Дисертації з теми "Dimension de Hausdorff"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Dimension de Hausdorff".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Mucheroni, Laís Fernandes [UNESP]. "Dimensão de Hausdorff e algumas aplicações." Universidade Estadual Paulista (UNESP), 2017. http://hdl.handle.net/11449/151653.
Повний текст джерелаApproved for entry into archive by Monique Sasaki (sayumi_sasaki@hotmail.com) on 2017-09-19T20:08:28Z (GMT) No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5)
Made available in DSpace on 2017-09-19T20:08:28Z (GMT). No. of bitstreams: 1 mucheroni_lf_me_rcla.pdf: 1067574 bytes, checksum: 952e3477ef0efeafd01d052547e8f2e5 (MD5) Previous issue date: 2017-08-18
Intuitivamente, um ponto tem dimensão 0, uma reta tem dimensão 1, um plano tem dimensão 2 e um cubo tem dimensão 3. Porém, na geometria fractal encontramos objetos matemáticos que possuem dimensão fracionária. Esses objetos são denominados fractais cujo nome vem do verbo "frangere", em latim, que significa quebrar, fragmentar. Neste trabalho faremos um estudo sobre o conceito de dimensão, definindo dimensão topológica e dimensão de Hausdorff. O objetivo deste trabalho é, além de apresentar as definições de dimensão, também apresentar algumas aplicações da dimensão de Hausdorff na geometria fractal.
We know, intuitively, that the dimension of a dot is 0, the dimension of a line is 1, the dimension of a square is 2 and the dimension of a cube is 3. However, in the fractal geometry we have objects with a fractional dimension. This objects are called fractals whose name comes from the verb frangere, in Latin, that means breaking, fragmenting. In this work we will study about the concept of dimension, defining topological dimension and Hausdorff dimension. The purpose of this work, besides presenting the definitions of dimension, is to show an application of the Hausdorff dimension on the fractal geometry.
Reeve, Russell Lynn. "Estimating the Hausdorff dimension." Diss., Virginia Tech, 1990. http://hdl.handle.net/10919/37744.
Повний текст джерелаSpear, Donald W. "Hausdorff, Packing and Capacity Dimensions." Thesis, University of North Texas, 1989. https://digital.library.unt.edu/ark:/67531/metadc330990/.
Повний текст джерелаSerantola, Leonardo Pereira. "Dimensão generalizada de Hausdorff /." São José do Rio Preto, 2019. http://hdl.handle.net/11449/191015.
Повний текст джерелаResumo: O presente trabalho trata de conceitos relacionados com a medida generalizada de Hausdorff, onde o principal objetivo consiste na obtenção de conjuntos cuja dimensão seja um número positivo não inteiro. Ele começa com uma definição sobre as propriedades que uma função de conjunto deve satisfazer para ser considerada uma medida de Carathéodory, suas implicações e consequências. Após a explicação destes conceitos iniciais, dá-se alguns exemplos de funções de conjunto contínuas e monótonas com a apresentação da função de escala logarítmica, que é peça chave para o desenvolvimento de conjuntos de medidas positivas não inteiras, além da introdução da medida de Hausdorff com seus desdobramentos. Algumas hipóteses sobre funções côncavas são apresentadas juntamente com fórmulas deduzidas com bases nestas hipóteses e na concavidade da função. Utiliza-se a função de escala logarítima para a determinação da dimensão de vários conjuntos, inclusive o conjunto de Cantor. Posteriormente, há uma adaptação dos conceitos trabalhados para o tratamento de dimensões relacionadas à números diádicos irracionais. Por fim, os conceitos tratados sobre a reta real são estendidos para produtos cartesianos, com especial enfoque para conjuntos planares.
Abstract: The present work deals with concepts related to the generalized Hausdorff measure, where the main objective is to obtain sets whose dimension is a positive non integer number. It begins with a definition of the properties that a set function must satisfy to be considered a Carathéodory measure, their implications and consequences. Following the explanation of these initial concepts, some examples of continuous and monotonous set functions are given with the presentation of the logarithmic scale function, which is key to the development of non-integer positive measure sets, in addition to the introduction of the Hausdorff measure with its developments. Some assumptions about concave functions are presented together with formulas derived from these assumptions and the concavity of the function. The logarithmic scale function is used to determine the dimension of various sets, including the Cantor set. Later, there is an adaptation of the concepts worked for the treatment of dimensions related to irrational dyadic numbers. Finally, the concepts treated on the real line are extended to Cartesian products, with special focus on planar sets.
