Добірка наукової літератури з теми "Delay-based control"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Delay-based control".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Delay-based control"
Hetel, L., J. Daafouz, J. P. Richard, and M. Jungers. "Delay-dependent sampled-data control based on delay estimates." Systems & Control Letters 60, no. 2 (February 2011): 146–50. http://dx.doi.org/10.1016/j.sysconle.2010.12.001.
Повний текст джерелаKung, H. T., Koan-Sin Tan, and Pai-Hsiang Hsiao. "TCP with sender-based delay control." Computer Communications 26, no. 14 (September 2003): 1614–21. http://dx.doi.org/10.1016/s0140-3664(03)00110-5.
Повний текст джерелаTian, Zhongda. "Networked control system time-delay compensation based on PI-based dynamic matrix control." at - Automatisierungstechnik 69, no. 1 (January 1, 2021): 41–51. http://dx.doi.org/10.1515/auto-2020-0020.
Повний текст джерелаJin, Jae-Hyun, Chang-Sun Yoo, Hyeok Ryu, and Min-Jea Tahk. "Fault Tolerant Flight Control Based on Time Delay Control." Journal of the Korean Society for Aeronautical & Space Sciences 33, no. 12 (December 31, 2005): 54–60. http://dx.doi.org/10.5139/jksas.2005.33.12.054.
Повний текст джерелаLiu, Pin-Lin. "Observer-based Control for Time–varying Delay Systems with Delay-dependence." Universal Journal of Electrical and Electronic Engineering 1, no. 2 (August 2013): 31–40. http://dx.doi.org/10.13189/ujeee.2013.010204.
Повний текст джерелаGuo, Wenlan, Jin Huang, and Yun Zhang. "Delay-based Congestion Control for Multipath TCP." International Journal of Future Generation Communication and Networking 7, no. 1 (February 28, 2014): 97–104. http://dx.doi.org/10.14257/ijfgcn.2014.7.1.10.
Повний текст джерелаLi, Qihao, Ning Zhang, Michael Cheffena, and Xuemin Shen. "Channel-Based Optimal Back-Off Delay Control in Delay-Constrained Industrial WSNs." IEEE Transactions on Wireless Communications 19, no. 1 (January 2020): 696–711. http://dx.doi.org/10.1109/twc.2019.2948156.
Повний текст джерелаHeyden, Martin, Richard Pates, and Anders Rantzer. "Price Based Linear Quadratic Control Under Transportation Delay." IFAC-PapersOnLine 53, no. 2 (2020): 3192–97. http://dx.doi.org/10.1016/j.ifacol.2020.12.1077.
Повний текст джерелаXIAO, Jun, Xiao-Chun YUN, and Yong-Zheng ZHANG. "Flash Crowd Control Model Based on Time Delay." Journal of Software 22, no. 11 (November 14, 2011): 2795–809. http://dx.doi.org/10.3724/sp.j.1001.2011.03922.
Повний текст джерелаGolmohammadi, Rostam, Jamshid Rahimi, Saeid Hossien Mossavi, and Hossien Mahjub. "Time delay based noise control in centrifugal fans." Noise Notes 7, no. 3 (July 2008): 27–34. http://dx.doi.org/10.1260/147547308786238386.
Повний текст джерелаДисертації з теми "Delay-based control"
Arun, Venkat. "Copa : practical delay-based congestion control for the internet." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121732.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 43-46).
This thesis introduces Copa, an end-to-end congestion control algorithm that uses three ideas. First, it shows that a target rate equal to 1/([delta]d[subscript q]), where d[subscript q] is the (measured) queueing delay, optimizes a natural function of throughput and delay under a Markovian packet arrival model. Second, it adjusts its congestion window in the direction of this target rate, converging quickly to the correct fair rates even in the face of significant flow churn. These two ideas enable a group of Copa flows to maintain high utilization with low queuing delay. However, when the bottleneck is shared with loss-based congestion-controlled flows that fill up buffers, Copa, like other delay-sensitive schemes, achieves low throughput. To combat this problem, Copa uses a third idea: detect the presence of buffer-fillers by observing the delay evolution, and respond with additive-increase/multiplicative decrease on the [delta] parameter. Experimental results show that Copa outperforms Cubic (similar throughput, much lower delay, fairer with diverse RTTs), BBR and PCC (significantly fairer, lower delay), and co-exists well with Cubic unlike BBR and PCC. Copa is also robust to non-congestive loss and large bottleneck buffers, and outperforms other schemes on long-RTT paths.
by Venkat Arun.
S.M.
S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Kotla, Kiran. "Adapting a delay-based protocol to heterogeneous environments." Texas A&M University, 2008. http://hdl.handle.net/1969.1/86000.
