Добірка наукової літератури з теми "Data management and data science"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Data management and data science".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Data management and data science"
Schäffer, Utz, and Jürgen Weber. "Management von Data Science." Controlling & Management Review 65, no. 8 (November 2021): 3. http://dx.doi.org/10.1007/s12176-021-0423-4.
Повний текст джерелаSévigny, Alex. "Data science and communications management." Journal of Professional Communication 5, no. 2 (October 12, 2018): 3–6. http://dx.doi.org/10.15173/jpc.v5i2.3745.
Повний текст джерелаLagoze, Carl, William C. Block, Jeremy Williams, John Abowd, and Lars Vilhuber. "Data Management of Confidential Data." International Journal of Digital Curation 8, no. 1 (June 14, 2013): 265–78. http://dx.doi.org/10.2218/ijdc.v8i1.259.
Повний текст джерелаGeorge, Gerard, Ernst C. Osinga, Dovev Lavie, and Brent A. Scott. "Big Data and Data Science Methods for Management Research." Academy of Management Journal 59, no. 5 (October 2016): 1493–507. http://dx.doi.org/10.5465/amj.2016.4005.
Повний текст джерелаTiminsky, Alexander, Anna Kolomiiets, and Olga Mezentseva. "Project management models to create IT company in the field of Data Science." Advanced Information Technology, no. 1 (1) (2021): 86–94. http://dx.doi.org/10.17721/ait.2021.1.11.
Повний текст джерелаMaienschein, Jane, John N. Parker, Manfred Laubichler, and Edward J. Hackett. "Data Management and Data Sharing in Science and Technology Studies." Science, Technology, & Human Values 44, no. 1 (September 18, 2018): 143–60. http://dx.doi.org/10.1177/0162243918798906.
Повний текст джерелаAbedjan, Ziawasch. "Enabling data-centric AI through data quality management and data literacy." it - Information Technology 64, no. 1-2 (February 18, 2022): 67–70. http://dx.doi.org/10.1515/itit-2021-0048.
Повний текст джерелаBailo, Daniele, Keith G. Jeffery, Kuvvet Atakan, Luca Trani, Rossana Paciello, Valerio Vinciarelli, Jan Michalek, and Alessandro Spinuso. "Data integration and FAIR data management in Solid Earth Science." Annals of Geophysics 65, no. 2 (April 29, 2022): DM210. http://dx.doi.org/10.4401/ag-8742.
Повний текст джерелаCAMPBELL, W., P. SMITH, R. PRICE, and L. ROELOFS. "Advancements in land science data management Pilot Land Data System." Science of The Total Environment 56 (November 15, 1986): 31–44. http://dx.doi.org/10.1016/0048-9697(86)90311-6.
Повний текст джерелаVilar, Polona, and Vlasta Zabukovec. "Research data management and research data literacy in Slovenian science." Journal of Documentation 75, no. 1 (January 14, 2019): 24–43. http://dx.doi.org/10.1108/jd-03-2018-0042.
Повний текст джерелаДисертації з теми "Data management and data science"
Yang, Ying. "Interactive Data Management and Data Analysis." Thesis, State University of New York at Buffalo, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10288109.
Повний текст джерелаEveryone today has a big data problem. Data is everywhere and in different formats, they can be referred to as data lakes, data streams, or data swamps. To extract knowledge or insights from the data or to support decision-making, we need to go through a process of collecting, cleaning, managing and analyzing the data. In this process, data cleaning and data analysis are two of the most important and time-consuming components.
One common challenge in these two components is a lack of interaction. The data cleaning and data analysis are typically done as a batch process, operating on the whole dataset without any feedback. This leads to long, frustrating delays during which users have no idea if the process is effective. Lacking interaction, human expert effort is needed to make decisions on which algorithms or parameters to use in the systems for these two components.