Mestre
Dufloux, Laurent. "Dimension de Hausdorff des ensembles limites." Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCD022/document.
Повний текст джерелаLet G be the group SO° (1,n) (n ≥ 3) or PU(1, n) (n ≥ 2) and fix some Iwasawa decomposition G = KAN. Let ɼ be a discrete subgroup of G.We assume that ɼ is Zariski-dense with finite Bowen-Margulis-Sullivan measure. When G = SO°(1,n), we investigate the geometry of the Bowen-Margulis-Sullivan measure elong connected closed subgroups of N. This is related to the Mohammadi-Oh dichotomy. We then prove deterministic results on the dimension of projections of Patterson-Sullivan measure. When G = PU(1,n), we relate the geometry of Bowen-Margulis-Sullivan measure along the center of Heisenberg group to the problem of computing the Hausdorff dimension of the limit set with respect to the spherical metric on the boudary. We construct some Schottky subgroups for wich we are able to compute this dimension
Zürcher, Thomas Zürcher Thomas. "Hausdorff dimension and regularity of Sobolev functions /." [S.l.] : [s.n.], 2009. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.
Повний текст джерелаMartin, Charles 1966. "Hausdorff dimension of harmonic measures in Rd." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=69764.
Повний текст джерелаThis thesis presents a detailed and comprehensive exposition of Bourgain's theorem. Formal definitions of harmonic measures and Hausdorff dimensions are provided and all the required preliminary results about these concepts are rigorously proved. Generally speaking, the proof of the theorem itself is similar to the one originally presented by Bourgain. However, a more structured approach and an increased level of details make the argument easier to follow and understand.
Siebert, Kitzeln B. "A modern presentation of "dimension and outer measure"." Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1211395297.
Повний текст джерелаSatiracoo, Pairote. "Hausdorff dimension of attractors of infinitely renormalizable maps." Thesis, University of Warwick, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.400147.
Повний текст джерелаBrandão, Daniela Teresa Quaresma Santos. "Dimensões fractais e dimensão de correlação." Master's thesis, Universidade de Évora, 2008. http://hdl.handle.net/10174/17740.
Повний текст джерелаRydell, Simon. "Worm simulation of Hausdorff dimension of critical loop fluctuations." Thesis, KTH, Fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239619.
Повний текст джерелаTiozzo, Giulio. "Entropy, Dimension and Combinatorial Moduli for One-Dimensional Dynamical Systems." Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10891.
Повний текст джерелаMathematics
Beffara, Vincent. "Mouvement brownien plan, SLE, invariance conforme et dimensions fractales." Paris 11, 2003. http://www.theses.fr/2003PA112039.
Повний текст джерелаThis thesis is dedicated to the study of various geometric properties of planar Brownian motion and the SLE process (also known as stochastic Loewner evolution). We prove that, on a typical planar Brownian path, there almost surely exist "pivoting" points, i. E. Cut-points around which one half of the curve can rotate by a positive angle without ever intersecting the other half of the path; the set of all pivoting points of a given positive (small enough) angle is then of positive Hausdorff dimension. About SLE, the main result we obtain in this thesis is the computation of the Hausdorff dimension of the curve generating it (the dimension is equal to one plus one eighth of the parameter), for any positive parameter smaller than eight and different from four. We also study the problem of the generalization of the SLE process to non-simply connected surfaces; we show that the construction is doable for two particular values of the parameter (six and eight thirds), but the universality property of usual SLE 1S then lost
Lopez, Marco Antonio. "Hausdorff Dimension of Shrinking-Target Sets Under Non-Autonomous Systems." Thesis, University of North Texas, 2018. https://digital.library.unt.edu/ark:/67531/metadc1248505/.
Повний текст джерелаYang, Lei. "HAUSDORFF DIMENSION OF DIVERGENT GEODESICS ON PRODUCT OF HYPERBOLIC SPACES." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1401466357.
Повний текст джерелаSilva, Alex Pereira da. "Um estudo da teoria das dimensões aplicado a sistemas dinâmicos." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-07082015-113917/.
Повний текст джерелаIn this work, we study the asymptotic behavior of autonomous dynamical systems supported on the Dimension Theory. More precisely, we understand how fractal dimension finiteness of the global attractor of a semigroup can be used to study the dynamics in finite dimension, without losing information on the dynamics in doing so. For this purpose, the Mañés Theorem plays a decisive role considering the Hausdorff dimension properties and the fractal dimension; thanks to which we managed to find a projection whose restriction to the attractor is an injective application over a finite dimensional space. Besides, we also acknowledge that this projections approach is largely applied to semigroups arrising from differential equations in infinite dimensional Banach spaces.
