Зміст
Добірка наукової літератури з теми "Dépôt de poudres par fusion laser"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dépôt de poudres par fusion laser".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Dépôt de poudres par fusion laser"
Lemoine, F., D. F. Grevey, I. Vastra-Bobin, and A. B. Vannes. "Modélisation de la section de dépôts obtenus par fusion d'une poudre métallique projetée dans un faisceau laser Nd-YAG." Journal de Physique III 3, no. 10 (October 1993): 2043–52. http://dx.doi.org/10.1051/jp3:1993257.
Повний текст джерелаMillon, Célia, Arnaud Vanhoye, and Anne-Françoise Obaton. "Ultrasons laser pour la détection de défauts sur pièces de fabrication additive métallique." Photoniques, no. 94 (November 2018): 34–37. http://dx.doi.org/10.1051/photon/20189434.
Повний текст джерелаДисертації з теми "Dépôt de poudres par fusion laser"
Marion, Guillaume. "Modélisation de procédés de fabrication additive de pièces aéronautiques et spatiales en Ti-6AI-4V par dépôt et fusion sélective d'un lit de poudre par laser : Approche thermique, métallurgique et mécanique." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM055.
Повний текст джерелаAdditive manufacturing processes allow to build finished industrial parts with very complex geometry, while reducing development time and costs compared to conventional manufacturing processes. The main principle of all these processes is to build components directly from a CAD file defining its geometry without requiring any mold nor specific tools.This study is part of the FALAFEL research project focused on additive manufacturing processes by laser and electron beams. It is composed of academic research laboratories and industrial partners from Aeronautics and Laser Processes industries. The main goal of this project is to implement, improve and validate additive manufacturing processes regarding the production of metallic components for Aeronautics. Studies are conducted under industrial conditions.The aim of our thesis is to provide a numerical model to obtain, within a reasonable time, information about the mechanical and metallurgical properties of industrial components made out of titanium Ti-6Al-4V. It is aimed at two additive manufacturing processes: the Direct Metal Deposition (DMD) and the Selective laser melting (SLM)
Josse, François. "Apport à la compréhension et à la simulation numérique du procédé Laser Metal Deposition – poudre." Thesis, Ecully, Ecole centrale de Lyon, 2022. http://www.theses.fr/2022ECDL0025.
Повний текст джерелаAdditive manufacturing allows a greater freedom of geometry thanks to the layer-by-layer construction of the parts from a CAD model. Reparation, prototyping and functionalisation are the main applications of the additive processes. Therefore, many challenges are still to overcome in order to master those processes. One of the main challenges is the dimensions of the parts built by metallic additive manufacturing.The Direct Energy Deposition technologies, specifically powder fed Laser Metal Deposition, are a solution to build parts without neither dimension nor geometric limitations. Experimental and numerical work has been conducted in the objective of improving the understanding of this process. This work focus on mastering high mechanical performances as well as predict bead geometry thanks to the numerical simulation.Three martensitic stainless steel showing high mechanical performances (YS> 1000MPa, UTS> 1200 MPa et E%>12%) are obtained. A specific attention has been paid to the microstructure and its stability during the build-up the volumes. The effect of the heat treatments on the mechanical properties was investigated to improve the performances.A new numerical strategy simulating the freeform of the melt pool surface has been developped. The strategy allow the modelisation of the bead’s geometry from process parameters without any thermo-fluid calculation. The model is able to reproduce the bead’s thickness evolution during a wall build-up in short computation time
Cherri, Alexis. "Poudres PEKK pour la fabrication additive par fusion laser." Thesis, Paris, HESAM, 2022. http://www.theses.fr/2022HESAE031.
