Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Diffusion equations.

Дисертації з теми "Diffusion equations"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Diffusion equations".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Ta, Thi nguyet nga. "Sub-gradient diffusion equations." Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0137/document.

Повний текст джерела
Анотація:
Ce mémoire de thèse est consacrée à l'étude des problèmes d'évolution où la dynamique est régi par l'opérateur de diffusion de sous-gradient. Nous nous intéressons à deux types de problèmes d'évolution. Le premier problème est régi par un opérateur local de type Leray-Lions avec un domaine borné. Dans ce problème, l'opérateur est maximal monotone et ne satisfait pas la condition standard de contrôle de la croissance polynomiale. Des exemples typiques apparaît dans l'étude de fluide non-Neutonian et aussi dans la description de la dynamique du flux de sous-gradient. Pour étudier le problème nou
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Coulon, Anne-Charline. "Propagation in reaction-diffusion equations with fractional diffusion." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/277576.

Повний текст джерела
Анотація:
This thesis focuses on the long time behaviour of solutions to Fisher-KPP reaction-diffusion equations involving fractional diffusion. This type of equation arises, for example, in spatial propagation or spreading of biological species (rats, insects,...). In population dynamics, the quantity under study stands for the density of the population. It is well-known that, under some specific assumptions, the solution tends to a stable state of the evolution problem, as time goes to infinity. In other words, the population invades the medium, which corresponds to the survival of the species,
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Prehl, Janett. "Diffusion on fractals and space-fractional diffusion equations." Doctoral thesis, Universitätsbibliothek Chemnitz, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-201001068.

Повний текст джерела
Анотація:
Ziel dieser Arbeit ist die Untersuchung der Sub- und Superdiffusion in fraktalen Strukturen. Der Fokus liegt auf zwei separaten Ansätzen, die entsprechend des Diffusionbereiches gewählt und variiert werden. Dadurch erhält man ein tieferes Verständnis und eine bessere Beschreibungsweise für beide Bereiche. Im ersten Teil betrachten wir subdiffusive Prozesse, die vor allem bei Transportvorgängen, z. B. in lebenden Geweben, eine grundlegende Rolle spielen. Hierbei modellieren wir den fraktalen Zustandsraum durch endliche Sierpinski Teppiche mit absorbierenden Randbedingungen und lösen dann die Ma
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fei, Ning Fei. "Studies in reaction-diffusion equations." Thesis, Heriot-Watt University, 2003. http://hdl.handle.net/10399/310.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Grant, Koryn. "Symmetries and reaction-diffusion equations." Thesis, University of Kent, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ninomiya, Hirokazu. "Separatrices of competition-diffusion equations." 京都大学 (Kyoto University), 1995. http://hdl.handle.net/2433/187159.

Повний текст джерела
Анотація:
本文データは平成22年度国立国会図書館の学位論文(博士)のデジタル化実施により作成された画像ファイルを基にpdf変換したものである.<br>Kyoto Journal of Mathematics, vol35(3), pp.539-567, 1995, http://projecteuclid.org/euclid.kjm/1250518709<br>Kyoto University (京都大学)<br>0048<br>新制・課程博士<br>博士(理学)<br>甲第5884号<br>理博第1591号<br>新制||理||889(附属図書館)<br>UT51-95-D203<br>京都大学大学院工学研究科数学専攻<br>(主査)教授 西田 孝明, 教授 渡辺 信三, 教授 岩崎 敷久<br>学位規則第4条第1項該当
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Coulon, Chalmin Anne-Charline. "Fast propagation in reaction-diffusion equations with fractional diffusion." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2427/.

