Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Differential equations, Partial Numerical solutions.

Дисертації з теми "Differential equations, Partial Numerical solutions"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Differential equations, Partial Numerical solutions".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Bratsos, A. G. "Numerical solutions of nonlinear partial differential equations." Thesis, Brunel University, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332806.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sundqvist, Per. "Numerical Computations with Fundamental Solutions." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-5757.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kwok, Ting On. "Adaptive meshless methods for solving partial differential equations." HKBU Institutional Repository, 2009. http://repository.hkbu.edu.hk/etd_ra/1076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zeng, Suxing. "Numerical solutions of boundary inverse problems for some elliptic partial differential equations." Morgantown, W. Va. : [West Virginia University Libraries], 2009. http://hdl.handle.net/10450/10345.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--West Virginia University, 2009.<br>Title from document title page. Document formatted into pages; contains v, 58 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 56-58).
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Williamson, Rosemary Anne. "Numerical solution of hyperbolic partial differential equations." Thesis, University of Cambridge, 1985. https://www.repository.cam.ac.uk/handle/1810/278503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Postell, Floyd Vince. "High order finite difference methods." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/28876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Luo, Wuan Hou Thomas Y. "Wiener chaos expansion and numerical solutions of stochastic partial differential equations /." Diss., Pasadena, Calif. : Caltech, 2006. http://resolver.caltech.edu/CaltechETD:etd-05182006-173710.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cheung, Ka Chun. "Meshless algorithm for partial differential equations on open and singular surfaces." HKBU Institutional Repository, 2016. https://repository.hkbu.edu.hk/etd_oa/278.

Повний текст джерела
Анотація:
Radial Basis function (RBF) method for solving partial differential equation (PDE) has a lot of applications in many areas. One of the advantages of RBF method is meshless. The cost of mesh generation can be reduced by playing with scattered data. It can also allow adaptivity to solve some problems with special feature. In this thesis, RBF method will be considered to solve several problems. Firstly, we solve the PDEs on surface with singularity (folded surface) by a localized method. The localized method is a generalization of finite difference method. A priori error estimate for the discreit
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yang, Xue-Feng. "Extensions of sturm-liouville theory : nodal sets in both ordinary and partial differential equations." Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/28021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

He, Chuan. "Numerical solutions of differential equations on FPGA-enhanced computers." [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-1248.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Al-Muslimawi, Alaa Hasan A. "Numerical analysis of partial differential equations for viscoelastic and free surface flows." Thesis, Swansea University, 2013. https://cronfa.swan.ac.uk/Record/cronfa42876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Zhang, Jiwei. "Local absorbing boundary conditions for some nonlinear PDEs on unbounded domains." HKBU Institutional Repository, 2009. http://repository.hkbu.edu.hk/etd_ra/1074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

ROEHL, NITZI MESQUITA. "NUMERICAL SOLUTIONS FOR SHAPE OPTIMIZATION PROBLEMS ASSOCIATED WITH ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 1991. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=9277@1.

Повний текст джерела
Анотація:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR<br>Essa dissertação visa à obtenção de soluções numéricas para problemas de otimização de formas geométricas associados a equações diferenciais parciais elípticas. A principal motivação é um problema termal, onde deseja-se determinar a fronteira ótima, para um volume de material isolante fixo, tal que a perda de calor de um corpo seja minimizada. Realiza-se a análise e implementação numérica de uma abordagem via método das penalidades dos problemas de minimização. O método de elementos finitos é utilizado para discretizar o
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Qiao, Zhonghua. "Numerical solution for nonlinear Poisson-Boltzmann equations and numerical simulations for spike dynamics." HKBU Institutional Repository, 2006. http://repository.hkbu.edu.hk/etd_ra/727.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Gyurko, Lajos Gergely. "Numerical methods for approximating solutions to rough differential equations." Thesis, University of Oxford, 2008. http://ora.ox.ac.uk/objects/uuid:d977be17-76c6-46d6-8691-6d3b7bd51f7a.