Повний текст джерелаNowadays, the need to develop ever more innovative and efficient materials puts constant pressure on a large number of industrial sectors. Among them, aeronautics, aerospace, transport and energy production sectors seek to lighten the structure of their equipment in order to reduce energy consumption and minimize their environmental footprint. This reduction generally results in the conversion of metallic and dense materials towards plastic and lighter materials. The specificities of these industrial sectors, as well as the conditions of temperature, pressure, and accelerated aging to which some of their equipment are constrained, impose very precise specifications. The selective laser sintering process (also called SLS), recently implemented for the manufacture of thermoplastic parts, is of great interest for these different sectors of activity in which custom-made parts with complex geometry are often required. This process consists of the layer-by-layer manufacturing of parts by selective melting of powder by a laser beam. PEKK, a high performance semi-crystalline thermoplastic copolymer, validates many of the criteria for use in SLS manufacturing. However, the still limited knowledge that we have of this polymer, as well as its copolymer-like structure, still require substantial research work to this day. The aim of this work was to deepen our knowledge of the properties of crystallization and melting of a commercially available PEKK grade designed for use in SLS. These properties are of key importance for the successful implementation of the SLS process. A second objective was to develop a new grade of PEKK copolymers with a regular structure. In order to better understand the crystallization properties of our polymers, a model was used and a combination of SAXS / WAXS, DSC and rheological studies is carried out. The way of using in SLS the new grade of PEKK, hitherto very little explored, was also studied. We demonstrated that the copolymer with the regular chain structure exhibits a much simpler crystallization mechanism and a higher crystallization enthalpy which may be a advantage for use in SLS
Yadroitsau, Ihar. "Direct manufacturing of 3D objects by selective laser melting of metal powders." Saint-Etienne, 2008. http://www.theses.fr/2008STET4006.
Повний текст джерелаL'objectif principal de la thèse de doctorat présentée dans ce mémoire est l'étude de l'interaction d'un faisceau laser de puissance avec des poudres métalliques. Le sujet est d'un grand intérêt scientifique par sa multidisciplinarité intégrant la métallurgie de poudres, la physique thermique, le transfert de chaleur et radiatif, la transformation de phases. En même temps, le sujet a une signification pratique considérable car la Fabrication Directe par fusion laser sélective des poudres (SLM) est une technologie émergente de fabrication d'objets 3D avec une grande valeur ajoutée et de pièces fonctionnelles complexes sur mesure. Une étude systématique a été réalisée sur les poudres actuellement utilisées dans la Fabrication Directe assistée par laser : Inox 316L (-25 µm), acier d'outillage H13 (-25 µm), Inconel 718 (-25 µm), CuNi10 (-25 µm), Ti grade 2 (-25 µm) et NiTi (-45 µm) ; Inox 904L (-16 µm et -7 µm), Inconel 625 (-16 µm), Co212F (CoCr, -31 µm). A partir de ces poudres, des objets plats 2D, des modèles 3D et des pièces fonctionnelles ont été fabriqués. Des recherches expérimentales approfondies sur l'interaction laser/matière sont effectuées, plus particulièrement sur l'interaction d'un faisceau laser de haute puissance mobile (0. 3-1. 3x106 W/cm²) avec un système complexe de poudres métalliques sur substrat métallique solide. Les stratégies de fabrication permettant d'obtenir la densité 100% de pièces résultantes sont identifiées. Les paramètres optimaux pour assurer la stabilité du procédé SLM sont définis
Zhang, Baicheng. "Fusion sélective par laser - influence de l'atmosphère et réalisation d'alliage in situ." Phd thesis, Université de Technologie de Belfort-Montbeliard, 2013. http://tel.archives-ouvertes.fr/tel-00880004.
Повний текст джерелаFrançois, Mathieu. "Conception pour la fabrication additive, par fusion laser sur lit de poudre, de composants hyperfrequences." Thesis, Paris, HESAM, 2020. http://www.theses.fr/2020HESAE008.