Повний текст джерела
Анотація:
Cette thèse est consacrée à l'étude du comportement en temps long, et plus précisément de phénomènes de propagation rapide, des équations de réaction-diffusion de type Kisher-KPP avec diffusion fractionnaire. Ces équations modélisent, par exemple, la propagation d'espèces biologiques. Sous certaines hypothèses, la population envahit le milieu et nous voulons comprendre à quelle vitesse cette invasion a lieu. Pour répondre à cette question, nous avons mis en place une nouvelle méthode et nous l'appliquons à différents modèles. Dans une première partie, nous étudions deux problèmes d'évolution c
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Knaub, Karl R. "On the asymptotic behavior of internal layer solutions of advection-diffusion-reaction equations /." Thesis, Connect to this title online; UW restricted, 2001. http://hdl.handle.net/1773/6772.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Coville, Jerome. "Equations de reaction diffusion non-locale." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2003. http://tel.archives-ouvertes.fr/tel-00004313.

Повний текст джерела
Анотація:
Cette thèse est consacrée à l'étude des équations de réaction diffusion non-locale du type $u_(t)-(\int_(\R)J(x-y)[u(y)-u(x)]dy)=f(u)$. Ces équations non-linéaires apparaissent naturellement en physique et en biologie. On s'intéresse plus particulièrement aux propriétés (existence, unicité, monotonie) des solutions du type front progressif. Trois classes de non-linéarités $f$ (bistable, ignition, monostable) sont étudiées. L'existence dans les cas bistable et ignition est obtenue via une technique d'homotopie. Le cas monostable nécessite une autre approche. L'existence est obtenue via une appr
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Cifani, Simone. "On nonlinear fractional convection - diffusion equations." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-15192.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Lunney, Michael E. "Numerical dynamics of reaction-diffusion equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ61659.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Bradshaw-Hajek, Bronwyn. "Reaction-diffusion equations for population genetics." Access electronically, 2004. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20041221.160902/index.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Parvin, S. "Diffusion-convection problems in parabolic equations." Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.382761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Coville, Jérôme. "Equations de réaction-diffusion non-locale." Paris 6, 2003. https://tel.archives-ouvertes.fr/tel-00004313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Cinti, Eleonora <1982&gt. "Bistable elliptic equations with fractional diffusion." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/3073/1/Cinti-Eleonora-Tesi.pdf.

Повний текст джерела
Анотація:
This work concerns the study of bounded solutions to elliptic nonlinear equations with fractional diffusion. More precisely, the aim of this thesis is to investigate some open questions related to a conjecture of De Giorgi about the one-dimensional symmetry of bounded monotone solutions in all space, at least up to dimension 8. This property on 1-D symmetry of monotone solutions for fractional equations was known in dimension n=2. The question remained open for n>2. In this work we establish new sharp energy estimates and one-dimensional symmetry property in dimension 3 for certain solu
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Cinti, Eleonora <1982&gt. "Bistable elliptic equations with fractional diffusion." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2010. http://amsdottorato.unibo.it/3073/.

Повний текст джерела
Анотація:
This work concerns the study of bounded solutions to elliptic nonlinear equations with fractional diffusion. More precisely, the aim of this thesis is to investigate some open questions related to a conjecture of De Giorgi about the one-dimensional symmetry of bounded monotone solutions in all space, at least up to dimension 8. This property on 1-D symmetry of monotone solutions for fractional equations was known in dimension n=2. The question remained open for n>2. In this work we establish new sharp energy estimates and one-dimensional symmetry property in dimension 3 for certain solu
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Endal, Jørgen. "Nonlinear fractional convection-diffusion equations, with nonlocal and nonlinear fractional diffusion." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2013. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-22955.

