Добірка наукової літератури з теми "Devices in microstrip"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Devices in microstrip".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Devices in microstrip"
Firdausi, Ahmad, Lusi Damayanti, Galang Persada Nur Hakim, Umaisaroh Umaisaroh, and Mudrik Alaydrus. "Design of A Dual-Band Microstrip Antenna for 5G Communication." Journal of Integrated and Advanced Engineering (JIAE) 1, no. 1 (June 30, 2021): 65–72. http://dx.doi.org/10.51662/jiae.v1i1.15.
Повний текст джерелаde Menezes, Fernando Lima, Davino Machado Andrade Neto, Maria do Livramento Linhares Rodrigues, Helder Levi Silva Lima, Denis Valony Martins Paiva, Marcelo Antônio Santos da Silva, Lillian Maria Uchôa Dutra Fechine, et al. "From Magneto-Dielectric Biocomposite Films to Microstrip Antenna Devices." Journal of Composites Science 4, no. 4 (September 24, 2020): 144. http://dx.doi.org/10.3390/jcs4040144.
Повний текст джерелаLee, Gye-An, Hai-Young Lee, and F. De Flaviis. "Perforated microstrip structure for miniaturising microwave devices." Electronics Letters 38, no. 15 (2002): 800. http://dx.doi.org/10.1049/el:20020535.
Повний текст джерелаSun, Xia Li, Qing Zhang, and Shu Yan. "Design of an Active Phase Conjugation Circuit for Retrodirective Array in UHF Band." Applied Mechanics and Materials 43 (December 2010): 201–6. http://dx.doi.org/10.4028/www.scientific.net/amm.43.201.
Повний текст джерелаTatarenko, Alexander, Darya Snisarenko, and Mirza Bichurin. "Modeling of magnetoelectric microwave devices." Facta universitatis - series: Electronics and Energetics 30, no. 3 (2017): 285–93. http://dx.doi.org/10.2298/fuee1703285t.
Повний текст джерелаGoran, Petrus Kerowe, and Eka Setia Nugraha. "Asymmetric-Slit Method on WiFi Antenna with 2.4 GHz and 5 GHz Frequency." IJITEE (International Journal of Information Technology and Electrical Engineering) 4, no. 2 (September 16, 2020): 53. http://dx.doi.org/10.22146/ijitee.55811.
Повний текст джерелаMozharovskiy, Andrei V., Aleksey A. Artemenko, Roman O. Maslennikov, and Irina B. Vendik. "Design of Wideband Waveguide-to-Microstrip Transition for 60 GHz Frequency Band." Journal of the Russian Universities. Radioelectronics 22, no. 4 (October 1, 2019): 31–44. http://dx.doi.org/10.32603/1993-8985-2019-22-4-31-44.
Повний текст джерелаDrozdovski, N. V., and L. M. Drozdovskaia. "Microwave control devices based on microstrip hairpin resonators." International Journal of Electronics 89, no. 7 (July 2002): 575–82. http://dx.doi.org/10.1080/00207210210163690.
Повний текст джерелаOrtega Paredes, Abraham E., Leonardo R. A. X. de Menezes, Humberto Abdalla, and Ivan N. A. Romani. "Modeling and Characterization for Microstrip Filters in the Manufacturing Process through the Unscented Transform and Use of Electromagnetic Simulators." Modelling and Simulation in Engineering 2010 (2010): 1–5. http://dx.doi.org/10.1155/2010/691241.
Повний текст джерелаBelyaev, B. A., S. A. Khodenkov, R. G. Galeev, and V. F. Shabanov. "A lowpass filter based on a 2d microstrip electromagnetic crystal." Доклады Академии наук 485, no. 1 (May 22, 2019): 27–32. http://dx.doi.org/10.31857/s0869-5652485127-32.
Повний текст джерелаДисертації з теми "Devices in microstrip"
Page, Michael John. "The analysis and design of n-port microstrip planar disk devices." Thesis, University of Hull, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333767.
Повний текст джерелаDorosh, Anastasiia. "Design of Microstrip Microwave Devices with Lumped Elements by Means of Modern CADs." Thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-30365.
Повний текст джерелаPomarnacki, Raimondas. "Investigation of the electrodynamic retard devices using parallel computer systems." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20120106_101019-38158.
Повний текст джерелаDisertacijoje nagrinėjamos mikrobangų įtaisų analizės ir sintezės proble-mos, taikant lygiagrečiąsias kompiuterines sistemas. Pagrindiniai tyrimo objektai yra daugialaidės mikrojuostelinės linijos ir meandrinės mikrojuostelinės vėlinimo linijos. Šie objektai leidžia perduoti, sinchronizuoti bei vėlinti siunčiamus signalus ir yra neatsiejama dalis daugelio mikrobangų prietaisų. Jų operatyvi ir tiksli analizė bei sintezė sąlygoja įtaisų kūrimo spartinimą. Pagrindinis disertacijos tikslas – sukurti lygiagrečiąsias metodikas ir algoritmus, skirtus sparčiai ir tiksliai atlikti minėtų linijų analizę ir sintezę. Sukurtų algoritmų ir metodikų taikymo sritis – mikrobangų įtaisų modeliavimo ir automatizuoto projektavimo progra-minė įranga.