Повний текст джерелаFor many years, passive microwave waveguide components have been used in communication systems, particularly for antenna feed chains. This kind of radiofrequency equipment is already widely operational in various fields such as satellite communications, radars, space observations, etc. Because of their low loss as well as their high energy management capacity. However, the emergence of new technologies and the significant degree of competition that occurs within the defense market, customers are increasingly calling for lower-cost products, shorter lead times, with requirements equally high.Over the past years, several institutions and industries have become more and more interested in additive manufacturing processes for passive waveguide components. Without any need for raw material or dedicated tools, additive technologies bring some new design perspectives. In particular, the addition of material layer by layer promotes the manufacture of monolithic parts, which would contribute to lighten the weight of antennas and save time and costs. On the other hand, it offers additional degrees of freedom during the design stage, encouraging the development of complex and innovative architectures, resulting in increased performance, which would be unachievable by conventional techniques. As such, additive manufacturing has been identified as being able to play a crucial role in the development of this type of part.However, like any other manufacturing process, additive processes involve several physical phenomena and so have their own manufacturing specificities and constraints to consider during the design phase to benefit fully from all the potential of additive manufacturing. Combined with the microwave requirements, the designer must then be able to identify the correlation between design, process and electromagnetic to guarantee a quality part conforming to the specifications.The objective of this study is twofold. The first one consists of identifying the specificities of the laser beam melting process with a major influence on electromagnetic properties, in order to be able to pay special attention during the design phase. The second concerns the development of a method that incorporates the constraints and opportunities of additive manufacturing while meeting the objectives arising from the microwave specifications
Royer, Frédéric. "Fonctionnement et singularités du procédé de fusion laser sélective : Illustration par application à deux superalliages à base nickel et considérations énergétiques." Thesis, Paris, ENMP, 2014. http://www.theses.fr/2014ENMP0053/document.
Повний текст джерелаThe selective laser melting (SLM) process is one of the many additive manufacturing processes that allow to rapidly build a part from a computer-aided design (CAD) file and from a powder bed. The work described here deals with the different parameters related to the process, namely the building platform stepping and the laser radiation and its interaction with the metallic matter. The first Ni-based superalloy studied here is Inconel 625 which has been subjected to a parametric study with an energetic approach. It was all about finding the maximum in the conversion of electromagnetic energy into thermal energy. Tensile tests validate the use of the energetic strategy for this alloy. The second studied alloy is Inconel 738 which is hardened by fine γ'-Ni3(Al,Ti) precipitates. Microstructure observations and differential thermal analysis reveal that the γ' precipitation is not complete when the alloy is processed by SLM. This leads to give clues for crack-free processing by adjusting the parameters and especially the preheating feature. Different heat treatments on SLMed materials have been investigated. It appears that the standard procedure applied on cast alloy to reach proper microstructure for good mechanical properties is not adapted to the SLMed alloy. New standards must be defined to comply with the initial out of equilibrium state. Last but not least, the manuscript gives information regarding the energetic use of the process which should be compared with the will of environmental impact reduction policy called by the process
Van, Belle Laurent. "Analyse, modélisation et simulation de l'apparition de contraintes en fusion laser métallique." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0116/document.
Повний текст джерелаThe Selective Laser Melting process, belonging to Additive processes , have the ability to create structures with complex geometries , with the possibility of including cavities, such as cooling channels providing optimum temperature control. This process enables the manufacture of three-dimensional parts from metal powders by melting the material , layer by layer, in agreement with the CAD model. In the process , high temperatures and thermal gradients cycles occur in the part during the process. These temperature gradients induce heterogeneous plastic strain and residual stresses. These residual stresses may affect the quality of the part obtained, for example the fatigue life. This work aims to propose a numerical model , based on the finite element method to study the appearance of residual stresses during laser melting process of metallic powders . The ABAQUS® Multiphysics software was used to perform the thermal and mechanical analyzes. The movement of the laser beam and the resolution of the thermal problem can predict the evolution of the temperature in the part and support. The "birth and death elements" technique was used to simulate the melting and solidification of the material during the process. Dependent mechanical properties of the temperature of the maraging steel used in this case were obtained using experimental testing and characterization and were established in the model. The calculations are decoupled : initially thermal calculation is performed and the results are used to perform mechanical calculations and finally predict the residual stress fields. In this work, a novel method based on the technique of measuring residual stresses by removing layers was developed to measure these stresses directly in the process. The results provide information on the level and distribution of stresses in the created part and support. Two parameters were tested to study their influence on the level of residual stress : time to spread the powder between two successive layers and layer height. The model is used to analyze the effects of process parameters related to the distribution of residual stresses in the manufactured parts. The results show that the variation of the thickness of the support does not affect the distribution of stresses in the part created. Preheating the substrate to a temperature of 800 °C reduces the residual stresses. The study of some laser strategies shows their influence on the distribution of plastic strain thus the height of the layers of powder or in the form of support (base, columns)
Moniz, da Silva Sancho Liliana. "Etude de l'interaction laser-matière pour la fabrication de pièces à haute valeur ajoutée en céramiques oxydes semi-transparentes par fusion laser sélective sur lit de poudre." Thesis, Université Paris sciences et lettres, 2020. http://www.theses.fr/2020UPSLM060.