Повний текст джерела
Анотація:
The main motivation behind writing this thesis was to construct numerical methods to approximate solutions to differential equations driven by rough paths, where the solution is considered in the rough path-sense. Rough paths of inhomogeneous degree of smoothness as driving noise are considered. We also aimed to find applications of these numerical methods to stochastic differential equations. After sketching the core ideas of the Rough Paths Theory in Chapter 1, the versions of the core theorems corresponding to the inhomogeneous degree of smoothness case are stated and proved in Chapter 2 al
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Sweet, Erik. "ANALYTICAL AND NUMERICAL SOLUTIONS OF DIFFERENTIALEQUATIONS ARISING IN FLUID FLOW AND HEAT TRANSFER PROBLEMS." Doctoral diss., University of Central Florida, 2009. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2585.

Повний текст джерела
Анотація:
The solutions of nonlinear ordinary or partial differential equations are important in the study of fluid flow and heat transfer. In this thesis we apply the Homotopy Analysis Method (HAM) and obtain solutions for several fluid flow and heat transfer problems. In chapter 1, a brief introduction to the history of homotopies and embeddings, along with some examples, are given. The application of homotopies and an introduction to the solutions procedure of differential equations (used in the thesis) are provided. In the chapters that follow, we apply HAM to a variety of problems to highlight its
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Bujok, Karolina Edyta. "Numerical solutions to a class of stochastic partial differential equations arising in finance." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:d2e76713-607b-4f26-977a-ac4df56d54f2.

Повний текст джерела
Анотація:
We propose two alternative approaches to evaluate numerically credit basket derivatives in a N-name structural model where the number of entities, N, is large, and where the names are independent and identically distributed random variables conditional on common random factors. In the first framework, we treat a N-name model as a set of N Bernoulli random variables indicating a default or a survival. We show that certain expected functionals of the proportion L<sub>N</sub> of variables in a given state converge at rate 1/N as N [right arrow - infinity]. Based on these results, we propose a mult
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Pitts, George Gustav. "Domain decomposition and high order discretization of elliptic partial differential equations." Diss., Virginia Tech, 1994. http://hdl.handle.net/10919/39143.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Pitts, George G. "Domain decomposition and high order discretization of elliptic partial differential equations." Diss., Virginia Tech, 1994. http://hdl.handle.net/10919/39143.

Повний текст джерела
Анотація:
Numerical solutions of partial differential equations (PDEs) resulting from problems in both the engineering and natural sciences result in solving large sparse linear systems Au = b. The construction of such linear systems and their solutions using either direct or iterative methods are topics of continuing research. The recent advent of parallel computer architectures has resulted in a search for good parallel algorithms to solve such systems, which in turn has led to a recent burgeoning of research into domain decomposition algorithms. Domain decomposition is a procedure which employs subdi
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Tråsdahl, Øystein. "Numerical solution of partial differential equations in time-dependent domains." Thesis, Norwegian University of Science and Technology, Department of Mathematical Sciences, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9752.

Повний текст джерела
Анотація:
<p>Numerical solution of heat transfer and fluid flow problems in two spatial dimensions is studied. An arbitrary Lagrangian-Eulerian (ALE) formulation of the governing equations is applied to handle time-dependent geometries. A Legendre spectral method is used for the spatial discretization, and the temporal discretization is done with a semi-implicit multi-step method. The Stefan problem, a convection-diffusion boundary value problem modeling phase transition, makes for some interesting model problems. One problem is solved numerically to obtain first, second and third order convergence in t
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Ibrahem, Abdul Nabi Ismail. "The numerical solution of partial differential equations on unbounded domains." Thesis, Keele University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279648.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Trojan, Alice von. "Finite difference methods for advection and diffusion." Title page, abstract and contents only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phv948.pdf.