Sumi, Hiroki. "Dynamics of rational semigroups and Hausdorff dimension of the Julia sets." Kyoto University, 1999. http://hdl.handle.net/2433/157102.
Повний текст джерелаKyoto University (京都大学)
0048
新制・課程博士
博士(人間・環境学)
甲第7909号
人博第52号
10||134(吉田南総合図書館)
新制||人||14(附属図書館)
UT51-99-G503
京都大学大学院人間・環境学研究科人間・環境学専攻
(主査)教授 宇敷 重廣, 教授 淺野 潔, 助教授 木上 淳
学位規則第4条第1項該当
Lima, Carlos Alberto Siqueira. "Dinâmica complexa e formalismo termodinâmico." Universidade de São Paulo, 2011. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-06062011-152648/.
Повний текст джерелаWe shall study complex dynamical systems in the Riemann sphere and prove that the Hausdorff dimension \'dim IND. H\' J( \'f IND. Lãmbda\' ) of the Julia set J( \'f IND. lâmbda\' ) of an holomorphic family of hyperbolic rational maps \'f IND. lâmbda\' defines a real analytic map of the parameter \'lâmbda\': This result was proved in 1981 by D. Ruelle (see [44]). We give an alternative proof using holomorphic motions (see [31]), which was originally developed to study the structural stability problem of complex dynamical systems. Throughout this work, we shall use several tools of Thermodynamic Formalism, including Bowens formula
Brucks, Karen M. (Karen Marie) 1957. "Dynamics of One-Dimensional Maps: Symbols, Uniqueness, and Dimension." Thesis, North Texas State University, 1988. https://digital.library.unt.edu/ark:/67531/metadc332102/.
Повний текст джерелаInui, Kanji. "Study of the fractals generated by contractive mappings and their dimensions." Kyoto University, 2020. http://hdl.handle.net/2433/253370.
Повний текст джерела0048
新制・課程博士
博士(人間・環境学)
甲第22534号
人博第937号
新制||人||223(附属図書館)
2019||人博||937(吉田南総合図書館)
京都大学大学院人間・環境学研究科共生人間学専攻
(主査)教授 角 大輝, 教授 上木 直昌, 准教授 木坂 正史
学位規則第4条第1項該当
Schubert, Hendrik [Verfasser]. "Über die Hausdorff-Dimension der Juliamenge von Funktionen endlicher Ordnung / Hendrik Schubert." Kiel : Universitätsbibliothek Kiel, 2008. http://d-nb.info/1019659858/34.
Повний текст джерелаSönmez, Ercan [Verfasser]. "Hausdorff dimension results for operator-self-similar stable random fields / Ercan Sönmez." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2017. http://d-nb.info/1128293935/34.
Повний текст джерелаCohen, Dolav. "An exploration of fractal dimension." Kansas State University, 2013. http://hdl.handle.net/2097/16194.
Повний текст джерелаDepartment of Mathematics
Hrant Hakobyan
When studying geometrical objects less regular than ordinary ones, fractal analysis becomes a valuable tool. Over the last 30 years, this small branch of mathematics has developed extensively. Fractals can be de fined as those sets which have non-integral Hausdor ff dimension. In this thesis, we take a look at some basic measure theory needed to introduce certain de finitions of fractal dimensions, which can be used to measure a set's fractal degree. We introduce Minkowski dimension and Hausdor ff dimension as well as explore some examples where they coincide. Then we look at the dimension of a measure and some very useful applications. We conclude with a well known result of Bedford and McMullen about the Hausdor ff dimension of self-a ffine sets.
Levesley, Jason. "Inhomogeneous and non-linear metric diophantine approximation." Thesis, University of York, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.298490.
Повний текст джерелаNilsson, Anders. "Dimensions and projections." Licentiate thesis, Umeå University, Mathematics and Mathematical Statistics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-939.
Повний текст джерелаThis thesis concerns dimensions and projections of sets that could be described as fractals. The background is applied problems regarding analysis of human tissue. One way to characterize such complicated structures is to estimate the dimension. The existence of different types of dimensions makes it important to know about their properties and relations to each other. Furthermore, since medical images often are constructed by x-ray, it is natural to study projections.
This thesis consists of an introduction and a summary, followed by three papers.
Paper I, Anders Nilsson, Dimensions and Projections: An Overview and Relevant Examples, 2006. Manuscript.