We should teach computers to talk to humans, not the other way around. This dissertation focuses on building systems --- Mimir and CIA --- that help user conduct data cleaning and analysis through interaction. Mimir is a system that allows users to clean big data in a cost- and time-efficient way through interaction, a process I call on-demand ETL. Convergent inference algorithms (CIA) are a family of inference algorithms in probabilistic graphical models (PGM) that enjoys the benefit of both exact and approximate inference algorithms through interaction.
Mimir provides a general language for user to express different data cleaning needs. It acts as a shim layer that wraps around the database making it possible for the bulk of the ETL process to remain within a classical deterministic system. Mimir also helps users to measure the quality of an analysis result and provides rankings for cleaning tasks to improve the result quality in a cost efficient manner. CIA focuses on providing user interaction through the process of inference in PGMs. The goal of CIA is to free users from the upfront commitment to either approximate or exact inference, and provide user more control over time/accuracy trade-offs to direct decision-making and computation instance allocations. This dissertation describes the Mimir and CIA frameworks to demonstrate that it is feasible to build efficient interactive data management and data analysis systems.
Dedge, Parks Dana M. "Defining Data Science and Data Scientist." Scholar Commons, 2017. http://scholarcommons.usf.edu/etd/7014.
Повний текст джерелаWason, Jasmin Lesley. "Automating data management in science and engineering." Thesis, University of Southampton, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.396143.
Повний текст джерелаWang, Yi. "Data Management and Data Processing Support on Array-Based Scientific Data." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1436157356.
Повний текст джерелаAnumalla, Kalyani. "DATA PREPROCESSING MANAGEMENT SYSTEM." University of Akron / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=akron1196650015.
Повний текст джерелаFernández, Moctezuma Rafael J. "A Data-Descriptive Feedback Framework for Data Stream Management Systems." PDXScholar, 2012. https://pdxscholar.library.pdx.edu/open_access_etds/116.
Повний текст джерелаNguyen, Benjamin. "Privacy-Centric Data Management." Habilitation à diriger des recherches, Université de Versailles-Saint Quentin en Yvelines, 2013. http://tel.archives-ouvertes.fr/tel-00936130.
Повний текст джерелаTran, Viet-Trung. "Scalable data-management systems for Big Data." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00920432.
Повний текст джерелаNyström, Dag. "Data Management in Vehicle Control-Systems." Doctoral thesis, Mälardalen University, Department of Computer Science and Electronics, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-66.
Повний текст джерелаAs the complexity of vehicle control-systems increases, the amount of information that these systems are intended to handle also increases. This thesis provides concepts relating to real-time database management systems to be used in such control-systems. By integrating a real-time database management system into a vehicle control-system, data management on a higher level of abstraction can be achieved. Current database management concepts are not sufficient for use in vehicles, and new concepts are necessary. A case-study at Volvo Construction Equipment Components AB in Eskilstuna, Sweden presented in this thesis, together with a survey of existing database platforms confirms this. The thesis specifically addresses data access issues by introducing; (i) a data access method, denoted database pointers, which enables data in a real-time database management system to be accessed efficiently. Database pointers, which resemble regular pointers variables, permit individual data elements in the database to be directly pointed out, without risking a violation of the database integrity. (ii) two concurrency-control algorithms, denoted 2V-DBP and 2V-DBP-SNAP which enable critical (hard real-time) and non-critical (soft real-time) data accesses to co-exist, without blocking of the hard real-time data accesses or risking unnecessary abortions of soft real-time data accesses. The thesis shows that 2V-DBP significantly outperforms a standard real-time concurrency control algorithm both with respect to lower response-times and minimized abortions. (iii) two concepts, denoted substitution and subscription queries that enable service- and diagnostics-tools to stimulate and monitor a control-system during run-time. The concepts presented in this thesis form a basis on which a data management concept suitable for embedded real-time systems, such as vehicle control-systems, can be built.
