Добірка наукової літератури з теми "Dépôt de poudres par fusion laser"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dépôt de poudres par fusion laser".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Dépôt de poudres par fusion laser":

1

Lemoine, F., D. F. Grevey, I. Vastra-Bobin, and A. B. Vannes. "Modélisation de la section de dépôts obtenus par fusion d'une poudre métallique projetée dans un faisceau laser Nd-YAG." Journal de Physique III 3, no. 10 (October 1993): 2043–52. http://dx.doi.org/10.1051/jp3:1993257.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Millon, Célia, Arnaud Vanhoye, and Anne-Françoise Obaton. "Ultrasons laser pour la détection de défauts sur pièces de fabrication additive métallique." Photoniques, no. 94 (November 2018): 34–37. http://dx.doi.org/10.1051/photon/20189434.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La fabrication additive (FA), notamment la FA de pièces métalliques, connait un essor dans les secteurs de pointe comme l’aéronautique ou le médical de par les possibilités accrues en termes de complexité géométrique, de fonctionnalités ou encore de personnalisation des pièces. Cependant, les poudres métalliques et la fusion laser mis en oeuvre dans certains procédés lors de la fabrication conduisent parfois à des défauts, comme par exemple des manques de fusion. Pour réduire les coûts de production engendrés par des pièces finies mais non conformes, la fabrication de ces pièces appelle à développer un contrôle en ligne. Les ultrasons laser (UL), non destructifs et sans contact, sont une piste prometteuse : ils combinent la sensibilité d’un contrôle par ultrasons avec la flexibilité d’un système optique.

Дисертації з теми "Dépôt de poudres par fusion laser":

1

Marion, Guillaume. "Modélisation de procédés de fabrication additive de pièces aéronautiques et spatiales en Ti-6AI-4V par dépôt et fusion sélective d'un lit de poudre par laser : Approche thermique, métallurgique et mécanique." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La fabrication additive est une famille de procédés permettant de construire des pièces finies, saines, de géométries très complexes, tout en diminuant le temps de développement des pièces, les coûts et les délais vis-à-vis des techniques de fabrication conventionnelles. Le point commun à tous ces procédés est de construire une pièce directement à partir des données CAO définissant sa géométrie sans outillage autre que la machine de fabrication additive.Cette thèse de Doctorat s'inscrit dans le projet de recherche FALAFEL (Fabrication Additive par procédé LAser et Faisceaux d’ÉLectrons) rassemblant les filières aéronautique et procédés laser dans le but de mettre en œuvre, d’améliorer et de valider des procédés de fabrication additive de pièces métalliques, dans des conditions industrielles et sur des composants aéronautiques.L'objectif est de proposer un modèle numérique permettant d’obtenir, dans des temps raisonnables, des informations sur les caractéristiques thermique, métallurgique et mécanique de pièces industrielles en titane Ti-6Al-4V destinées à être fabriquées par deux procédés de fabrication additive : la projection de poudre (Direct Metal Deposition ou DMD) et la fusion laser sélective (Selective Laser Melting ou SLM)
Additive manufacturing processes allow to build finished industrial parts with very complex geometry, while reducing development time and costs compared to conventional manufacturing processes. The main principle of all these processes is to build components directly from a CAD file defining its geometry without requiring any mold nor specific tools.This study is part of the FALAFEL research project focused on additive manufacturing processes by laser and electron beams. It is composed of academic research laboratories and industrial partners from Aeronautics and Laser Processes industries. The main goal of this project is to implement, improve and validate additive manufacturing processes regarding the production of metallic components for Aeronautics. Studies are conducted under industrial conditions.The aim of our thesis is to provide a numerical model to obtain, within a reasonable time, information about the mechanical and metallurgical properties of industrial components made out of titanium Ti-6Al-4V. It is aimed at two additive manufacturing processes: the Direct Metal Deposition (DMD) and the Selective laser melting (SLM)
2