Kulkarni, Shashank Dilip. "MoM modeling of metal-dielectric structures using volume integral equations." Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0506104-111936/.
Повний текст джерелаLozano, Castro Diego Enrique. "Investigation on electrically small antennas in the microwave range for the wireless transfer of power." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Знайти повний текст джерелаSILVA, Leonardo Morais da. "Projeto de Acopladores Híbridos em Quadratura compactos por meio de linhas de transmissões artificiais." Universidade Federal de Pernambuco, 2015. https://repositorio.ufpe.br/handle/123456789/19878.
Повний текст джерелаMade available in DSpace on 2017-07-20T14:10:52Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Dissertação_Leonardo_digital.pdf: 8248572 bytes, checksum: 8eaff05e901397f38f65a651841ef367 (MD5) Previous issue date: 2015-01-22
CAPES
O presente trabalho aborda o desenvolvimento e a implementação de acopladores híbridos em quadratura mais compactos e com largura de banda e desempenho similares as do acoplador branch-line convencional. Para isso, fez-se uso de uma classe de estruturas denominadas linhas de transmissão artificiais (LTA). Uma nova estrutura desse tipo, composta por três linhas de transmissão conectadas em cascata, é analisada e utilizada neste trabalho. Foram derivadas equações matemáticas para o projeto deste tipo de estrutura que podem ser utilizadas para obter LTAs com uma matriz de espalhamento idêntica, para uma dada frequência de operação, a de uma linha de transmissão com uma impedância característica e comprimento elétrico quaisquer. Essa técnica foi aplicada no projeto de acopladores híbridos em quadratura em microfita para as bandas GSM em 920 MHz e ISM em 2.45 GHz usando-se o substrato FR-4 com espessura de 1.6 mm. Obteve-se dispositivos com áreas aproximadamente 70% menor do que a área do acoplador branch-line convencional operando em 920 MHz e aproximadamente 50% menor do que o acoplador de 2.45 GHz. Os acopladores obtidos foram simulados, fabricados e medidos, mostrando que os seus desempenhos são comparáveis aos dos acopladores convencionais. A técnica desenvolvida neste trabalho é geral o suficiente para ser aplicada ao projeto de outros dispositivos que usem trechos de linhas de transmissão.
This thesis is concerned with the design and implementation of compact hybrid couplers with similar bandwidth and performance to the conventional branch-line coupler. To achieve this, a class of structures, called artificial transmission line (ATL), was used. A new structure of this type, made of three transmission lines connected in cascade, is analyzed and used. Mathematical equations have been derived for the design of this type of structure that can be used to obtain ATLs with an identical scattering matrix, for a given frequency of operation, to that of a transmission line with a given characteristic impedance and electrical length. This technique was applied in the design of microstrip quadrature hybrid couplers for the 920 MHz GSM band and for the 2.45 GHz ISM band using a 1.6 mm-thick FR-4 substrate. These couplers have surface areas approximately 70% smaller than the area of the conventional branch-line coupler operating at 920 MHz and approximately 50% for the 2.45 GHz coupler. The couplers obtained were simulated, manufactured and tested, showing that their performances are comparable to the conventional coupler. The technique developed here is general enough to be applied to the design of other devices using transmission line sections.
Silva, Patric Lacouth da. "Modelagem de Superf?cies Seletivas de Freq??ncia e Antenas de Microfita utilizando Redes Neurais Artificiais." Universidade Federal do Rio Grande do Norte, 2006. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15517.