Ett modernt fordon är idag i princip helt styrt av inbyggda datorer. I takt med att funktionaliteten i fordonen ökar, blir programvaran i dessa datorer mer och mer komplex. Komplex programvara är svår och kostsam att konstruera. För att hantera denna komplexitet och underlätta konstruktion, satsar nu industrin på att finna metoder för att konstruera dessa system på en högre abstraktionsnivå. Dessa metoder syftar till att strukturera programvaran idess olika funktionella beståndsdelar, till exempel genom att använda så kallad komponentbaserad programvaruutveckling. Men, dessa metoder är inte effektiva vad gäller att hantera den ökande mängden information som följer med den ökande funktionaliteten i systemen. Exempel på information som skall hanteras är data från sensorer utspridda i bilen (temperaturer, tryck, varvtal osv.), styrdata från föraren (t.ex. rattutslag och gaspådrag), parameterdata, och loggdata som används för servicediagnostik. Denna information kan klassas som säkerhetskritisk eftersom den används för att styra beteendet av fordonet. På senare tid har dock mängden icke säkerhetskritisk information ökat, exempelvis i bekvämlighetssystem som multimedia-, navigations- och passagerarergonomisystem.
Denna avhandling syftar till att visa hur ett datahanteringssystem för inbyggda system, till exempel fordonssystem, kan konstrueras. Genom att använda ett realtidsdatabashanteringssystem för att lyfta upp datahanteringen på en högre abstraktionsnivå kan fordonssystem tillåtas att hantera stora mängder information på ett mycket enklare sätt än i nuvarande system. Ett sådant datahanteringssystem ger systemarkitekterna möjlighet att strukturera och modellera informationen på ett logiskt och överblickbart sätt. Informationen kan sedan läsas och uppdateras genom standardiserade gränssnitt anpassade förolika typer av funktionalitet. Avhandlingen behandlar specifikt problemet hur information i databasen, med hjälp av en concurrency-control algoritm, skall kunna delas av både säkerhetskritiska och icke säkerhetskritiska systemfunktioner i fordonet. Vidare avhandlas hur information kan distribueras både mellan olika datorsystem i fordonet, men också till diagnostik- och serviceverktyg som kan kopplas in i fordonet.
Karras, Panagiotis. "Data structures and algorithms for data representation in constrained environments." Thesis, Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/hkuto/record/B38897647.
Повний текст джерелаКниги з теми "Data management and data science"
Data with semantics: Data models and data management. New York: Van Nostrand Reinhold, 1989.
Знайти повний текст джерелаData management and data description. Aldershot, Hants, England: Ashgate, 1992.
Знайти повний текст джерелаData management and data description. Aldershot, Hants, England: Ashgate, 1992.
Знайти повний текст джерелаLawrence, Dubov, ed. Master data management and data governance. 2nd ed. New York: McGraw-Hill, 2011.
Знайти повний текст джерелаGhosh, Sakti P. Data base organization for data management. 2nd ed. Orlando (Fla.): Academic Press, 1986.
Знайти повний текст джерелаData base organization for data management. 2nd ed. Orlando, Fla: Academic Press, 1986.
Знайти повний текст джерелаLiu, Qing. Data Provenance and Data Management in eScience. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Знайти повний текст джерелаPolkowski, Zdzislaw, Sambit Kumar Mishra, and Julian Vasilev. Data Science in Engineering and Management. New York: CRC Press, 2021. http://dx.doi.org/10.1201/9781003216278.
Повний текст джерелаBorah, Samarjeet, Sambit Kumar Mishra, Brojo Kishore Mishra, Valentina Emilia Balas, and Zdzislaw Polkowski, eds. Advances in Data Science and Management. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-5685-9.
Повний текст джерелаЧастини книг з теми "Data management and data science"
Zanin, Massimiliano, Andrew Cook, and Seddik Belkoura. "Data Science." In Complexity Science in Air Traffic Management, 105–29. Burlington, VT : Ashgate, [2016] |: Routledge, 2016. http://dx.doi.org/10.4324/9781315573205-7.
