Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Dipole trapping.

Статті в журналах з теми "Dipole trapping"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Dipole trapping".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Al-Marzoug, S. M. "Scattering of a discrete soliton by impurity in dipolar Bose–Einstein condensates." International Journal of Modern Physics B 28, no. 30 (2014): 1450214. http://dx.doi.org/10.1142/s0217979214502142.

Повний текст джерела
Анотація:
Scattering of a discrete soliton by a single impurity in dipolar Bose–Einstein condensate is investigated numerically. The results show that the increase of the strength of dipolar interactions leads to repeated reflection, transmission and trapping regions due to energy exchange between the center of mass motion and the internal modes of the impurity. However, increasing the strength of the attractive nonlocal dipole–dipole interaction will result in different scattering windows. While the dipole–dipole interaction can significantly expand the trapping region of the system, nevertheless trans
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Webster, S. A., G. Hechenblaikner, S. A. Hopkins, J. Arlt, and C. J. Foot. "Dipole force trapping of caesium atoms." Journal of Physics B: Atomic, Molecular and Optical Physics 33, no. 19 (2000): 4149–55. http://dx.doi.org/10.1088/0953-4075/33/19/323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Williams, J. F., J. B. Wang, and C. J. Carter. "A Monte Carlo Study of Radiation Trapping Effects." Australian Journal of Physics 50, no. 3 (1997): 645. http://dx.doi.org/10.1071/p96099.

Повний текст джерела
Анотація:
A Monte Carlo simulation of radiative transfer in an atomic beam is carried out to investigate the effects of radiation trapping on electron–atom collision experiments. The collisionally excited atom is represented by a simple electric dipole, for which the emission intensity distribution is well known. The spatial distribution, frequency and free path of this and the sequential dipoles were determined by a computer random generator according to the probabilities given by quantum theory. By altering the atomic number density at the target site, the pressure dependence of the observed atomic li
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sripakdee, Chatchawal. "The Investigation of WGM Effective Potential from Micro PANDA Ring Resonator." Applied Mechanics and Materials 866 (June 2017): 337–40. http://dx.doi.org/10.4028/www.scientific.net/amm.866.337.

Повний текст джерела
Анотація:
In this work, the whispering gallery mode effective potential generated by micro PANDA ring resonator for a two level system of atom – electric field coupling is investigated and presented. The depth of trapping potential is proportional to electric intensity and damping rate of transition of dipole polarization. The trial harmonics potential well is established by using dipole potential under ac Stark effect. The optimum intensity and lifetime for each WGM trapping wavelengths under the effect of thermal noise is reported.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

UTAMA, Satriya, Deddy El AMIN, M. Arif SAIFUDIN, et al. "Magnetic Shielding Implementation in the Small Satellite Reaction Wheel." INCAS BULLETIN 16, no. 1 (2024): 107–16. http://dx.doi.org/10.13111/2066-8201.2024.16.1.11.

Повний текст джерела
Анотація:
Low Earth orbit satellites face challenges from Earth's magnetic field, causing attitude disturbances. Attaining a magnetic-dipole-free satellite is crucial. Layout optimization and in-orbit dipole compensation are common methods, but layout optimization can be impractical. In contrast, in-orbit dipole compensation struggles with rapidly changing magnetic dipoles like those from reaction wheel motors. This research proposes an alternative solution using Mu-metal, known for shielding against magnetic exposure. This shield can be applied to trap the magnetic field generated by the motors. Ground
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hu, Fang-Qi, and Ju-Kui Xue. "Breathing dynamics of a trapped impurity in a dipolar Bose gas." Modern Physics Letters B 28, no. 22 (2014): 1450185. http://dx.doi.org/10.1142/s0217984914501851.