Повний текст джерела
Анотація:
Includes bibliographical references (leaves 158-163). Concerns the development of high-order finite-difference methods on a uniform rectangular grid for advection and diffuse problems with smooth variable coefficients. This technique has been successfully applied to variable-coefficient advection and diffusion problems. Demonstrates that the new schemes may readily be incorporated into multi-dimensional problems by using locally one-dimensional techniques, or that they may be used in process splitting algorithms to solve complicatef time-dependent partial differential equations.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Pun, K. S. "The numerical solution of partial differential equations with the Tau method." Thesis, Imperial College London, 1985. http://hdl.handle.net/10044/1/37823.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Barreira, Maria Raquel. "Numerical solution of non-linear partial differential equations on triangulated surfaces." Thesis, University of Sussex, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.496863.

Повний текст джерела
Анотація:
This work aims to solve numerically non-linear partial differential equations on surfaces, that may evolve in time, for a set of different applications. The core of all the numerical schemes is a finite element method recently introduced for triangulated surfaces. The main classes of applications under appreciation are the motion of curves on surfaces, segmentation of images painted on surfaces and the formation of Turing patterns on surfaces. For the first one, three different approaches are considered and compared: the level set method, the phase field framework and the diffusion generated m
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Pratt, P. "Problem solving environments for the numerical solution of partial differential equations." Thesis, University of Leeds, 1996. http://etheses.whiterose.ac.uk/1267/.

Повний текст джерела
Анотація:
The complexity and sophistication of numerical codes for the simulation of complex problems modelled by partial differential equations (PDEs) has increased greatly over the last decade. This makes it difficult for those without direct knowledge of the PDE software to employ it efficiently. Problem Solving Environments (PSEs) are seen as a way of making it possible to provide an easy-to-use layer surrounding the numerical software. The users can then concentrate on gaining an understanding of the physical problem through the results the code is providing. PSEs aim to aid novice and expert users
Стилі APA, Harvard, Vancouver, ISO та ін.
26

何正華 and Ching-wah Ho. "Iterative methods for the Robbins problem." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31222572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Malek, Alaeddin. "Numerical spectral solution of elliptic partial differential equations using domain decomposition techniques." Thesis, Cardiff University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.241798.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Jayes, Mohd Idris. "Numerical solution of ordinary and partial differential equations occurring in scientific applications." Thesis, Loughborough University, 1992. https://dspace.lboro.ac.uk/2134/32103.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Palitta, Davide. "Preconditioning strategies for the numerical solution of convection-diffusion partial differential equations." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7464/.

Повний текст джерела
Анотація:
Il trattamento numerico dell'equazione di convezione-diffusione con le relative condizioni al bordo, comporta la risoluzione di sistemi lineari algebrici di grandi dimensioni in cui la matrice dei coefficienti è non simmetrica. Risolutori iterativi basati sul sottospazio di Krylov sono ampiamente utilizzati per questi sistemi lineari la cui risoluzione risulta particolarmente impegnativa nel caso di convezione dominante. In questa tesi vengono analizzate alcune strategie di precondizionamento, atte ad accelerare la convergenza di questi metodi iterativi. Vengono confrontati sperimentalmente pr
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Kadhum, Nashat Ibrahim. "The spline approach to the numerical solution of parabolic partial differential equations." Thesis, Loughborough University, 1988. https://dspace.lboro.ac.uk/2134/6725.

Повний текст джерела
Анотація:
This thesis is concerned with the Numerical Solution of Partial Differential Equations. Initially some definitions and mathematical background are given, accompanied by the basic theories of solving linear systems and other related topics. Also, an introduction to splines, particularly cubic splines and their identities are presented. The methods used to solve parabolic partial differential equations are surveyed and classified into explicit or implicit (direct and iterative) methods. We concentrate on the Alternating Direction Implicit (ADI), the Group Explicit (GE) and the Crank-Nicolson (C-
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Macias, Diaz Jorge. "A Numerical Method for Computing Radially Symmetric Solutions of a Dissipative Nonlinear Modified Klein-Gordon Equation." ScholarWorks@UNO, 2004. http://scholarworks.uno.edu/td/167.