Повний текст джерела
Анотація:
We study nonlinear fractional convection-diffusion equations with nonlocal and nonlinear fractional diffusion. By the idea of Kru\v{z}kov (1970), entropy sub- and supersolutions are defined in order to prove well-posedness under the assumption that the solutions are elements in $L^{\infty}(\mathbb{R}^d\times (0,T))\cap C([0,T];L_\text{loc}^1(\mathbb{R}^d))$. Based on the work of Alibaud (2007) and Cifani and Jakobsen (2011), a local contraction is obtained for this type of equations for a certain class of L\&apos;evy measures. In the end, this leads to an existence proof for initial data in $L
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Sun, Xiaodi. "Metastable dynamics of convection-diffusion-reaction equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0002/NQ34630.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Davidson, Fordyce A. "Bifurcation in systems of reaction-diffusion equations." Thesis, Heriot-Watt University, 1993. http://hdl.handle.net/10399/1444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Freitas, Pedro S. C. de. "Some problems in nonlocal reaction-diffusion equations." Thesis, Heriot-Watt University, 1994. http://hdl.handle.net/10399/1401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Yu, Weiming. "Identification of Coefficients in Reaction-Diffusion Equations." University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1076186036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Al-Ofl, Abdalaziz Saleem. "Analysis of complex nonlinear reaction-diffusion equations." Thesis, Durham University, 2008. http://etheses.dur.ac.uk/2422/.

Повний текст джерела
Анотація:
A mathematical analysis has been carried out for some nonlinear reaction- diffusion equations on open bounded convex domains Ω C R(^d)(d < 3) with Robin boundary conditions- Existence, uniqueness and continuous dependence on initial data of weak and strong solutions are proved. A numerical analysis has also been undertaken for these nonlinear reaction- diffusion equations on the above domains. A fully practical piecewise linear finite element approximation is proposed for which existence and uniqueness of the numerical solution are proved. Semi-discrete and fully discrete error estimates are g
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Cardanobile, Stefano. "Diffusion systems and heat equations on networks." [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:289-vts-64278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Hagberg, Aric Arild. "Fronts and patterns in reaction-diffusion equations." Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186901.

Повний текст джерела
Анотація:
This is a study of fronts and patterns formed in reaction-diffusion systems. A doubly-diffusive version of the two component FitzHugh-Nagumo equations with bistable reaction dynamics is investigated as an abstract model for the study of pattern phenomenologies found in many different physical systems. Front solutions connecting the two stable uniform states are found to be key building blocks for understanding extended patterns such as stationary domains and traveling pulses in one dimension, and labyrinthine structures, splitting spots, and spiral wave turbulence in two dimensions. The number
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Büger, Matthias. "Systems of reaction-diffusion equations and their attractors." Giessen : Selbstverlag des Mathematischen Instituts, 2005. http://catalog.hathitrust.org/api/volumes/oclc/62216537.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Meiler, Maria. "Analytic advances in difference equations of diffusion processes /." Göttingen : Sierke, 2009. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=017611057&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Lin, Xue Lei. "Separable preconditioner for time-space fractional diffusion equations." Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Sionoid, Peadar N. "Nonlinear wave equations with diffusion, diffraction and dispersion." Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319935.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Xu, Lu. "Large deviations technique on stochastic reaction-diffusion equations." Thesis, University of Warwick, 2008. http://wrap.warwick.ac.uk/2736/.

Повний текст джерела
Анотація:
There are two different problems studied in this thesis. The first one is a travelling wave problem. We will improve the result proved in [4] to derive the ergodic property of the travelling wave behind the wavefront. The second problem is a large deviation problem concerning solutions to certain kind stochastic partial differential equations. We will first briefly introduce some basics about SPDE in chapter 2. In chapter 3, we will prove a large deviation principle for super-Brownian motion when it is considered as a solution to an SPDE, using the LDP for super-Brownian motion when it is cons
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Meiler, Maria. "Analytic advances in difference equations of diffusion processes." Göttingen Sierke, 2008. http://d-nb.info/992791685/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Ferguson, R. C. "Numerical techniques for the drift-diffusion semiconductor equations." Thesis, University of Bath, 1996. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.362239.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Carter, David, Boguslaw Kruczek, and F. Handan Tezel. "Application of Maxwell Stefan equations to characterize silicalite membranes." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-198056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Ding, Weiwei. "Propagation phenomena of integro-difference equations and bistable reaction-diffusion equations in periodic habitats." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM4737.