Повний текст джерелаHernández-Díez, José-Enrique. "Delay-Based Controllers Design for Dynamical Systems." Thesis, Lyon, 2021. https://tel.archives-ouvertes.fr/tel-03269160.
Повний текст джерелаThis thesis studies the use of delay-based controllers for dynamical systems. Applications, experimentation, and theoretical problematics are addressed. The main focus of the study is the conception of delay-based controllers inspired by the well-known PID controllers. Also, and equally important, we study the design of such controllers. More precisely, we develop methods to find the proper choice of the controller's parameters assuring stability for different types of controllers. To this end, the thesis embraces the use of linear differential models and analysis due to its elegant frequency-based interpretation. In this regard, the stability properties of these systems are governed by their characteristic equation, which for time-delay systems are the so-called quasi-polynomials or polynomials with constant coefficients. Thus, this thesis studies the behavior of the roots of these functions with respect to variations of their parameters (coefficients and time delay values) through well-known roots crossing stability. Numeric methods and analytical observations are developed in this sense. In particular, we study applications, dc/dc converters, the Furuta pendulum, haptic devices, and the MPPT-PV (maximum power point tracking - photovoltaic) problem. Through the use of the proportional-delayed, proportional-delay-based derivative, proportional-delayed integral, and proportional-delayed-integral controllers. Also, we propose a solution to the classical delay-based control problem of stabilizing a chain of any number of oscillators by applying a single delay block
Deng, Yang. "Delay estimation and predictor-based control of time-delay systems with a class of various delays." Thesis, Ecole centrale de Nantes, 2020. http://www.theses.fr/2020ECDN0014.
Повний текст джерелаTime-delay is a widely-found phenomenon (i.e. physical dead time, communication latency, computation time) in real control systems, which can degrade the performances of the system or destabilize the system. If the time-delay is small, then the closed-loop stability can be guaranteed with conventional control techniques; but these techniques are no longer effective if the time-delay is long. This thesis is dedicated to the control of time-delaysystemswithunknown or uncertain long time-delays. In order to compensate long time-delays, the predictor-based control technique is adopted, and the delay estimation techniques are developed to assist the predictor-based controller. According to the different types of the systems and the time-delays, three objectives are analyzed in the thesis. The first objective considers the control of LTI systems with unknown constant delays, a new type of delay estimator is proposed to estimate the unknown time-delays, then it is plugged into apredictor-based controller to stabilize the system. The second objective focuses on the practical stabilization of remote control systems with unknown time-varying delays, at this time, the time-delays are estimated by a practical way: a specific communication loop is used to estimate the round-trip delay in finite time, and the system is stabilized with a predictor-based controller. This practical delay estimation algorithm is implemented on a real WiFi network, it can estimate the time-varying delays with good performances and robustness. The last objective is devoted to the control of networked control systems with time-varying delays, the discrete predictor-based control techniques are used to compensate long time-varyingdelays,and the packet reordering in the sensor-to-controller channel is also considered. Moreover, this control solution is validated on a networked visual servo inverted pendulum system, and the control performances are fairly better than the non-predictive control methods
Wang, Shengquan. "Utilization-based delay guarantee techniques and their applications." [College Station, Tex. : Texas A&M University, 2006. http://hdl.handle.net/1969.1/ETD-TAMU-1078.
Повний текст джерелаStankovic, Nikola. "Set-based control methods for systems affected by time-varying delay." Thesis, Supélec, 2013. http://www.theses.fr/2013SUPL0025/document.
Повний текст джерелаWe considered the process regulation which is based on feedback affected by varying delays. Proposed approach relies on set-based control methods. One part of the thesis examines active control design for compensation of delays in sensor-to controller communication channel. This problem is regarded in a general perspective of the fault tolerant control where delays are considered as a particular degradation mode of the sensor. Obtained results are also adapted to the systems with redundant sensing elements that are prone to abrupt faults. In this sense, an unified framework is proposed in order to address the control design with outdated measurements provided by unreliable sensors.Positive invariance for linear discrete-time systems with delays is outlined in the second part of the thesis. Concerning this class of dynamics, there are two main approaches which define positive invariance. The first one relies on rewriting a delay-difference equation in the augmented state-space and applying standard analysis and control design tools for the linear systems. The second approach considers invariance in the initial state-space. However, the initial state-space characterization is still an open problem even for the linear case and it represents our main subject of interest. As a contribution, we provide new insights on the existence of the positively invariant sets in the initial state-space. Moreover, a construction algorithm for the minimal robust D-invariant set is outlined. Additionally, alternative invariance concepts are discussed
Mirzaei, Ahmad, and Seyedeh Serveh Sadeghi. "Adjustable, Delay-based Congestion Control in a Reliable Transport Protocol over UDP." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-94875.