Повний текст джерелаWeik, Martin H. "management data." In Computer Science and Communications Dictionary, 971. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_10996.
Повний текст джерелаWeik, Martin H. "data management." In Computer Science and Communications Dictionary, 352. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_4318.
Повний текст джерелаGadatsch, Andreas, and Dirk Schreiber. "Management von Big Data Projekten." In Data Science, 41–62. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-33403-1_3.
Повний текст джерелаBusulwa, Richard, and Nina Evans. "Data, data management, data analytics, and data science technologies." In Digital Transformation in Accounting, 183–96. Abingdon, Oxon ; New York, NY : Routledge, 2021. | Series: Business & digital transformation: Routledge, 2021. http://dx.doi.org/10.4324/9780429344589-18.
Повний текст джерелаKampakis, Stylianos. "Data Management." In The Decision Maker's Handbook to Data Science, 23–29. Berkeley, CA: Apress, 2019. http://dx.doi.org/10.1007/978-1-4842-5494-3_2.
Повний текст джерелаPapp, Stefan, and Bernhard Ortner. "Data Management." In The Handbook of Data Science and AI, 131–51. München: Carl Hanser Verlag GmbH & Co. KG, 2022. http://dx.doi.org/10.3139/9781569908877.005.
Повний текст джерелаSpengler, Sylvia. "Data Scientists, Data Management and Data Policy." In Lecture Notes in Computer Science, 490. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22351-8_32.
Повний текст джерелаDhaya, R., M. Devi, R. Kanthavel, and Fahad AlGarni. "Big Data Analysis and Management in Healthcare." In Data Science, 127–57. Boca Raton : CRC Press, [2020]: CRC Press, 2019. http://dx.doi.org/10.1201/9780429263798-6.
Повний текст джерелаVermeulen, Andreas François. "Three Management Layers." In Practical Data Science, 119–45. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-3054-1_6.
Повний текст джерелаТези доповідей конференцій з теми "Data management and data science"
Getoor, Lise. "Responsible Data Science." In SIGMOD/PODS '19: International Conference on Management of Data. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3299869.3314117.
Повний текст джерелаParashar, Manish. "Data-Management for Extreme Science." In HPDC '22: The 31st International Symposium on High-Performance Parallel and Distributed Computing. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3502181.3537771.
Повний текст джерелаStoyanovich, Julia. "Teaching Responsible Data Science." In SIGMOD/PODS '22: International Conference on Management of Data. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3531072.3535318.
Повний текст джерелаBaunsgaard, Sebastian, Matthias Boehm, Ankit Chaudhary, Behrouz Derakhshan, Stefan Geißelsöder, Philipp M. Grulich, Michael Hildebrand, et al. "ExDRa: Exploratory Data Science on Federated Raw Data." In SIGMOD/PODS '21: International Conference on Management of Data. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3448016.3457549.
Повний текст джерелаKumar, Arun. "Automation of Data Prep, ML, and Data Science." In SIGMOD/PODS '21: International Conference on Management of Data. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3448016.3457537.
Повний текст джерелаZhan, Zheng, Zheng Xiaojing, Taiyuanyuan, Zhao Wei, and Cai Tianqi. "Complexity science management and big data." In 2014 IEEE International Conference on Granular Computing (GrC). IEEE, 2014. http://dx.doi.org/10.1109/grc.2014.6982867.
Повний текст джерелаFisler, Kathi. "Data-Centricity: Rethinking Introductory Computing to Support Data Science." In SIGMOD/PODS '22: International Conference on Management of Data. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3531072.3535317.
Повний текст джерелаRossi, Rogério, and Kechi Hirama. "Characterizing Big Data Management." In InSITE 2015: Informing Science + IT Education Conferences: USA. Informing Science Institute, 2015. http://dx.doi.org/10.28945/2192.