Повний текст джерела
Анотація:
Cette thèse concerne les phénomènes de propagation de certaines équations d'évolution dans des habitats périodiques. Dans la première partie, nous étudions les phénomènes d'expansion de certaines équations d'intégro-différence spatialement périodiques. Tout d'abord, nous établissons une théorie générale sur l'existence des vitesses de propagation pour des systèmes d'évolution noncompacts, sous l'hypothèse que les systèmes linéarisés ont des valeurs propres principales. Ensuite, nous introduisons la notion d'irréductibilité uniforme des mesures de Radon finies sur le cercle. On démontre que tou
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Wei, Hui Qin. "Preconditioners for solving fractional diffusion equations with discontinuous coefficients." Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691375.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Filho, Sergio Muniz Oliva. "Reaction-diffusion systems on domains with thin channels." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/28837.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Meral, Gulnihal. "Numerical Solution Of Nonlinear Reaction-diffusion And Wave Equations." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610568/index.pdf.

Повний текст джерела
Анотація:
In this thesis, the two-dimensional initial and boundary value problems (IBVPs) and the one-dimensional Cauchy problems defined by the nonlinear reaction- diffusion and wave equations are numerically solved. The dual reciprocity boundary element method (DRBEM) is used to discretize the IBVPs defined by single and system of nonlinear reaction-diffusion equations and nonlinear wave equation, spatially. The advantage of DRBEM for the exterior regions is made use of for the latter problem. The differential quadrature method (DQM) is used for the spatial discretization of IBVPs and Cauchy problem
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ryan, John Maurice-Car. "Global existence of reaction-diffusion equations over multiple domains." Texas A&M University, 2004. http://hdl.handle.net/1969.1/3312.

Повний текст джерела
Анотація:
Systems of semilinear parabolic differential equations arise in the modelling of many chemical and biological systems. We consider m component systems of the form ut = D&#916;u + f (t, x, u) &#8706;uk/&#8706;&#951; =0 k =1, ...m where u(t, x)=(uk(t, x))mk=1 is an unknown vector valued function and each u0k is zero outside &#937;&#963;(k), D = diag(dk)is an m × m positive de&#64257;nite diagonal matrix, f : R × Rn× Rm &#8594; Rm, u0 is a componentwise nonnegative function, and each &#937;i is a bounded domain in Rn where &#8706;&#937;i is a C2+&#945;manifold such that &#937;i lies locall
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Wang, Shuyu. "Reaction-diffusion equations and the Laplacian in Hilbert space." Thesis, University of Ottawa (Canada), 1990. http://hdl.handle.net/10393/5772.

Повний текст джерела
Анотація:
This dissertation consists of two parts. First, we study some problems associated with reaction-diffusion equations with variables in finite-dimensional space. We investigate the positivity of solutions, the existence of positive invariant regions, and we also make some stability analysis. In part II, we study the Levy-Laplacian in infinite-dimensional space. We explore some properties of this Laplacian and solve some boundary value problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Baugh, James Emory. "Group analysis of a system of reaction-diffusion equations." Thesis, Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/28554.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Hill, Adrian T. "Attractors for convection-diffusion equations and their numerical approximation." Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.314907.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Qu, Lei, and 瞿磊. "Multiplicity and stability of two-dimensional reaction-diffusion equations." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31226656.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Fullwood, Timothy Brent. "Pattern formation and travelling waves in reaction-diffusion equations." Thesis, University of Warwick, 1995. http://wrap.warwick.ac.uk/4251/.