Повний текст джерела
Анотація:
In this paper we develop a finite-difference scheme to approximate radially symmetric solutions of a dissipative nonlinear modified Klein-Gordon equation in an open sphere around the origin, with constant internal and external damping coefficients and nonlinear term of the form G' (w) = w ^p, with p an odd number greater than 1. We prove that our scheme is consistent of quadratic order, and provide a necessary condition for it to be stable order n. Part of our study will be devoted to study the effects of internal and external damping.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Murali, Vasanth Kumar. "Code verification using the method of manufactured solutions." Master's thesis, Mississippi State : Mississippi State University, 2002. http://library.msstate.edu/etd/show.asp?etd=etd-11112002-121649.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Li, Hongwei. "Local absorbing boundary conditions for wave propagations." HKBU Institutional Repository, 2012. https://repository.hkbu.edu.hk/etd_ra/1434.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Li, Siqing. "Kernel-based least-squares approximations: theories and applications." HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/539.

Повний текст джерела
Анотація:
Kernel-based meshless methods for approximating functions and solutions of partial differential equations have many applications in engineering fields. As only scattered data are used, meshless methods using radial basis functions can be extended to complicated geometry and high-dimensional problems. In this thesis, kernel-based least-squares methods will be used to solve several direct and inverse problems. In chapter 2, we consider discrete least-squares methods using radial basis functions. A general l^2-Tikhonov regularization with W_2^m-penalty is considered. We provide error estimates th
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Perella, Andrew James. "A class of Petrov-Galerkin finite element methods for the numerical solution of the stationary convection-diffusion equation." Thesis, Durham University, 1996. http://etheses.dur.ac.uk/5381/.

Повний текст джерела
Анотація:
A class of Petrov-Galerkin finite element methods is proposed for the numerical solution of the n dimensional stationary convection-diffusion equation. After an initial review of the literature we describe this class of methods and present both asymptotic and nonasymptotic error analyses. Links are made with the classical Galerkin finite element method and the cell vertex finite volume method. We then present numerical results obtained for a selection of these methods applied to some standard test problems. We also describe extensions of these methods which enable us to solve accurately for de
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Zhou, Jian Ming. "A multi-grid method for computation of film cooling." Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29414.

Повний текст джерела
Анотація:
This thesis presents a multi-grid scheme applied to the solution of transport equations in turbulent flow associated with heat transfer. The multi-grid scheme is then applied to flow which occurs in the film cooling of turbine blades. The governing equations are discretized on a staggered grid with the hybrid differencing scheme. The momentum and continuity equations are solved by a nonlinear full multi-grid scheme with the SIMPLE algorithm as a relaxation smoother. The turbulence k — Є equations and the thermal energy equation are solved on each grid without multi-grid correction. Observatio
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Rebaza-Vasquez, Jorge. "Computation and continuation of equilibrium-to-periodic and periodic-to-periodic connections." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/28991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Platte, Rodrigo B. "Accuracy and stability of global radial basis function methods for the numerical solution of partial differential equations." Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file 8.72Mb, 143 p, 2005. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:3181853.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Chen, Meng. "Intrinsic meshless methods for PDEs on manifolds and applications." HKBU Institutional Repository, 2018. https://repository.hkbu.edu.hk/etd_oa/528.

Повний текст джерела
Анотація:
Radial basis function (RBF) methods for partial differential equations (PDEs), either in bulk domains, on surfaces, or in a combination of the formers, arise in a wide range of practical applications. This thesis proposes numerical approaches of RBF-based meshless techniques to solve these three kinds of PDEs on stationary and nonstationary surfaces and domains. In Chapter 1, we introduce the background of RBF methods, some basic concepts, and error estimates for RBF interpolation. We then provide some preliminaries for manifolds, restricted RBFs on manifolds, and some convergence properties o
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Stern, Louis G. "An explicitly conservative method for time-accurate solution of hyperbolic partial differential equations on embedded Chimera grids /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/6758.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Shu, Yupeng. "Numerical Solutions of Generalized Burgers' Equations for Some Incompressible Non-Newtonian Fluids." ScholarWorks@UNO, 2015. http://scholarworks.uno.edu/td/2051.