Josse, François. "Apport à la compréhension et à la simulation numérique du procédé Laser Metal Deposition – poudre." Thesis, Ecully, Ecole centrale de Lyon, 2022. http://www.theses.fr/2022ECDL0025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La fabrication additive offre des libertés de conception et d’utilisation accrues grâce à l’obtention de pièces couche par couche à partir d’un modèle CAO. La réparation de pièces, le prototypage et l’ajout de fonctionnalités sont à l’heure actuelle les principales applications des procédés additifs. Dans ce contexte de nombreux challenges restent à résoudre pour atteindre la maitrise de ces procédés. L’un des principaux verrous à l’utilisation de la fabrication additive métallique reste la dimension des pièces pouvant être obtenues. La catégorie de technologie Direct Energy Deposition (DED), en particulier le dépôt de poudres par fusion laser, offre une solution à ce verrou en construisant la matière sans limites de dimension ni de forme. Afin d’augmenter la compréhension de ce procédé des travaux à la fois expérimentaux et numérique ont été conduit. Ces travaux s’attachent à la maitrise d’aciers à très hautes performances pour la production de planchers blindés ainsi qu’à la prédiction de la géométrie de cordon par la simulation numérique dans des temps de calcul très court.L’obtention de trois aciers inoxydable martensitique présentant de très hautes performances mécaniques (Re> 1000MPa, Rm> 1200 MPa et A%>12%) a été réalisée grâce à la maitrise des conditions thermiques au cours de la fabrication. Une attention particulière est portée sur la stabilité de la microstructure lors de la construction d’un volume par Laser Metal Deposition – poudre. L’évolution de comportement mécanique de ces matériaux en fonction de traitements thermiques et de la direction de sollicitation est également discuté.Une nouvelle stratégie numérique permettant l’obtention de la forme de la surface libre du bain fondu au moment de la solidification a été développée. Cette stratégie numérique permet de modéliser la géométrie des cordons à partir des paramètres procédés sans réaliser de calcul thermo-fluide. Le modèle numérique est également capable de reproduire l’affaissement de l’épaisseur de couche au cours de la construction d’un mur dans des temps de calcul très courts
Additive manufacturing allows a greater freedom of geometry thanks to the layer-by-layer construction of the parts from a CAD model. Reparation, prototyping and functionalisation are the main applications of the additive processes. Therefore, many challenges are still to overcome in order to master those processes. One of the main challenges is the dimensions of the parts built by metallic additive manufacturing.The Direct Energy Deposition technologies, specifically powder fed Laser Metal Deposition, are a solution to build parts without neither dimension nor geometric limitations. Experimental and numerical work has been conducted in the objective of improving the understanding of this process. This work focus on mastering high mechanical performances as well as predict bead geometry thanks to the numerical simulation.Three martensitic stainless steel showing high mechanical performances (YS> 1000MPa, UTS> 1200 MPa et E%>12%) are obtained. A specific attention has been paid to the microstructure and its stability during the build-up the volumes. The effect of the heat treatments on the mechanical properties was investigated to improve the performances.A new numerical strategy simulating the freeform of the melt pool surface has been developped. The strategy allow the modelisation of the bead’s geometry from process parameters without any thermo-fluid calculation. The model is able to reproduce the bead’s thickness evolution during a wall build-up in short computation time
3