Повний текст джерелаConselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico
This work has as main objective the application of Artificial Neural Networks, ANN, in the resolution of problems of RF /microwaves devices, as for example the prediction of the frequency response of some structures in an interest region. Artificial Neural Networks, are presently a alternative to the current methods of analysis of microwaves structures. Therefore they are capable to learn, and the more important to generalize the acquired knowledge, from any type of available data, keeping the precision of the original technique and adding the low computational cost of the neural models. For this reason, artificial neural networks are being increasily used for modeling microwaves devices. Multilayer Perceptron and Radial Base Functions models are used in this work. The advantages/disadvantages of these models and the referring algorithms of training of each one are described. Microwave planar devices, as Frequency Selective Surfaces and microstrip antennas, are in evidence due the increasing necessities of filtering and separation of eletromagnetic waves and the miniaturization of RF devices. Therefore, it is of fundamental importance the study of the structural parameters of these devices in a fast and accurate way. The presented results, show to the capacities of the neural techniques for modeling both Frequency Selective Surfaces and antennas
Este trabalho tem como principal objetivo a aplica??o de Redes Neurais Artificiais, RNA, na resolu??o de problemas de dispositivos de RF /microondas, como por exemplo a predi??o da resposta em freq??ncia de algumas estruturas em uma regi?o de interesse. As Redes Neurais Artificiais se apresentam como uma alternativa aos m?todos atuais de an?lise de estrutura de microondas, pois s?o capazes de aprender, e o mais importante generalizar o conhecimento adquirido, a partir de qualquer tipo de dado dispon?vel, mantendo a precis?o da t?cnica original utilizada e aliando o baixo custo computacional dos modelos neurais. Por esse motivo, as redes neurais artificiais s?o cada vez mais utilizadas para a modelagem de dispositivos de microondas. S?o utilizados neste trabalho os modelos Perceptron de M?ltiplas Camadas e de Fun??es de Base Radiais. S?o descritas as vantagens/desvantagens de cada um desses modelos, assim como os algoritmos de treinamento referentes a cada um deles. Dispositivos planares de microondas, como Superf?cies Seletivas de Freq??ncias e as antenas de microfita, ganham cada vez mais destaque devido ?s necessidades crescentes de filtragem e separa??o de ondas eletromag?ticas e ? miniaturiza??o de dispositivos de R?dio-Freq??ncia. Por isso ? de import?ncia fundamental o estudo dos par?metros estruturais desses dispositivos de forma r?pida e precisa. Os resultados apresentados, demonstram as capacidades das t?cnicas neurais para modelagem de Superf?cies Seletivas de Freq??ncia e antenas
Rrustemaj, Etrur. "High speed communication devices using microstrips." Thesis, London South Bank University, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.618665.
Повний текст джерелаNoutehou, Nathan. "Conception de circulateurs et isolateurs pour des applications spatiales : nouvelles technologies d'intégration." Thesis, Brest, 2019. http://www.theses.fr/2019BRES0033/document.
Повний текст джерелаThe goal of this PhD thesis is to explore new technologies that make possible to improve the integration of isolators in radiofrequency chain of satellites. These components are especially used to control matching of amplifiers.We propose two ways of producing these isolators. At first, ferricomposite materials are studied to design low-cost isolators at Kuband.Then, we studied pre-oriented strontium or barium hexaferrites to design self-biased components (without magnets) for Q and Ka band frequencies
Lindberg, Peter. "Wideband Active and Passive Antenna Solutions for Handheld Terminals." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7445.
Повний текст джерелаКниги з теми "Devices in microstrip"
Shih, Ming. High performance millimeter-wave microstrip circulators and isolators: Final technical report. Pasadena, Calif: Jet Propulsion Laboratory, 1990.
Знайти повний текст джерелаIEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications (2007 Hangzhou Shi, China). IEEE 2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications : 14-17 August, 2007, Hangzhou, China. Edited by Wen Yinghong, Institute of Electrical and Electronics Engineers. Beijing Section., and IEEE Communications Society. Piscataway, N.J: IEEE, 2007.
Знайти повний текст джерелаPozar, David M. Microwave Engineering. Wiley & Sons, Incorporated, John, 2012.
Знайти повний текст джерелаPozar, David M. Microwave Engineering. John Wiley and Sons (WIE), 2004.
Знайти повний текст джерелаЧастини книг з теми "Devices in microstrip"
Rajshri, Saumya Das, and Tanushree Bose. "Multiband Slotted Circular Microstrip Patch Antenna." In Advances in Communication, Devices and Networking, 351–58. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7901-6_38.
Повний текст джерелаDesai, Aditya, Deepak C. Karia, and Madhuri Bhujbal. "Inbuilt Multiband Microstrip Antenna for Portable Devices." In Advances in Intelligent Systems and Computing, 225–34. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04960-1_20.
Повний текст джерелаCulbertson, J. C., H. S. Newman, U. Strom, J. M. Pond, D. B. Chrisey, J. S. Horwitz, and S. A. Wolf. "Light Detection Using High-T c Microstrip Lines." In Superconducting Devices and Their Applications, 180–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77457-7_30.
Повний текст джерелаDalsgaard Jensen, H., A. Larsen, and J. Mygind. "Small Josephson Junctions Strongly Coupled to Microstrip Resonators." In Nonlinear Superconductive Electronics and Josephson Devices, 279–95. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4615-3852-3_21.
Повний текст джерелаLee, K. F., K. M. Luk, T. Huynh, K. F. Tong, and R. Q. Lee. "U-Slot Patch Wideband Microstrip Antenna." In Directions for the Next Generation of MMIC Devices and Systems, 145–52. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1480-4_17.