Повний текст джерела
Анотація:
This thesis is about pattern formation in reaction - diffusion equations, particularly Turing patterns and travelling waves. In chapter one we concentrate on Turing patterns. We give the classical approach to proving the existence of these patterns, and then our own, which uses the reversibility of the associated travelling wave equations when the wave speed is zero. We use a Lyapunov - Schmidt reduction to prove the existence of periodic solutions when there is a purely imaginary eigenvalue. We pay particular attention to the bifurcation point where these patterns arise, the 1: 1 resonance. W
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Kay, Alison Lindsey. "Travelling fronts and wave-trains in reaction-diffusion equations." Thesis, University of Warwick, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342513.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Vafadari, Cyrus. "Monte Carlo methods for parallel processing of diffusion equations." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82451.

Повний текст джерела
Анотація:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Nuclear Science and Engineering, 2013.<br>"June 2013." Cataloged from PDF version of thesis.<br>Includes bibliographical references (page 14).<br>A Monte Carlo algorithm for solving simple linear systems using a random walk is demonstrated and analyzed. The described algorithm solves for each element in the solution vector independently. Furthermore, it is demonstrated that this algorithm is easily parallelized. To reduce error, each processor can compute data for an independent element of the solution, or part of the data for a gi
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Zimmermann, Nils E. R., Timm J. Zabel, and Frerich J. Keil. "Transport into zeolite nanosheets: diffusion equations put to test." Diffusion fundamentals 20 (2013 ) 53, S. 1-2, 2013. https://ul.qucosa.de/id/qucosa%3A13629.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Nadin, Grégoire. "Equations de réaction-diffusion et propagation en milieu hétérogène." Paris 6, 2008. http://www.theses.fr/2008PA066491.

Повний текст джерела
Анотація:
Cette thèse est consacrée à l'étude d'une équation de réaction-diffusion de type monostable en milieu hétérogène. Dans une première partie nous étudions les valeurs propres principales généralisées associées à une linéarisation de cette équation en milieu périodique en temps et en espace. Puis, nous donnons des propriétés d'existence et d'unicité des solutions entières de l'équation. Dans une seconde partie, nous prouvons l'existence de fronts pulsatoires en milieu périodique en temps et en espace. Une caractérisation de la vitesse de ces fronts est utilisée pour étudier la dépendance entre le
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Trojan, Alice von. "Finite difference methods for advection and diffusion." Title page, abstract and contents only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phv948.pdf.

Повний текст джерела
Анотація:
Includes bibliographical references (leaves 158-163). Concerns the development of high-order finite-difference methods on a uniform rectangular grid for advection and diffuse problems with smooth variable coefficients. This technique has been successfully applied to variable-coefficient advection and diffusion problems. Demonstrates that the new schemes may readily be incorporated into multi-dimensional problems by using locally one-dimensional techniques, or that they may be used in process splitting algorithms to solve complicatef time-dependent partial differential equations.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Howard, Martin. "Non-equilibrium dynamics of reaction-diffusion systems." Thesis, University of Oxford, 1996. http://ora.ox.ac.uk/objects/uuid:4485a178-6262-4487-b40f-7c7ec790d687.

Повний текст джерела
Анотація:
Fluctuations are known to radically alter the behaviour of reaction-diffusion systems. Below a certain upper critical dimension d<sub>c</sub> , this effect results in the breakdown of traditional approaches, such as mean field rate equations. In this thesis we tackle this fluctuation problem by employing systematic field theoretic/renormalisation group methods, which enable perturbative calculations to be made below d<sub>c</sub>. We first consider a steady state reaction front formed in the two species irreversible reaction A + B → Ø. In one dimension we demonstrate that there are two compone
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Manay, Siddharth. "Applications of anti-geometric diffusion of computer vision : thresholding, segmentation, and distance functions." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/33626.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Carter, David, Boguslaw Kruczek, and F. Handan Tezel. "Application of Maxwell Stefan equations to characterize silicalite membranes." Diffusion fundamentals 24 (2015) 8, S. 1, 2015. https://ul.qucosa.de/id/qucosa%3A14522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!