Cherri, Alexis. "Poudres PEKK pour la fabrication additive par fusion laser." Thesis, Paris, HESAM, 2022. http://www.theses.fr/2022HESAE031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
De nos jours, la course au développement de matériaux toujours plus innovants et performants fait subir une constante pression à un grand nombre de secteurs industriels. Parmi eux, l’aéronautique, l’aérospatial, les secteurs de transport et de production d’énergie cherchent à alléger la structure de leurs équipements afin d’en réduire la consommation en énergie et minimiser leur empreinte environnementale. Cet allègement se traduit généralement par la conversion des matériaux métalliques et denses vers des matériaux plastiques et plus légers. La spécificité de ces domaines d’utilisation, ainsi que les conditions de température, de pression, et de vieillissement accéléré auxquelles sont contraints certains de leurs équipements imposent néanmoins un cahier des charges très précis. Le procédé de frittage sélectif par laser (également appelé SLS), récemment mis en œuvre pour la fabrication de pièces thermoplastiques, constitue un grand intérêt pour ces différents secteurs d’activité dans lesquels des pièces sur mesure et à géométrie complexe sont requises. Ce procédé consiste à la fabrication couche par couche de pièces par fusion sélective de grains de poudre à l’aide d’un laser. Le PEKK, copolymère thermoplastique semi-cristallin de hautes performances, valide de nombreux critères lui permettant d’être, depuis quelques années, utilisé dans la fabrication de pièces par SLS. Cependant, la connaissance encore limitée que nous avons de ce polymère complexe, ainsi que sa structure de type copolymère, nécessitent encore à ce jour un travail de recherche conséquent. Cette thèse a eu ainsi pour but, sur une famille de PEKK déjà commercialisée, d’approfondir nos connaissances des propriétés de cristallisation et de fusion qui jouent un rôle essentiel dans la fabrication de pièces par la technologie SLS. Un deuxième objectif était de développer une nouvelle famille de copolymères PEKK à structure régulière. Afin de comprendre au mieux les propriété s de cristallisation de nos polymères, un modèle a été utilisé et une mise en commun de données SAXS / WAXS, DSC et rhéologiques est réalisée. La voie d’une utilisation en SLS d’une nouvelle famille de PEKK à chaîne alternée, jusque-là très peu explorée, a également été étudiée
Nowadays, the need to develop ever more innovative and efficient materials puts constant pressure on a large number of industrial sectors. Among them, aeronautics, aerospace, transport and energy production sectors seek to lighten the structure of their equipment in order to reduce energy consumption and minimize their environmental footprint. This reduction generally results in the conversion of metallic and dense materials towards plastic and lighter materials. The specificities of these industrial sectors, as well as the conditions of temperature, pressure, and accelerated aging to which some of their equipment are constrained, impose very precise specifications. The selective laser sintering process (also called SLS), recently implemented for the manufacture of thermoplastic parts, is of great interest for these different sectors of activity in which custom-made parts with complex geometry are often required. This process consists of the layer-by-layer manufacturing of parts by selective melting of powder by a laser beam. PEKK, a high performance semi-crystalline thermoplastic copolymer, validates many of the criteria for use in SLS manufacturing. However, the still limited knowledge that we have of this polymer, as well as its copolymer-like structure, still require substantial research work to this day. The aim of this work was to deepen our knowledge of the properties of crystallization and melting of a commercially available PEKK grade designed for use in SLS. These properties are of key importance for the successful implementation of the SLS process. A second objective was to develop a new grade of PEKK copolymers with a regular structure. In order to better understand the crystallization properties of our polymers, a model was used and a combination of SAXS / WAXS, DSC and rheological studies is carried out. The way of using in SLS the new grade of PEKK, hitherto very little explored, was also studied. We demonstrated that the copolymer with the regular chain structure exhibits a much simpler crystallization mechanism and a higher crystallization enthalpy which may be a advantage for use in SLS
4

Yadroitsau, Ihar. "Direct manufacturing of 3D objects by selective laser melting of metal powders." Saint-Etienne, 2008. http://www.theses.fr/2008STET4006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The accomplished doctoral study concerns the interaction of the powerful laser radiation with powder metallic materials. The problem is of a great scientific interest, since it is a multi-disciplinary subject integrating powder metallurgy, thermo-physics, radiation and heat tranfer, phase transformations. Along with this, the subject has a considerable practical interest because Laser-assisted Direct Manufacturing based on Selective Laser Melting (SLM) is an emerging technology for manufacturing 3D functional objects with great added value, and also complex customized parts. Systematic study is accomplished for the powder materials currently employed in laser-assisted direct manufacturing : stainless steel 316L (-25 µm), tool steel H13 (-25 µm), Inconel 718 (-25 µm), CuNi10 (-25 µm), titanium grade 2 (-25 µm) and NiTi (-45 µm) ; stainless steel 904L (-16 µm et -7 µm), Inconel 625 (-16 µm), Co212F (CoCr, -31 µm). The above mentioned powders were employed in the experimental study for fabrication of 2D planar objects, 3D models and functional components. Comprehensive experimental research on laser-matter interaction are carried out for interaction of a powerful (0. 3-1. 3x106 W/cm²) moving laser beam with a complex system « metallic powder on solid metallic substrate ». Manufacturing strategies allowing 100% density on the fabricated objects are found. Optimal parameters for stable SLM process are determined
L'objectif principal de la thèse de doctorat présentée dans ce mémoire est l'étude de l'interaction d'un faisceau laser de puissance avec des poudres métalliques. Le sujet est d'un grand intérêt scientifique par sa multidisciplinarité intégrant la métallurgie de poudres, la physique thermique, le transfert de chaleur et radiatif, la transformation de phases. En même temps, le sujet a une signification pratique considérable car la Fabrication Directe par fusion laser sélective des poudres (SLM) est une technologie émergente de fabrication d'objets 3D avec une grande valeur ajoutée et de pièces fonctionnelles complexes sur mesure. Une étude systématique a été réalisée sur les poudres actuellement utilisées dans la Fabrication Directe assistée par laser : Inox 316L (-25 µm), acier d'outillage H13 (-25 µm), Inconel 718 (-25 µm), CuNi10 (-25 µm), Ti grade 2 (-25 µm) et NiTi (-45 µm) ; Inox 904L (-16 µm et -7 µm), Inconel 625 (-16 µm), Co212F (CoCr, -31 µm). A partir de ces poudres, des objets plats 2D, des modèles 3D et des pièces fonctionnelles ont été fabriqués. Des recherches expérimentales approfondies sur l'interaction laser/matière sont effectuées, plus particulièrement sur l'interaction d'un faisceau laser de haute puissance mobile (0. 3-1. 3x106 W/cm²) avec un système complexe de poudres métalliques sur substrat métallique solide. Les stratégies de fabrication permettant d'obtenir la densité 100% de pièces résultantes sont identifiées. Les paramètres optimaux pour assurer la stabilité du procédé SLM sont définis
5