Повний текст джерела
Анотація:
The author presents some generalized Burgers' equations for incompressible and isothermal flow of viscous non-Newtonian fluids based on the Cross model, the Carreau model, and the Power-Law model and some simple assumptions on the flows. The author numerically solves the traveling wave equations for the Cross model, the Carreau model, the Power-Law model by using industrial data. The author proves existence and uniqueness of solutions to the traveling wave equations of each of the three models. The author also provides numerical estimates of the shock thickness as well as maximum strain $\vare
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Wells, B. V. "A moving mesh finite element method for the numerical solution of partial differential equations and systems." Thesis, University of Reading, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.414567.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Maroofi, Hamed. "Applications of the Monge - Kantorovich theory." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/29197.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Watson, Aaron Michael. "The WN adaptive method for numerical solution of particle transport problems." Texas A&M University, 2005. http://hdl.handle.net/1969.1/3133.

Повний текст джерела
Анотація:
The source and nature, as well as the history of ray-effects, is described. A benchmark code, using piecewise constant functions in angle and diamond differencing in space, is derived in order to analyze four sample problems. The results of this analysis are presented showing the ray effects and how increasing the resolution (number of angles) eliminates them. The theory of wavelets is introduced and the use of wavelets in multiresolution analysis is discussed. This multiresolution analysis is applied to the transport equation, and equations that can be solved to calculate the coefficients in
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Al, Zohbi Maryam. "Contributions to the existence, uniqueness, and contraction of the solutions to some evolutionary partial differential equations." Thesis, Compiègne, 2021. http://www.theses.fr/2021COMP2646.

Повний текст джерела
Анотація:
Dans cette thèse, nous nous sommes principalement intéressés à l’étude théorique et numérique de quelques équations qui décrivent la dynamique des densités des dislocations. Les dislocations sont des défauts microscopiques qui se déplacent dans les matériaux sous l’effet des contraintes extérieures. Dans un premier travail, nous démontrons un résultat d’existence globale en temps des solutions discontinues pour un système hyperbolique diagonal qui n’est pas nécessairement strictement hyperbolique, dans un espace unidimensionnel. Ainsi dans un deuxième travail, nous élargissons notre portée en
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Li, Wen. "Numerical methods for the solution of the HJB equations arising in European and American option pricing with proportional transaction costs." University of Western Australia. School of Mathematics and Statistics, 2010. http://theses.library.uwa.edu.au/adt-WU2010.0098.

Повний текст джерела
Анотація:
This thesis is concerned with the investigation of numerical methods for the solution of the Hamilton-Jacobi-Bellman (HJB) equations arising in European and American option pricing with proportional transaction costs. We first consider the problem of computing reservation purchase and write prices of a European option in the model proposed by Davis, Panas and Zariphopoulou [19]. It has been shown [19] that computing the reservation purchase and write prices of a European option involves solving three different fully nonlinear HJB equations. In this thesis, we propose a penalty approach combine
Стилі APA, Harvard, Vancouver, ISO та ін.
47

McCoy, James A. (James Alexander) 1976. "The surface area preserving mean curvature flow." Monash University, Dept. of Mathematics, 2002. http://arrow.monash.edu.au/hdl/1959.1/8291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Thorne, Jr Daniel Thomas. "Multigrid with Cache Optimizations on Adaptive Mesh Refinement Hierarchies." UKnowledge, 2003. http://uknowledge.uky.edu/gradschool_diss/325.

Повний текст джерела
Анотація:
This dissertation presents a multilevel algorithm to solve constant and variable coeffcient elliptic boundary value problems on adaptively refined structured meshes in 2D and 3D. Cacheaware algorithms for optimizing the operations to exploit the cache memory subsystem areshown. Keywords: Multigrid, Cache Aware, Adaptive Mesh Refinement, Partial Differential Equations, Numerical Solution.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Lao, Kun Leng. "Multigrid algorithm based on cyclic reduction for convection diffusion equations." Thesis, University of Macau, 2010. http://umaclib3.umac.mo/record=b2148274.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Brubaker, Lauren P. "Completely Residual Based Code Verification." University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1132592325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!