Paper II, Anders Nilsson and Peter Wingren, Homogeneity and Non-coincidence of Hausdorff- and Box Dimensions for Subsets of ℝn, 2006. Submitted.
Paper III, Anders Nilsson and Fredrik Georgsson, Projective Properties of Fractal Sets, 2006. To be published in Chaos, Solitons and Fractals.
The first paper is an overview of dimensions and projections, together with illustrative examples constructed by the author. Some of the most frequently used types of dimensions are defined, i.e. Hausdorff dimension, lower and upper box dimension, and packing dimension. Some of their properties are shown, and how they are related to each other. Furthermore, theoretical results concerning projections are presented, as well as a computer experiment involving projections and estimations of box dimension.
The second paper concerns sets for which different types of dimensions give different values. Given three arbitrary and different numbers in (0,n), a compact set in ℝn is constructed with these numbers as its Hausdorff dimension, lower box dimension and upper box dimension. Most important in this construction, is that the resulted set is homogeneous in the sense that these dimension properties also hold for every non-empty and relatively open subset.
The third paper is about sets in space and their projections onto planes. Connections between the dimensions of the orthogonal projections and the dimension of the original set are discussed, as well as the connection between orthogonal projection and the type of projection corresponding to realistic x-ray. It is shown that the estimated box dimension of the orthogonal projected set and the realistic projected set can, for all practical purposes, be considered equal.
Akter, Hasina. "Real Analyticity of Hausdorff Dimension of Disconnected Julia Sets of Cubic Parabolic Polynomials." Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc271768/.
Повний текст джерелаCatalan, Thiago Aparecido. "Resultados genéricos sobre entropia e dimensão de Hausdorff para difeomorfismos conservativos sobre superfícies." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-10062008-142348/.
Повний текст джерелаWe present two generic properties of \'C POT.1\" area preserving diffeomorphisms of a two dimensional compact oriented surface. We obtain a lower bound for the topological entropy of a generic diffeomorphisms, and we show that such a diffeomorphism always has closed invariant sets with dense orbits and Hausdorff dimension two
Haas, Stephen. "The Hausdorff Dimension of the Julia Set of Polynomials of the Form zd + c." Scholarship @ Claremont, 2003. https://scholarship.claremont.edu/hmc_theses/148.
Повний текст джерелаBen, Nasr Fathi. "Étude de mesures aléatoires et calculs de dimensions de Hausdorff." Paris 11, 1986. http://www.theses.fr/1986PA112141.
Повний текст джерелаThis thesis is divided into two parts. The first one deals with the determination of the Hausdorff dimension of some planar sets of which the natural coverings are made of rectangles which become thinner and thinner as their diameter tends to zero. But we know that measures and Hausdorff dimension are defined by the mean of cave rings by balls. So the problem to pass from economical coverings by rectangles to economical coverings by balls is posed. The sets we are studying are defined by properties of the expansions in two different bases of the coordinates of their points. In certain cases we determine the Hausdorff dimension of these sets, which in ether cases we only obtain lower and upper bounds for it. This study sterns results by Eggleston which we generalize. We also determine the dimension of sets obtained by Cantor like constructions, generalizing and improving results by Peyrière. In the second part we define and study a modification of a model of turbulence due to B. Mandelbrot and studied by J. P. Kahane and J. Peyrière: a random measure is defined by an infinite product of random functions. We give a necessary and sufficient condition of non-degeneracy of this process. We also determine under what conditions within moments are finite and get the minimum dimension of sets which carry a part of this measure
Santos, Filipe André Paulino. "Análise da difusão através de métodos probabilísticos e dimensão de Hausdorff." Master's thesis, Instituto Superior de Economia e Gestão, 2012. http://hdl.handle.net/10400.5/10848.
Повний текст джерелаA presente tese consiste numa exposição teórica da relação entre os processos de difusão e os métodos probabilísticos que podem ser usados para os descrever. Centramos-nos em processos estocásticos de aplicabilidade em Finanças como o passeio aleatório para o caso discreto e o movimento browniano visto como o seu limite no caso contínuo. É feita a modelação do fenómeno do calor culminando na resolução ou verificação da equação do calor, intimamente ligada com a equação de Black-Scholes como patente na fórmula de Feynman-Kac. Na segunda metade é introduzida a geometria fractal, tendo como principal conceito a dimensão de Hausdorff. Esta dimensão é de extrema importância para o estudo das trajectórias do movimento browniano e de todos os outros os processos utilizados em Finanças que exibem o mesmo comportamento fractal. Além de todo um conjunto de ferramentas e técnicas para a análise de fractais, é feito o cálculo rigoroso da dimensão de Hausdorff do gráfico das trajectórias do movimento browniano. São ainda obtidos resultados sobre a diferenciabilidade por intervalos dessas mesmas trajectórias.