Zhang, Baicheng. "Fusion sélective par laser - influence de l'atmosphère et réalisation d'alliage in situ." Phd thesis, Université de Technologie de Belfort-Montbeliard, 2013. http://tel.archives-ouvertes.fr/tel-00880004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Au cours de la dernière décennie, le procédé de fabrication additive par fusion sélective d'un lit de poudre SLM a attiré une grande attention dans le domaine de l'industrie, car il permet de produire rapidement des pièces de formes complexes. Le but de ce travail est d'étendre les performances des procédés SLM en étudiant la possibilité d'élaborer des pièces en atmosphère raréfiée. Pour atteindre cet objectif, une approche théorique et expérimentale a été développée, avec la mise en place d'une machine de fusion sélective par laser capable de travailler dans le domaine de pression de 1 à 10-2 mbar.Le travail sous vide permet d'éviter la formation du "bouclier" de plasma généré à partir de l'atmosphère de gaz ionisé par l'énergie du laser. Ceci permet d'une part d'éviter la contamination chimique du matériau (oxydation, nitruration,...) au cours des processus de fusion et d'autre part de réduire le taux de porosité. L'effet des paramètres du laser et des variables d'environnement sur la qualité de pièces a été étudié en considérant le cas du fer pur, de l'acier Inox 316L et du titane.Par ailleurs nous avons étudié la possibilité d'obtenir des alliages in-situ au cours de la fabrication par la technique SLM à partir de mélanges de poudres.Des essais ont été conduits à partir de mélanges Mg/Al, Fe/Ni et Ti/Ni. Dans tous les cas nous avons pu obtenir des alliages in-situ pour les domaines de composition visés qui correspondent à des applications pratiques (structures légères, alliage magnétique à faible coercivité, alliage à mémoire de forme). Les propriétés des matériaux obtenus, d'après les premières caractérisations effectuées, se comparent de façon favorable par rapport aux techniques classiques d'élaboration et de mise en œuvre.
6