Повний текст джерелаRajasekhar, Lakshmi. "Microscopic Control Delay Modeling at Signalized Arterials Using Bluetooth Technology." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/36214.
Повний текст джерелаMaster of Science
GUIDOLINI, R. "A NEURAL-BASED MODEL PREDICTIVE CONTROL TO TACKLE STEERING DELAY OF THE IARA AUTONOMOUS CAR." Universidade Federal do Espírito Santo, 2017. http://repositorio.ufes.br/handle/10/9852.
Повний текст джерелаNeste trabalho, propomos uma abordagem de Controle Preditivo Baseado em Modelo Neural (Neural Based Model Predictive Control - N-MPC) para lidar com atrasos na planta de direção de carros autônomos. Examinamos a abordagem N-MPC como uma alternativa para a implementação do subsistema de controle de direção da Intelligent and Autonomous Robotic Automobile (IARA). Para isso, comparamos a solução padrão, baseada na abordagem de controle Proporcional Integral Derivativo (PID), com a abordagem N-MPC. O subsistema de controle de direção PID funciona bem na IARA para velocidades de até 25 km/h. No entanto, acima desta velocidade, atrasos na Planta de Direção da IARA são muito elevados para permitir uma operação adequada usando uma abordagem PID. Modelamos a Planta de Direção da IARA usando uma rede neural e empregamos esse modelo neural na abordagem N-MPC. A abordagem N-MPC superou a abordagem PID reduzindo o impacto de atrasos na Planta de Direção de IARA e permitindo a operação autônoma da IARA em velocidades de até 37 km/h um aumento de 48% na velocidade máxima estável
Huang, Shih-Ying. "Analysis of a time delay controller based on convolutions, with application to a cruise control system." Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/41324.
Повний текст джерелаКниги з теми "Delay-based control"
Michiels, W. Stability and stabilization of time-delay systems: An Eigenvalue-based approach. Philadelphia: Society for Industrial and Applied Mathematics, 2007.
Знайти повний текст джерелаStability, Control, and Computation for Time-Delay Systems: An Eigenvalue-Based Approach, Second Edition. SIAM-Society for Industrial and Applied Mathematics, 2014.
Знайти повний текст джерелаЧастини книг з теми "Delay-based control"
Pötsch, Thomas. "Modeling of Delay-Based Congestion Control Protocols." In Future Mobile Transport Protocols, 99–140. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-14815-7_7.
Повний текст джерелаSabahi, Farnaz, and M. R. Akbarzadeh-T. "Soft LMI-Based H∞ Control with Time Delay." In Proceedings of the 18th Online World Conference on Soft Computing in Industrial Applications (WSC18), 145–57. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00612-9_13.
Повний текст джерелаWei, Jianming, Hong Wang, and Fang Liu. "Observer-Based AILC of Nonlinear Time-Delay Systems." In Iterative Learning Control for Nonlinear Time-Delay System, 111–60. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-6317-9_5.
Повний текст джерелаWang, Zhanshan, Zhenwei Liu, and Chengde Zheng. "Delay-Partitioning-Method Based Stability Results for RNNs." In Qualitative Analysis and Control of Complex Neural Networks with Delays, 173–204. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47484-6_4.
Повний текст джерелаHua, Changchun, Liuliu Zhang, and Xinping Guan. "NN-Based Output Feedback Tracking of Nonlinear Time-Delay System." In Robust Control for Nonlinear Time-Delay Systems, 193–214. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5131-9_12.
Повний текст джерелаRaynaud, Henri-François, Fabienne Floret, and Caroline Kulcsár. "Delay-Based Non-linear Observers for Congestion Control in Communication Networks." In Applications of Time Delay Systems, 3–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-49556-7_1.
Повний текст джерелаWang, Q., Y. Xu, and J. Z. Xu. "A New Stall Delay Model for HAWT Based on Inviscid Theory." In Fluid-Structure-Sound Interactions and Control, 363–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40371-2_52.
Повний текст джерелаCao, Yiran, and Toshiki Oguchi. "Coordinated Control of Mobile Robots with Delay Compensation Based on Synchronization." In Sensing and Control for Autonomous Vehicles, 495–514. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55372-6_23.
Повний текст джерелаWang, Zhanshan, Zhenwei Liu, and Chengde Zheng. "Stability Criteria for RNNs Based on Secondary Delay Partitioning." In Qualitative Analysis and Control of Complex Neural Networks with Delays, 205–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-47484-6_5.