Повний текст джерелаSelective laser melting of oxide ceramics (Al2O3-ZrO2and Al2O3) is identified as a promising way to produce complex shaped parts with oriented fine microstructures, which would not be achievable by conventional sintering. These lightweight parts, presenting excellent resistance to creep at high temperature and oxidation, would appear as the answer to weight reduction and temperature increasing of turbojet engines, as compared to the usual metal parts coated with porous ceramics. The material/process coupling relies on the controlled addition of an absorber to pure ceramic powders, that compensate the quasi-transparency of these materials to Yb:YAG laser radiation. The effect on optical properties of process parameters, absorbent nature and content, compactness of the powder bed and their influence on manufacturing stability are identified. For this purpose, innovative radiative measurements in reflection and in transmission were carried out during manufacturing and for different operating conditions. These dynamic measurements through an integrating sphere provide information on the laser-material interaction mechanisms taking place in each media and they give access to optical material properties. These measurements enrich an analytical laser-matter interaction model based on the radiation attenuation by the Beer-Lambert law. This model gives a relation between melt pool dimensions, radiative propertiesof the different media (powder bed, substrate and liquid) along with the associated absorption coefficients, the process parameters and powder bed porosity. This model expresses also the apparent melted section within the powder bed, the section of the melted zone within the substrate and the consolidation section within the powder bed. Some of these calculated data are not measurable and usefully contribute to a consolidation model of the powder bed. This model takes into account the material exchanges observed between so-called bare zones (linked to the ejection of powder particles) and consolidation zones. Quantification of these particles exchanges, which have a strong impact on the LBM of these oxide ceramics, allows the definition of a specific manufacturing strategy that compensates for the bare zone formation while avoiding the formation of hot spots. These data collection enables the manufacturing of LBM ceramic oxide parts with reduced porosity and controlled micro-cracking
Ruggi, David. "Mise en œuvre de poudres de polyamides : Influence des conditions de transformation sur la microstructure et les propriétés. Application à la fabrication additive par fusion laser." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI057.
Повний текст джерелаSelective Laser Sintering, also called Powder Bed Fusion, is an additive manufacturing process that transforms a polymer powder layer-by-layer by melting with a laser beam scanning specific areas of each layer. The stages of transformation of a semi-crystalline polymer by laser fusion are: the flow of the powder at high temperature, the melting-coalescence of the particles, the resorption of the porosities and the solidification by crystallization during cooling. The most important parameters are the power of the laser and the temperature field in the manufacturing tank. The material undergoes high temperatures and thermal variations whose kinetics are still poorly known. The cohesion of the successive layers and the microstructure of the manufactured object (porosity, crystallinity) depend on these complex thermal conditions. The relationships between microstructure, final properties and thermal history of the material are not fully understood. In this work, two powders of polyamides (PA 6 and PA 12) are studied. First, the physical processes described above are analyzed under laboratory conditions with a controlled thermal history. This makes it possible to better understand and to model the role of the intrinsic properties of the polymer in the physicochemical phenomena involved in its transformation at different scales. This study gives access to the time scales of these mechanisms, as a function of temperature, and to the resulting microstructures. Then, parts are produced by two methods of powder melting, one in the laboratory on a hot plate, the other in an industrial SLS machine. Knowledge of the characteristic times of coalescence, evolution of porosities and crystallization enables to explain the microstructure and the mechanical properties of the objects in relation to their production method and the associated thermal history. This analysis sheds new light on the development of microstructures of polyamides transformed by laser fusion and the resulting properties