François, Mathieu. "Conception pour la fabrication additive, par fusion laser sur lit de poudre, de composants hyperfrequences." Thesis, Paris, HESAM, 2020. http://www.theses.fr/2020HESAE008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Pendant de nombreuses années, les composants passifs hyperfréquences ont été utilisés dans des systèmes de communication notamment pour des chaînes d'alimentation d'antenne. Ce type d'équipement radiofréquence est déjà largement opérationnel dans différents domaines tels que les communications satellite, les radars, les observations spatiales etc. en raison de leurs avantages de faibles pertes ainsi que de leur capacité élevée de gestion d'énergie. Seulement, avec l'émergence de nouvelles technologies et une concurrence considérable sur le marché de la défense, les clients sont de plus en plus demandeurs de produits de moins en moins coûteux avec des délais d’obtention toujours plus courts, avec des exigences liées aux performances toutes aussi élevées.Ces dernières années, plusieurs institutions et industries se sont intéressées de plus en plus aux procédés de fabrication additive pour les composants à propagation guidée. Ne nécessitant pas de brut de matière ni d'outillage dédié, les technologies additives apportent de nouvelles perspectives de conception. En particulier, l'ajout de matière couche par couche autorise la fabrication de pièces monolithiques, qui permettraient d'alléger les équipements et de réaliser des économies de temps et de coûts. D'autre part, l'une des plus grandes promesses de la fabrication additive réside dans les degrés de liberté supplémentaires qu'elle offre en conception, permettant de concevoir des architectures complexes et innovantes aux performances accrues, qui seraient irréalisables par des techniques conventionnelles. A ce titre, la fabrication additive a été identifiée comme pouvant jouer un rôle crucial dans le développement de ce type de pièce.Cependant, comme tout procédé de fabrication, les procédés additifs possèdent leurs propres spécificités et contraintes liées aux phénomènes physiques mis en jeu au cours de la fabrication et dont il est nécessaire de tenir compte au cours de la phase de conception pour tirer pleinement profit des avantages qu'ils offrent. Ajoutées aux exigences hyperfréquences, le concepteur doit alors être en capacité d'identifier les liens qui existent entre les domaines de la conception, du procédé et électromagnétique pour garantir une pièce de qualité conforme au cahier des charges.L'objectif de ces travaux de thèse est double. Le premier consiste à identifier les spécificités du procédé de fusion laser sur lit de poudre qui influent majoritairement sur les performances électromagnétiques, de manière à y apporter une attention particulière en phase de conception. Le second porte sur l'élaboration d'une méthode qui intègre les contraintes et opportunités de la fabrication additive tout en répondant aux objectifs, globaux et locaux, issus du cahier des charges hyperfréquences de manière à fabriquer des composants opérationnels
For many years, passive microwave waveguide components have been used in communication systems, particularly for antenna feed chains. This kind of radiofrequency equipment is already widely operational in various fields such as satellite communications, radars, space observations, etc. Because of their low loss as well as their high energy management capacity. However, the emergence of new technologies and the significant degree of competition that occurs within the defense market, customers are increasingly calling for lower-cost products, shorter lead times, with requirements equally high.Over the past years, several institutions and industries have become more and more interested in additive manufacturing processes for passive waveguide components. Without any need for raw material or dedicated tools, additive technologies bring some new design perspectives. In particular, the addition of material layer by layer promotes the manufacture of monolithic parts, which would contribute to lighten the weight of antennas and save time and costs. On the other hand, it offers additional degrees of freedom during the design stage, encouraging the development of complex and innovative architectures, resulting in increased performance, which would be unachievable by conventional techniques. As such, additive manufacturing has been identified as being able to play a crucial role in the development of this type of part.However, like any other manufacturing process, additive processes involve several physical phenomena and so have their own manufacturing specificities and constraints to consider during the design phase to benefit fully from all the potential of additive manufacturing. Combined with the microwave requirements, the designer must then be able to identify the correlation between design, process and electromagnetic to guarantee a quality part conforming to the specifications.The objective of this study is twofold. The first one consists of identifying the specificities of the laser beam melting process with a major influence on electromagnetic properties, in order to be able to pay special attention during the design phase. The second concerns the development of a method that incorporates the constraints and opportunities of additive manufacturing while meeting the objectives arising from the microwave specifications
7

Royer, Frédéric. "Fonctionnement et singularités du procédé de fusion laser sélective : Illustration par application à deux superalliages à base nickel et considérations énergétiques." Thesis, Paris, ENMP, 2014. http://www.theses.fr/2014ENMP0053/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le procédé de fusion sélective par laser est un des nombreux procédés de fabrication additive qui permet la production rapide de pièces à partir d'un fichier CAO (conception assistée par ordinateur) et de lits de poudre. Après une description du fonctionnement du procédé par l'intermédiaire de ses paramètres opératoires, le manuscrit décrit les travaux entrepris pour l'élaboration de pièces en Inconel 625. Ce superalliage à base nickel a fait l'objet d'une étude paramétrique pour déterminer un jeu de paramètre optimal permettant de produire des pièces saines. Cette étude est basée sur des considérations énergétiques qui visent à maximiser le rendement de conversion de l'énergie électromagnétique en énergie thermique tout en assurant la cohésion entre couches. Des essais de traction valident la stratégie employée au niveau de l'étude paramétrique. Un second alliage est étudié, l'Inconel 738 qui est un superalliage renforcé par la précipitation d'une phase γ'-Ni3(Al,Ti). Les travaux entrepris ne concernent pas l'élaboration mais la caractérisation de l'alliage. Il est mis en évidence que celui-ci est dans un état hors de l'équilibre thermodynamique lorsque produit par fusion laser sélective. La précipitation de la phase durcissante n'est pas complète. Ce constat peut permettre d'éviter la fissuration de l'alliage pendant la fabrication en adaptant les paramètres opératoires, notamment au niveau du préchauffage. Une étude sur les traitements thermiques montre que la gamme appliquée traditionnellement à l'alliage coulé ne convient pas pour l'alliage élaboré par fusion sélective ; cette étude ouvre sur des alternatives. Enfin, ces travaux apportent quelques éléments de réponse quant à la pertinence énergétique du procédé
The selective laser melting (SLM) process is one of the many additive manufacturing processes that allow to rapidly build a part from a computer-aided design (CAD) file and from a powder bed. The work described here deals with the different parameters related to the process, namely the building platform stepping and the laser radiation and its interaction with the metallic matter. The first Ni-based superalloy studied here is Inconel 625 which has been subjected to a parametric study with an energetic approach. It was all about finding the maximum in the conversion of electromagnetic energy into thermal energy. Tensile tests validate the use of the energetic strategy for this alloy. The second studied alloy is Inconel 738 which is hardened by fine γ'-Ni3(Al,Ti) precipitates. Microstructure observations and differential thermal analysis reveal that the γ' precipitation is not complete when the alloy is processed by SLM. This leads to give clues for crack-free processing by adjusting the parameters and especially the preheating feature. Different heat treatments on SLMed materials have been investigated. It appears that the standard procedure applied on cast alloy to reach proper microstructure for good mechanical properties is not adapted to the SLMed alloy. New standards must be defined to comply with the initial out of equilibrium state. Last but not least, the manuscript gives information regarding the energetic use of the process which should be compared with the will of environmental impact reduction policy called by the process
8

