensor-valued valuations and curvature measures in Euclidean spaces / Mykhailo Saienko ; Gutachter: Andreas Bernig, Gil Solanes ; Betreuer: Andreas Bernig." Frankfurt am Main : Universitätsbibliothek Johann Christian Senckenberg, 2016. http://d-nb.info/111988702X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Simpson, Leon. "Geometric algebra as applied to freeform motion design and improvement." Thesis, University of Bath, 2012. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.558894.

Повний текст джерела
Анотація:
Freeform curve design has existed in various forms for at least two millennia, and is important throughout computer-aided design and manufacture. With the increasing importance of animation and robotics, coupled with the increasing power of computers, there is now interest in freeform motion design, which, in part, extends techniques from curve design, as well as introducing some entirely distinct challenges. There are several approaches to freeform motion construction, and the first step in designing freeform motions is to choose a representation. Unlike for curves, there is no "standard" way
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lawrence, Miles D. "Einstein's Equations in Vacuum Spacetimes with Two Spacelinke Killing Vectors Using Affine Projection Tensor Geometry." VCU Scholars Compass, 1994. http://scholarscompass.vcu.edu/etd/1473.

Повний текст джерела
Анотація:
Einstein's equations in vacuum spacetimes with two spacelike killing vectors are explored using affine projection tensor geometry. By doing a semi-conformal transformation on the metric, a new "fiducial" geometry is constructed using a projection tensor fields. This fiducial geometry provides coordinate independent information about the underlying structure of the spacetime without the use of an explicit form of the metric tensor.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Evangelista, Israel de Sousa. "Compact almost Ricci soliton, critical metrics of the total scalar curvature functional and p-fundamental tone estimates." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/23920.

Повний текст джерела
Анотація:
EVANGELISTA, I. S. Compact almost Ricci soliton, critical metrics of the total scalar curvature functional and p-fundamental tone estimates. 2017. 75 f. Tese (Doutorado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017.<br>Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-07-10T12:41:32Z No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 bytes, checksum: 7e4bb8d9fd8825ef347e309171075037 (MD5)<br>Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-07-10T14:06:18Z (GMT) No. of bitstreams: 1 2017_tese_isevangelista.pdf: 618771 byte
Стилі APA, Harvard, Vancouver, ISO та ін.
10

CARVALHO, Fernando Soares de. "Difeomorfismos conformes que preservam o tensor de Ricci em variedades semi-riemannianas." Universidade Federal de Goiás, 2011. http://repositorio.bc.ufg.br/tede/handle/tde/1944.

Повний текст джерела
Анотація:
Made available in DSpace on 2014-07-29T16:02:18Z (GMT). No. of bitstreams: 1 Dissertacao Fernando Soares de Carvalho.pdf: 3468325 bytes, checksum: 30df6cf936483cf5aec035b1bdd9d208 (MD5) Previous issue date: 2011-01-28<br>NOTE: Because some programs do not copy symbols, formulas, etc... to view the summary and the contents of the file, click on PDF - dissertation on the bottom of the screen.<br>OBS: Como programas não copiam certos símbolos, fórmulas... etc, para visualizar o resumo e o todo o arquivo, click em PDF - dissertação na parte de baixo da tela.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Curvature tensor U_jkh^i"

1

Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor. World Scientific Publishing Co Pte Ltd, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor. World Scientific Publishing Co Pte Ltd, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor. World Scientific Publishing Company, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Deruelle, Nathalie, and Jean-Philippe Uzan. Riemannian manifolds. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0042.

Повний текст джерела
Анотація:
This chapter introduces the Riemann tensor characterizing curved spacetimes, and then the metric tensor, which allows lengths and durations to be defined. As shown in the preceding chapter, ‘absolute, true, and mathematical’ spacetimes representing ‘relative, apparent, and common’ space and time in Einstein’s theory are Riemannian manifolds supplied with a metric and its associated Levi-Civita connection. Moreover, this metric simultaneously describes the coordinate system chosen to reference the events. The chapter begins with a study of connections, parallel transport, and curvature; the com
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Blaha, Stephen. Unification of the Seven Boson Interactions based on the Riemann-Christoffel Curvature Tensor: Modified Galactic Scale Gravity, Explicit Quark Confinement, Interactions between Interactions. Pingree-Hill Publishing, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Deruelle, Nathalie, and Jean-Philippe Uzan. The Cartan structure equations. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0065.

Повний текст джерела
Анотація:
This chapter focuses on Cartan structure equations. It first introduces a 1-form and its exterior derivative, before turning to a study of the connection and torsion forms, thereby expressing the torsion as a function of the connection forms and establishing the torsion differential 2-forms. It then turns to the curvature forms drawn from Chapter 23 and Cartan’s second structure equation, along with the curvature 2-forms. It also studies the Levi-Civita connection. The components of the Riemann tensor are then studied, with a Riemannian manifold, or a metric manifold with a torsion-less connec
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Deruelle, Nathalie, and Jean-Philippe Uzan. Riemannian manifolds. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198786399.003.0064.