Повний текст джерелаHandley, Thomas H., Y. P. Li, and Mark R. Rubin. "DataHub: knowledge-based science data management for exploratory data analysis." In Recent Advances in Sensors, Radiometric Calibration, and Processing of Remotely Sensed Data. SPIE, 1993. http://dx.doi.org/10.1117/12.161564.
Повний текст джерелаGovind, Yash, Pradap Konda, Paul Suganthan G.C., Philip Martinkus, Palaniappan Nagarajan, Han Li, Aravind Soundararajan, et al. "Entity Matching Meets Data Science." In SIGMOD/PODS '19: International Conference on Management of Data. New York, NY, USA: ACM, 2019. http://dx.doi.org/10.1145/3299869.3314042.
Повний текст джерелаЗвіти організацій з теми "Data management and data science"
Mount, Richard P. The Office of Science Data-Management Challenge. Office of Scientific and Technical Information (OSTI), October 2005. http://dx.doi.org/10.2172/878079.
Повний текст джерелаMaltzahn, Carlos. Science-Driven Data Management for Multi-Tiered Storage. Office of Scientific and Technical Information (OSTI), January 2020. http://dx.doi.org/10.2172/1594174.
Повний текст джерелаParashar, Manish. SIRIUS: Science-Driven Data Management for Multi-Tiered Storage. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1736017.
Повний текст джерелаAncion, Zoé, Francis Andre, Sarah Cadorel, Romain Feret, Odile Hologne, Kenneth Maussang, Marine Moguen-Toursel, and Véronique Stoll. Data Management Plan - Recommendations to the ANR. Ministère de l'enseignement supérieur et de la recherche, June 2019. http://dx.doi.org/10.52949/23.
Повний текст джерелаAncion, Zoé, Francis Andre, Sarah Cadorel, Romain Feret, Odile Hologne, Kenneth Maussang, Marine Moguen-Toursel, and Véronique Stoll. Data Management Plan - Recommendations to the ANR. Ministère de l'enseignement supérieur et de la recherche, June 2019. http://dx.doi.org/10.52949/23.
Повний текст джерелаKolda, T., D. Brown, J. Corones, T. Critchlow, T. Eliassi-Rad, L. Getoor, B. Hendrickson, et al. Data Sciences Technology for Homeland Security Information Management and Knowledge Discovery. Office of Scientific and Technical Information (OSTI), January 2005. http://dx.doi.org/10.2172/917886.
Повний текст джерелаSemerikov, Serhiy O., Vladyslav S. Pototskyi, Kateryna I. Slovak, Svitlana M. Hryshchenko, and Arnold E. Kiv. Automation of the Export Data from Open Journal Systems to the Russian Science Citation Index. [б. в.], November 2018. http://dx.doi.org/10.31812/123456789/2651.
Повний текст джерелаMoulton, David, Dean Williams, Deb Agarwal, Tom Boden, Roelof Versteeg, Charlie Koven, Tim Scheibe, et al. Building a Cyberinfrastructure for Environmental System Science: Modeling Frameworks, Data Management, and Scientific Workflows, Workshop Report, Potomac, Maryland, April 30-May 1, 2015. Office of Scientific and Technical Information (OSTI), November 2015. http://dx.doi.org/10.2172/1471414.
Повний текст джерелаSoenen, Karen, Dana Gerlach, Christina Haskins, Taylor Heyl, Danie Kinkade, Sawyer Newman, Shannon Rauch, et al. How can BCO-DMO help with your oceanographic data? How can BCO-DMO help with your oceanographic data?, December 2021. http://dx.doi.org/10.1575/1912/27803.
Повний текст джерелаShapovalov, Yevhenii B., Viktor B. Shapovalov, and Vladimir I. Zaselskiy. TODOS as digital science-support environment to provide STEM-education. [б. в.], September 2019. http://dx.doi.org/10.31812/123456789/3250.
Повний текст джерела