Van, Belle Laurent. "Analyse, modélisation et simulation de l'apparition de contraintes en fusion laser métallique." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0116/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les procédés additifs, auxquels appartient la fusion laser de poudres métalliques, ont la capacité de créer des structures à géométries complexes, avec la possibilité d'intégrer des formes creuses, par exemple des canaux de refroidissement assurant un contrôle thermique optimum. Ce procédé permet de fabriquer des pièces réelles à partir de poudres métalliques, par fusion du matériau, couche par couche, en accord avec le modèle CAO. Au cours du procédé, de nombreux cycles thermiques et d'importants gradients thermiques se produisent dans la pièce au cours de sa fabrication. Ces gradients de température induisent des déformations plastiques hétérogènes et de ce fait des contraintes résiduelles. Ces contraintes peuvent nuire à la qualité de la pièce obtenue, par exemple sa résistance mécanique. Ces travaux ont pour objectifs de proposer un modèle numérique, s’appuyant sur la méthode des éléments finis afin d'étudier l'apparition des contraintes résiduelles lors du procédé de fusion laser de poudres métalliques. Le logiciel multiphysique ABAQUS® a été utilisé pour effectuer les analyses thermiques et mécaniques. La technique « d'ajout et de suppression des éléments » a été utilisée afin de simuler la fusion et la solidification de la matière au cours du procédé. Les propriétés mécaniques dépendantes de la température de l'acier maraging, utilisé dans notre cas, ont été obtenues à l’aide d’essais expérimentaux de caractérisations et intégrées dans le modèle. Les calculs sont réalisés de manière découplée, dans un premier temps le calcul thermique est effectué, puis les résultats sont utilisés pour réaliser le calcul mécanique et finalement prédire les champs de contraintes. Dans le cadre de ce travail, une méthode originale s'appuyant sur la technique de mesure des contraintes résiduelles par enlèvement de couches successives a été mise au point pour mesurer ces contraintes en direct au cours du procédé. Les résultats renseignent sur le niveau et la distribution des contraintes dans la pièce créée et le support. Deux paramètres ont été testés afin d'étudier leur influence sur le niveau des contraintes résiduelles : le temps d’étalement de la poudre entre deux couches successives et la hauteur des couches. Le modèle numérique paramétrable permet d'analyser les effets de paramètres liés au procédé sur la répartition des contraintes résiduelles dans les pièces fabriquées. Les résultats montrent que la variation de l'épaisseur du support n'affecte pas la répartition des contraintes dans la pièce créée. Le préchauffage du support à une température de 800°C réduit les contraintes résiduelles L'étude de quelques trajectoires laser montre leurs influences sur la répartition des déformations plastiques cumulées ainsi que la hauteur des couches de poudres ou de la forme du support (embase, colonnes)
The Selective Laser Melting process, belonging to Additive processes , have the ability to create structures with complex geometries , with the possibility of including cavities, such as cooling channels providing optimum temperature control. This process enables the manufacture of three-dimensional parts from metal powders by melting the material , layer by layer, in agreement with the CAD model. In the process , high temperatures and thermal gradients cycles occur in the part during the process. These temperature gradients induce heterogeneous plastic strain and residual stresses. These residual stresses may affect the quality of the part obtained, for example the fatigue life. This work aims to propose a numerical model , based on the finite element method to study the appearance of residual stresses during laser melting process of metallic powders . The ABAQUS® Multiphysics software was used to perform the thermal and mechanical analyzes. The movement of the laser beam and the resolution of the thermal problem can predict the evolution of the temperature in the part and support. The "birth and death elements" technique was used to simulate the melting and solidification of the material during the process. Dependent mechanical properties of the temperature of the maraging steel used in this case were obtained using experimental testing and characterization and were established in the model. The calculations are decoupled : initially thermal calculation is performed and the results are used to perform mechanical calculations and finally predict the residual stress fields. In this work, a novel method based on the technique of measuring residual stresses by removing layers was developed to measure these stresses directly in the process. The results provide information on the level and distribution of stresses in the created part and support. Two parameters were tested to study their influence on the level of residual stress : time to spread the powder between two successive layers and layer height. The model is used to analyze the effects of process parameters related to the distribution of residual stresses in the manufactured parts. The results show that the variation of the thickness of the support does not affect the distribution of stresses in the part created. Preheating the substrate to a temperature of 800 °C reduces the residual stresses. The study of some laser strategies shows their influence on the distribution of plastic strain thus the height of the layers of powder or in the form of support (base, columns)
9