Повний текст джерела
Анотація:
This chapter is about Riemannian manifolds. It first discusses the metric manifold and the Levi-Civita connection, determining if the metric is Riemannian or Lorentzian. Next, the chapter turns to the properties of the curvature tensor. It states without proof the intrinsic versions of the properties of the Riemann–Christoffel tensor of a covariant derivative already given in Chapter 2. This chapter then performs the same derivation as in Chapter 4 by obtaining the Einstein equations of general relativity by varying the Hilbert action. However, this will be done in the intrinsic manner, using
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Curvature tensor U_jkh^i"

1

Postnikov, M. M. "Curvature Tensor." In Encyclopaedia of Mathematical Sciences. Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-662-04433-9_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kühnel, Wolfgang. "The curvature tensor." In The Student Mathematical Library. American Mathematical Society, 2005. http://dx.doi.org/10.1090/stml/016/06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ferrari, Valeria, Leonardo Gualtieri, and Paolo Pani. "The curvature tensor." In General Relativity and its Applications. CRC Press, 2020. http://dx.doi.org/10.1201/9780429491405-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Grozin, Andrey. "Riemann Curvature Tensor." In Introduction to Mathematica® for Physicists. Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00894-3_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Georgiev, Svetlin G. "The Multiplicative Curvature Tensor." In Multiplicative Differential Geometry. Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9781003299844-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kalita, Bhaben Chandra. "Riemann Symbols (Curvature Tensors)." In Tensor Calculus and Applications. CRC Press, 2019. http://dx.doi.org/10.1201/9780429028670-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Grinfeld, Pavel. "Curvature." In Introduction to Tensor Analysis and the Calculus of Moving Surfaces. Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7867-6_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gasperini, Maurizio. "Geodesic Deviation and Curvature Tensor." In Theory of Gravitational Interactions. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-49682-5_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Vittorio, Nicola. "The Riemann-Christoffel Curvature Tensor." In An Overview of General Relativity and Space-Time. CRC Press, 2022. http://dx.doi.org/10.1201/9781003141259-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liang, Canbin, and Bin Zhou. "The Riemann (Intrinsic) Curvature Tensor." In Differential Geometry and General Relativity. Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0022-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Curvature tensor U_jkh^i"

1

Hussien, Wissam Abbas, and Ali A. Shihab. "Generalized conharmonic curvature tensor of W2-manifold." In 2ND INTERNATIONAL CONFERENCE OF MATHEMATICS, APPLIED SCIENCES, INFORMATION AND COMMUNICATION TECHNOLOGY. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0176368.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ali, Ali Khalaf, and A. A. Shihab. "W-projective curvature tensor of nearly kahler manifold." In 2ND INTERNATIONAL CONFERENCE OF MATHEMATICS, APPLIED SCIENCES, INFORMATION AND COMMUNICATION TECHNOLOGY. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0161501.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hu, Maolin, Zong-Cai Ruan, and Sui Wei. "Prediction of curvature of curves based on trifocal tensor." In Multispectral Image Processing and Pattern Recognition, edited by Deren Li, Jie Yang, Jufu Feng, and Shen Wei. SPIE, 2001. http://dx.doi.org/10.1117/12.440288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, Jiemin, Qiuyu Wei, and Zhiying Zhang. "The Geometry Equations of Bi-Curvature Beam Based on Tensor Theory." In The 6th International Conference on Electrical and Control Engineering (ICECE2015) and The 4th International Conference on Materials Science and Manufacturing (ICMSM2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789813100312_0084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wietzke, Lennart, Gerald Sommer, Christian Schmaltz, et al. "Analysis of the Curvature Tensor from the Viewpoint of Signal Processing." In SELECTED PAPERS FROM ICNAAM-2007 AND ICCMSE-2007: Special Presentations at the International Conference on Numerical Analysis and Applied Mathematics 2007 (ICNAAM-2007), held in Corfu, Greece, 16–20 September 2007 and of the International Conference on Computational Methods in Sciences and Engineering 2007 (ICCMSE-2007), held in Corfu, Greece, 25–30 September 2007. AIP, 2008. http://dx.doi.org/10.1063/1.2997300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bartkowiak, Tomasz. "Characterization of 3D Surface Texture Directionality Using Multi-Scale Curvature Tensor Analysis." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71609.

Повний текст джерела
Анотація:
Anisotropy of surface texture can in many practical cases significantly affect the interaction between the surface and phenomena that influence or are influenced by the topography. Tribological contacts in sheet forming, wetting behavior or dental wear are good examples. This article introduces and exemplifies a method for quantification and visualization of anisotropy using the newly developed 3D multi-scale curvature tensor analysis. Examples of a milled steel surface, which exhibited an evident anisotropy, and a ruby contact probe surface, which was the example of isotropic surface, were me
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Liu, Min, Yushen Liu, and Karthik Ramani. "Anisotropic filtering on normal field and curvature tensor field using optimal estimation theory." In IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07). IEEE, 2007. http://dx.doi.org/10.1109/smi.2007.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lesechko, O., L. Makarenko, and L. Sokolova. "On the Pseudo-Riemannian spaces with a special structure of a curvature tensor." In APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 12th International On-line Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’20. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0034022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yamamoto, Utako, Yoshihide Sakagami, Takenori Oida, and Tetsuo Kobayashi. "Magnetic resonance diffusion tensor tractography by searching for minimum curvature deviation near fiber crossing area." In 2012 ICME International Conference on Complex Medical Engineering (CME). IEEE, 2012. http://dx.doi.org/10.1109/iccme.2012.6275690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhou, Tengfei, Hui Qian, Zebang Shen, Chao Zhang, and Congfu Xu. "Tensor Completion with Side Information: A Riemannian Manifold Approach." In Twenty-Sixth International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/495.

Повний текст джерела
Анотація:
By restricting the iterate on a nonlinear manifold, the recently proposed Riemannian optimization methods prove to be both efficient and effective in low rank tensor completion problems. However, existing methods fail to exploit the easily accessible side information, due to their format mismatch. Consequently, there is still room for improvement. To fill the gap, in this paper, a novel Riemannian model is proposed to tightly integrate the original model and the side information by overcoming their inconsistency. For this model, an efficient Riemannian conjugate gradient descent solver is devi
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!