The present thesis is a theoretical exposition of the relation between the diffusion processes and the probabilistic methods that can be used to describe them. We focus in stochastic processes with applicability in Finance, like the random walk for the discrete case and the Brownian motion seen as his continuous time limit. Then we do the modelling of the heat phenomenon culminating in the resolution or verification of the heat equation which is deeply connected with the Black-Scholes equation as in the Feynman-Kac formula. On the second half we introduce the fractal geometry, having as main concept the Hausdorff dimension. This is of great importance for the study of Brownian motion trajectories and all other processes used in Finance presenting the same fractal behaviour. Besides the introduction of a whole set of tools and techniques for fractal analysis, we do the rigorous Hausdorff dimension computation for the Brownian motion trajectories. Moreover, we obtain results about the differentiability by intervals for these same trajectories.
Roueff, François. "Dimension de Hausdorff du graphe d'une fonction continue : une étude analytique et statistique." Paris, ENST, 2000. http://www.theses.fr/2000ENST0032.
Повний текст джерелаRoueff, François. "Dimension de Hausdorff du graphe d'une fonction continue : une étude analytique et statistique /." Paris : École nationale supérieure des télécommunications, 2001. http://catalogue.bnf.fr/ark:/12148/cb37629396n.
Повний текст джерелаAttia, Najmeddine. "Comportement asymptotique de marches aléatoires de branchement dans Rd et dimension de Hausdorff." Paris 13, 2012. http://scbd-sto.univ-paris13.fr/intranet/edgalilee_th_2012_attia.pdf.
Повний текст джерелаWe compute almost surely (simultaneaously) the Hausdorff dimensions of the sets of infinite branches of the boundary of a super-critical Galton-Watson tree (endowed with a random metric)along which the averages of a vector valued branching random walk have a given set of limit points. This goes beyond multifractal analysis, for which we complete the previous works on the subject by considering the sets associated with levels in the boundary of the domain of study. Our method is inspired by some approach used to solve similar questions in the different context of hyperbolic dynamics for the Birkhoff averages of continuous potentials. It also exploits ideas from multiplicative chaos and percolation theories, which are used to estimate the lower Hausdorff dimension of a family of inhomogeneous Mandelbrot measures. This method also makes it possible to strengthen the multifractal analysis of the branching random walk averages by refining the level sets so that they contain branches over which a quantified version of the Erdös Renyi law of large numbers holds, and yields a 0-∞ law for the Hausdorff measures of these sets. Our results naturally give geometric and large deviations information on the heterogeneity of the birth process along different infinite branches of the Galton-Watson tree
Gauthier, Thomas. "Dimension de Hausdorff de lieux de bifurcations maximales en dynamique des fractions rationnelles." Phd thesis, Université Paul Sabatier - Toulouse III, 2011. http://tel.archives-ouvertes.fr/tel-00646407.
Повний текст джерелаGauthier, Thomas. "Dimension de Hausdorff de lieux de bifurcations maximales en dynamique des fractions rationnelles." Phd thesis, Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1477/.
Повний текст джерелаIn the moduli space Md of degree d rational maps, the bifurcation locus is the support of a closed (1, 1) positive current Tbif called bifurcation current. This current gives rise to a measure µbif := (Tbif)2d-2 whose support is the seat of strong bifurcations. Our main result says that supp(µbif)has maximal Hausdor. Dimension 2(2d-2). It follows that the set of degree d rational maps having 2d-2distinct neutral cycles is dense in a set of full Hausdor. Dimension. Note that previously, only the existence of such rational maps (Shishikura) was known. Let us mention that for our proof, we. Rst establish that the (2d - 2)-Misiurewicz rational maps belong to the support of µbif. The last chapter, which is independent of the rest of the thesis, deals with the space M2. We prove that, in this case, the current Tbif naturally extends to a (1, 1)-closed positive current on P2 which we calculate the Lelong numbers. We also show that the support of µbif is unbounded in M2
Franz, Astrid. "Abschätzungen der Hausdorff-Dimension invarianter Mengen dynamischer Systeme auf Mannigfaltigkeiten unter besonderer Berücksichtigung nicht invertierbarer Abbildungen." [S.l. : s.n.], 1999. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10324702.