Moniz, da Silva Sancho Liliana. "Etude de l'interaction laser-matière pour la fabrication de pièces à haute valeur ajoutée en céramiques oxydes semi-transparentes par fusion laser sélective sur lit de poudre." Thesis, Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLM060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La mise en forme par fusion laser sélective (LBM) de céramiques oxydes (Al2O3-ZrO2 et Al2O3) a pour objectif l’obtention directe de pièces aux formes complexes et aux microstructures fines et dirigées qui ne peuvent être réalisées par le procédé conventionnel de frittage. Ces pièces légères, possédant une excellente tenue au fluage en température et à l’oxydation, pourront alors répondre aux problématiques d’allègement et d’augmentation de la température de fonctionnement des turboréacteurs, comparativement aux pièces métalliques revêtues de céramiques poreuses. La combinaison matériau/procédé repose sur l’ajout contrôlé d’un absorbant aux poudres céramiques pures, permettant de pallier leur quasi-transparence au rayonnement laser Yb:YAG. A travers la mesure des propriétés optiques, l’étude menée vise à identifier l’impact des paramètres du procédé, de la nature et teneur de l’absorbant, de la compacité du lit de poudre sur la stabilité du bain de fusion. Pour ce faire, des mesures radiatives innovantes en réflexion et en transmission ont été réalisées en cours de fabrication. Ces mesures en dynamique via une sphère intégrante informent sur les mécanismes d’interaction laser-matière des différents milieux traversés, et permettent d’accéder aux propriétés optiques associées. Ces données alimentent un modèle analytique d’interaction laser-matière basé sur l’atténuation du rayonnement par la loi de Beer-Lambert. Ce dernier fait le lien entre les dimensions des bains (largeur, profondeur), les propriétés radiatives des différents milieux concernés (lit de poudre, substrat et bain liquide), les coefficients d’absorption associés, les paramètres du procédé, l’épaisseur et la porosité du lit de poudre. Il constitue un outil pour exprimer analytiquement la forme et la section apparente fondue au sein du lit de poudre, celles de la zone refondue au sein du substrat ainsi que celles de la zone de consolidation au sein du lit de poudre. Certaines de ces données calculées et difficilement mesurables sont utiles pour alimenter un modèle de consolidation du lit de poudre prenant en compte les échanges de matière observés entre une zone dite dénudée (liée à l’éjection de particules du lit de poudre), et une zone dite de consolidation. La quantification de ces flux de matière, impactant fortement la fabrication par LBM de ces céramiques oxydes, a permis le développement d’une stratégie de construction spécifique qui compense la zone dénudée et évite le phénomène de points chauds. L’ensemble de ces données permet alors la mise en forme de pièces avec une porosité réduite et une microfissuration contrôlée
Selective laser melting of oxide ceramics (Al2O3-ZrO2and Al2O3) is identified as a promising way to produce complex shaped parts with oriented fine microstructures, which would not be achievable by conventional sintering. These lightweight parts, presenting excellent resistance to creep at high temperature and oxidation, would appear as the answer to weight reduction and temperature increasing of turbojet engines, as compared to the usual metal parts coated with porous ceramics. The material/process coupling relies on the controlled addition of an absorber to pure ceramic powders, that compensate the quasi-transparency of these materials to Yb:YAG laser radiation. The effect on optical properties of process parameters, absorbent nature and content, compactness of the powder bed and their influence on manufacturing stability are identified. For this purpose, innovative radiative measurements in reflection and in transmission were carried out during manufacturing and for different operating conditions. These dynamic measurements through an integrating sphere provide information on the laser-material interaction mechanisms taking place in each media and they give access to optical material properties. These measurements enrich an analytical laser-matter interaction model based on the radiation attenuation by the Beer-Lambert law. This model gives a relation between melt pool dimensions, radiative propertiesof the different media (powder bed, substrate and liquid) along with the associated absorption coefficients, the process parameters and powder bed porosity. This model expresses also the apparent melted section within the powder bed, the section of the melted zone within the substrate and the consolidation section within the powder bed. Some of these calculated data are not measurable and usefully contribute to a consolidation model of the powder bed. This model takes into account the material exchanges observed between so-called bare zones (linked to the ejection of powder particles) and consolidation zones. Quantification of these particles exchanges, which have a strong impact on the LBM of these oxide ceramics, allows the definition of a specific manufacturing strategy that compensates for the bare zone formation while avoiding the formation of hot spots. These data collection enables the manufacturing of LBM ceramic oxide parts with reduced porosity and controlled micro-cracking
10