Повний текст джерелаMorgenstjerne, A., J. Mygind, H. Dalsgaard-Jensen, and A. Larsen. "Microwave Properties of Josephson Junctions Strongly Coupled to Microstrip Resonators." In Superconducting Devices and Their Applications, 407–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-77457-7_73.
Повний текст джерелаSingh, Rohan, Arun Kumar Singh, Rabindranath Bera, and Bansibadan Maji. "Optimization of Microstrip Patch Array Antenna for Gain Enhancement." In Advances in Communication, Devices and Networking, 123–32. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3450-4_14.
Повний текст джерелаSingh, Arun Kumar, Bansibadan Maji, Rabindranath Bera, and Riwas Gurung. "Gain Enhancement of Microstrip Patch Using Different Array Configurations." In Advances in Communication, Devices and Networking, 191–99. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3450-4_22.
Повний текст джерелаHow, Hoton, and Carmine Vittoria. "Computer Aided Design Tools for Microstrip Circuitries — An Application to Microstrip Patch Antennas of Circular Geometry." In Directions for the Next Generation of MMIC Devices and Systems, 399–406. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4899-1480-4_45.
Повний текст джерелаJindal, Anukul, Khushal Kapoor, Tanweer Ali, Omprakash Kumar, and M. M. Manohara Pai. "Performance Characterization of a Microstrip Patch Antenna on Multiple Substrate." In Advances in Communication, Devices and Networking, 79–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4932-8_10.
Повний текст джерелаТези доповідей конференцій з теми "Devices in microstrip"
Mondal, Kalyan, and Partha Pratim Sarkar. "Single feed aperture coupled circular broadband microstrip patch antenna." In 2017 Devices for Integrated Circuit (DevIC). IEEE, 2017. http://dx.doi.org/10.1109/devic.2017.8074049.
Повний текст джерелаDas, Hangsa Raj, Rajesh Dey, and Sumanta Bhattacharya. "A REVIEW PAPER ON DESIGN FOR MICROSTRIP PATCH ANTENNA." In Topics in Intelligent Computing and Industry Design. Volkson Press, 2021. http://dx.doi.org/10.26480/etit.02.2020.166.168.
Повний текст джерелаGlushechenko, Eduard. "Microstrip microwave devices with traveling wave resonator." In 2015 IEEE 35th International Conference on Electronics and Nanotechnology (ELNANO). IEEE, 2015. http://dx.doi.org/10.1109/elnano.2015.7146881.
Повний текст джерелаGaid, Abdulguddoos S. A., Osaid A. S. Qaid, and Amjad M. H. Alhakimi. "Microstrip Antennas for Next Genertion Wireless Devices." In 2019 First International Conference of Intelligent Computing and Engineering (ICOICE). IEEE, 2019. http://dx.doi.org/10.1109/icoice48418.2019.9035130.
Повний текст джерелаPodstrigaev, A. S. "All-purpose adjuster for microwave microstrip devices." In 2014 24th International Crimean Conference "Microwave & Telecommunication Technology" (CriMiCo). IEEE, 2014. http://dx.doi.org/10.1109/crmico.2014.6959682.
Повний текст джерелаMondal, Kalyan, Lakhindar Murmu, and Partha Pratim Sarkar. "Investigation on compactness, bandwidth and gain of circular microstrip patch antenna." In 2017 Devices for Integrated Circuit (DevIC). IEEE, 2017. http://dx.doi.org/10.1109/devic.2017.8074050.
Повний текст джерелаLin, Qingqing, Xueyang Wang, Saisai Wang, Chenjing Li, and Di Wu. "Design of broadband microstrip equalizer." In 2020 International Conference on Optoelectronic Materials and Devices, edited by Siting Chen and Pei Wang. SPIE, 2021. http://dx.doi.org/10.1117/12.2592242.
Повний текст джерелаNelson, David A., Saeed I. Latif, Chad Austin, and Jeremy Chatham. "Feasibility of Using a Printed Microstrip Antenna in Evaluation of Peripheral Microcirculation." In 2018 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dmd2018-6912.
Повний текст джерелаGoychuk, Valentina M., Vladimir P. Razinkin, and Mikhail K. Adrianov. "Nonreflective microstrip filter." In 2016 17th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). IEEE, 2016. http://dx.doi.org/10.1109/edm.2016.7538700.
Повний текст джерелаWalters, Peter C., Roger D. Pollard, John R. Richardson, Patrice M. Gamand, and Philippe R. Suchet. "Coplanar Versus Microstrip Measurements of Millimetre-Wave Devices." In 40th ARFTG Conference Digest. IEEE, 1992. http://dx.doi.org/10.1109/arftg.1992.326996.
Повний текст джерела