Повний текст джерелаKiefer, Richard. "Multiple points on the Brownian frontier." Berlin mbv, 2009. http://d-nb.info/993935737/04.
Повний текст джерелаSnigireva, Nina. "Inhomogeneous self-similar sets and measures." Thesis, St Andrews, 2008. http://hdl.handle.net/10023/X682.
Повний текст джерелаLuu, Tien Duc. "Régularité des cônes et d’ensembles minimaux de dimension 3 dans R4." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112301/document.
Повний текст джерелаIn this thesis we study the problems of regularity of three-dimensional minimal cones and sets in l'espace Euclidien de dimension 4In the first part we study the Hölder regularity for minimal cones of dimension 3 in l'espace Euclidien de dimension 4. Then we use this for showing that there exists a local diffeomorphic mapping between a minimal cone of dimension 3 and a minimal cone of dimension 3 of type P, Y or T, away from the origin. The techniques used here are the same as the ones for the regularity of two-dimensional minimal sets. We construct some competitors to reduce to the known situation of two-dimensional minimal sets in l'espace Euclidien de dimension 3.In the second part, we use the first part to give somme results of the Hölder regularity for three-dimensional minimal sets in l'espace Euclidien de dimension 4. We interested also in Mumford-Shah minimal sets and we get a result of the existence of a T-point
Akman, Murat. "On the Dimension of a Certain Measure Arising from a Quasilinear Elliptic Partial Differential Equation." UKnowledge, 2014. http://uknowledge.uky.edu/math_etds/12.
Повний текст джерелаFraser, Jonathan M. "Dimension theory and fractal constructions based on self-affine carpets." Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3869.
Повний текст джерелаFranz, Astrid. "Abschätzungen der Hausdorff-Dimension invarianter Mengen dynamischer Systeme auf Mannigfaltigkeiten unter besonderer Berücksichtigung nicht invertierbarer Abbildungen." Doctoral thesis, Universitätsbibliothek Chemnitz, 1999. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199900135.
Повний текст джерелаAttia, Najmeddine. "Comportement asymptotique de marches aléatoires de branchement dans $\mathbb{R}^d$ et dimension de Hausdorff." Phd thesis, Université Paris-Nord - Paris XIII, 2012. http://tel.archives-ouvertes.fr/tel-00841496.
Повний текст джерелаMegeney, Alison Claire Verne. "The Besicovitch-Hausdorff dimension of the residual set of packings of convex bodies in R'n." Thesis, University College London (University of London), 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.392996.
Повний текст джерелаHassan, S. A. "Bounds for the Hausdorff dimension of exceptional sets arising in the theory of Diophantine approximation." Thesis, University of York, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234934.
Повний текст джерелаDickinson, Henrietta. "The Hausdorff dimension of some exceptional sets arising in the theory of metric Diophantine approximation." Thesis, University of York, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317873.
Повний текст джерелаFarkas, Ábel. "Dimension and measure theory of self-similar structures with no separation condition." Thesis, University of St Andrews, 2015. http://hdl.handle.net/10023/7854.
Повний текст джерелаHiggens, Thomas. "Classicalness and the Hausdorff dimension of limit sets of divergent sequences of genus two Schottky groups." Thesis, University of Southampton, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432718.
Повний текст джерелаMielke, Jöran [Verfasser], Ludwig [Akademischer Betreuer] Staiger та Vasco [Akademischer Betreuer] Brattka. "Verfeinerung der Hausdorff-Dimension und Komplexität von ω-Sprachen / Jöran Mielke. Betreuer: Ludwig Staiger ; Vasco Brattka". Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2010. http://d-nb.info/1024976246/34.
Повний текст джерелаLiberato, Serginei José do Carmo. "Algumas Propriedades Geométricas do Conjunto de Julia." Universidade Federal de Viçosa, 2014. http://locus.ufv.br/handle/123456789/4928.
Повний текст джерелаCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
In this work we study some geometric properties of Julia sets and filled-in Julia sets of polynomials. In addition, we seek a form of measure the Julia set, for this we use the Hausdorff measure and determine a lower bound to the Hausdorff dimension of the Julia set.
Neste trabalho estudamos algumas propriedades geométricas do Conjunto de Julia e do e Conjunto de Julia Cheio. Além disso, procuramos uma forma de mensurar o conjunto de Julia, para isso utilizamos a medida de Hausdorff e determinamos uma cota inferior para a dimensão de Hausdorff do conjunto de Julia.