Ruggi, David. "Mise en œuvre de poudres de polyamides : Influence des conditions de transformation sur la microstructure et les propriétés. Application à la fabrication additive par fusion laser." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La fusion laser est un procédé de fabrication additive transformant une poudre de polymère, déposée couche par couche, par fusion grâce à un faisceau laser balayant des zones précises de chaque couche. Les étapes de transformation d’un polymère semi-cristallin par fusion laser sont : l’écoulement de la poudre à haute température, la fusion-coalescence des particules, la résorption des porosités et la solidification par cristallisation lors du refroidissement. Les paramètres prépondérants sont la puissance du laser et le champ de température dans le bac de fabrication. Le matériau subit des températures élevées et des variations thermiques dont les cinétiques sont encore mal connues. La cohésion des couches successives et la microstructure de l’objet fabriqué (porosité, cristallinité) dépendent de ces conditions thermiques complexes. Les relations entre microstructure, propriétés finales et histoire thermique du matériau ne sont pas complètement élucidées. Dans ce travail, deux poudres de polyamides (PA 6 et PA 12) sont étudiées. Tout d’abord, les processus physiques décrits plus haut sont analysés dans des conditions de laboratoire avec une histoire thermique contrôlée. Cela permet de mieux comprendre et de modéliser le rôle des propriétés intrinsèques du polymère dans les phénomènes physicochimiques de sa transformation aux différentes échelles. Cette étude donne accès aux échelles de temps de ces mécanismes, en fonction de la température, et aux microstructures qui en découlent. Ensuite, des pièces sont produites par deux méthodes de fusion de poudre, l’une en laboratoire sur plaque chauffante, l’autre en machine industrielle de fusion laser. La connaissance des temps caractéristiques de la coalescence, de l’évolution des porosités et de la cristallisation permet d’expliquer la microstructure et les propriétés mécaniques des pièces en relation avec leur méthode de production et l’histoire thermique associée. Cette analyse apporte un nouvel éclairage sur le développement des microstructures de polyamides transformés par fusion laser et les propriétés qui en découlent
Selective Laser Sintering, also called Powder Bed Fusion, is an additive manufacturing process that transforms a polymer powder layer-by-layer by melting with a laser beam scanning specific areas of each layer. The stages of transformation of a semi-crystalline polymer by laser fusion are: the flow of the powder at high temperature, the melting-coalescence of the particles, the resorption of the porosities and the solidification by crystallization during cooling. The most important parameters are the power of the laser and the temperature field in the manufacturing tank. The material undergoes high temperatures and thermal variations whose kinetics are still poorly known. The cohesion of the successive layers and the microstructure of the manufactured object (porosity, crystallinity) depend on these complex thermal conditions. The relationships between microstructure, final properties and thermal history of the material are not fully understood. In this work, two powders of polyamides (PA 6 and PA 12) are studied. First, the physical processes described above are analyzed under laboratory conditions with a controlled thermal history. This makes it possible to better understand and to model the role of the intrinsic properties of the polymer in the physicochemical phenomena involved in its transformation at different scales. This study gives access to the time scales of these mechanisms, as a function of temperature, and to the resulting microstructures. Then, parts are produced by two methods of powder melting, one in the laboratory on a hot plate, the other in an industrial SLS machine. Knowledge of the characteristic times of coalescence, evolution of porosities and crystallization enables to explain the microstructure and the mechanical properties of the objects in relation to their production method and the associated thermal history. This analysis sheds new light on the development of microstructures of polyamides transformed by laser fusion and the resulting properties

До бібліографії