Повний текст джерелаWang, Jin-Liang, Huai-Ning Wu, Tingwen Huang, and Shun-Yan Ren. "Passivity-Based Synchronization of CRDNNs with Time-Varying Delay." In Analysis and Control of Coupled Neural Networks with Reaction-Diffusion Terms, 129–41. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4907-1_7.
Повний текст джерелаТези доповідей конференцій з теми "Delay-based control"
Wang, Dongxing, Leibo Liu, Bo Wang, and Shaojun Wei. "Area-Efficient Delay-based PUF Based on Logic Gates." In 2018 13th APCA International Conference on Automatic Control and Soft Computing (CONTROLO). IEEE, 2018. http://dx.doi.org/10.1109/controlo.2018.8439790.
Повний текст джерелаGusat, Mitchell, Robert Birke, and Cyriel Minkenberg. "Delay-Based Cloud Congestion Control." In GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference. IEEE, 2009. http://dx.doi.org/10.1109/glocom.2009.5425643.
Повний текст джерелаZitek, P. "Anisochronic inverse-based control of time delay systems." In UKACC International Conference on Control (CONTROL '98). IEE, 1998. http://dx.doi.org/10.1049/cp:19980436.
Повний текст джерелаShao, Chenhui, and Jie Sheng. "Stability analysis and control of linear periodic time-delay systems with state-space models based on semi-discretization." In 2012 UKACC International Conference on Control (CONTROL). IEEE, 2012. http://dx.doi.org/10.1109/control.2012.6334729.
Повний текст джерелаJung, Hyungsoo, Shin-gyu Kim, Heon Y. Yeom, Sooyong Kang, and Lavy Libman. "Adaptive delay-based congestion control for high bandwidth-delay product networks." In IEEE INFOCOM 2011 - IEEE Conference on Computer Communications. IEEE, 2011. http://dx.doi.org/10.1109/infcom.2011.5935127.
Повний текст джерелаEdwan, Talal A., Lin Guan, George Oikonomou, and Iain Phillips. "Higher order delay functions for delay-loss based TCP congestion control." In 2010 Wireless Advanced (WiAd) (Formerly known as SPWC). IEEE, 2010. http://dx.doi.org/10.1109/wiad.2010.5544874.
Повний текст джерелаSong, Aopeng, Yuanqing Xia, and Yufeng Zhan. "Multi-delay network based IEEE 802.15.4 for low delay deterministic networked control systems." In 2017 36th Chinese Control Conference (CCC). IEEE, 2017. http://dx.doi.org/10.23919/chicc.2017.8028604.
Повний текст джерелаLiu, Xiao, and Wenyuan Li. "A delay-locked-loop-based precise delay line for high-speed communication." In International Conference on Control Engineering and Electronics Engineering. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/cceee140391.
Повний текст джерелаGuo, Wenlan, Zhijia Wang, and Yun Zhang. "Delay-based Congestion Control for Multipath TCP." In The 5th International Conference on Multimedia, Computer Graphics and Broadcasting. Science & Engineering Research Support soCiety, 2013. http://dx.doi.org/10.14257/astl.2013.31.28.
Повний текст джерелаYu Cao, Mingwei Xu, and Xiaoming Fu. "Delay-based congestion control for multipath TCP." In 2012 20th IEEE International Conference on Network Protocols (ICNP). IEEE, 2012. http://dx.doi.org/10.1109/icnp.2012.6459978.
Повний текст джерелаЗвіти організацій з теми "Delay-based control"
Flaishman, Moshe, Herb Aldwinckle, Shulamit Manulis, and Mickael Malnoy. Efficient screening of antibacterial genes by juvenile phase free technology for developing resistance to fire blight in pear and apple trees. United States Department of Agriculture, December 2008. http://dx.doi.org/10.32747/2008.7613881.bard.
Повний текст джерелаPoverenov, Elena, Tara McHugh, and Victor Rodov. Waste to Worth: Active antimicrobial and health-beneficial food coating from byproducts of mushroom industry. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7600015.bard.
Повний текст джерелаManulis, Shulamit, Christine D. Smart, Isaac Barash, Guido Sessa, and Harvey C. Hoch. Molecular Interactions of Clavibacter michiganensis subsp. michiganensis with Tomato. United States Department of Agriculture, January 2011. http://dx.doi.org/10.32747/2011.7697113.bard.
Повний текст джерелаLers, Amnon, and Gan Susheng. Study of the regulatory mechanism involved in dark-induced Postharvest leaf senescence. United States Department of Agriculture, January 2009. http://dx.doi.org/10.32747/2009.7591734.bard.
Повний текст джерела