Повний текст джерела
Анотація:
With the consideration of impurity-bosons coupling and dipole–dipole interactions (DDI), we study the breathing dynamics of a harmonically trapped impurity interacting with a separately trapped background of dipolar Bose gas. By using the variational approach, the breathing equations, the breathing frequencies and the effective potentials governing the breathing dynamics of the impurity in dipolar gas are obtained. The effects of DDI, impurity-bosons interaction and external trapping potentials on breathing dynamics of impurity are discussed. We find that, because of the anisotropic and long-r
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Goldstein, E., P. Pax, K. J. Schernthanner, B. Taylor, and P. Meystre. "Influence of the dipole-dipole interaction on velocity-selective coherent population trapping." Applied Physics B Laser and Optics 60, no. 2-3 (1995): 161–67. http://dx.doi.org/10.1007/bf01135858.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

DAVYDOVA, T. A., and V. M. LASHKIN. "Drift-wave trapping by drift vortices." Journal of Plasma Physics 58, no. 1 (1997): 11–18. http://dx.doi.org/10.1017/s002237789700562x.

Повний текст джерела
Анотація:
The possibility for a drift dipole vortex to trap free drift waves is demonstrated. Drift perturbations can be trapped near the centre of the vortex or at its sides. The localization domain and eigenfrequencies of trapped modes are obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lee, Jong-Hoon, Junghwan Kim, Geunjin Kim, et al. "Introducing paired electric dipole layers for efficient and reproducible perovskite solar cells." Energy & Environmental Science 11, no. 7 (2018): 1742–51. http://dx.doi.org/10.1039/c8ee00162f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yang, Yonghao, Zhigang Li, Chunhui Wu, et al. "Nanostructured interfacial dipole layers for high-performance and highly stable nonvolatile organic field-effect transistor memory." Journal of Materials Chemistry C 10, no. 9 (2022): 3292–99. http://dx.doi.org/10.1039/d1tc05927k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Dubau-Assibat, Nathalie, Antoine Baceiredo, and Guy Bertrand. "Lawesson's Reagent: An Efficient 1,3-Dipole Trapping Agent." Journal of Organic Chemistry 60, no. 12 (1995): 3904–6. http://dx.doi.org/10.1021/jo00117a050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Aldossary, O. M. "Bottle atom trapping configuration by optical dipole forces." Journal of King Saud University - Science 26, no. 1 (2014): 29–35. http://dx.doi.org/10.1016/j.jksus.2013.08.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Mei, D. M., R. Panth, K. Kooi, et al. "Evidence of cluster dipole states in germanium detectors operating at temperatures below 10 K." AIP Advances 12, no. 6 (2022): 065113. http://dx.doi.org/10.1063/5.0094194.

Повний текст джерела
Анотація:
By studying charge trapping in germanium detectors operating at temperatures below 10 K, we demonstrate for the first time that the formation of cluster dipole states from residual impurities is responsible for charge trapping. Two planar detectors with different impurity levels and types are used in this study. When drifting the localized charge carriers created by α particles from the top surface across a detector at a lower bias voltage, significant charge trapping is observed when compared to operating at a higher bias voltage. The amount of charge trapping shows a strong dependence on the
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Liu, Bing Hui, Li Jun Yan, and Yang Wang. "Calculation of Maxwell Stress Tensor Using 3D FDTD for Trapping Force in Near-Field Optical Tweezers." Materials Science Forum 697-698 (September 2011): 590–95. http://dx.doi.org/10.4028/www.scientific.net/msf.697-698.590.

Повний текст джерела
Анотація:
New forms of trapping force are proposed for the design of near-field optical tweezers. Without the limitation of dipole approximation, the trapping force acting on a nano-particle located in near-field region can be solved by direct calculation of Maxwell stress tensor using 3D FDTD method. The new forms are used to design near-field optical trapping with a metal-coated fiber probe. Calculations show that the fiber probe can trap a nano-particle with tens of nanometres diameter to different positions with different distance from the probe tip. In order to achieve higher trapping capability, t
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Maron, Gabriele, Xinxin Hu, Luke Masters, et al. "Trapping a single atom in the evanescent field of a WGM-resonator." EPJ Web of Conferences 266 (2022): 11007. http://dx.doi.org/10.1051/epjconf/202226611007.

Повний текст джерела
Анотація:
We demonstrate the trapping of single atoms in the evanescent field of a whispering-gallery-mode (WGM) resonator with a standing wave optical dipole trap. We present our progress towards an improved trap loading scheme.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Rancourt, D. G., G. Lamarche, P. Tume, A. E. Lalonde, P. Biensan, and S. Flandrois. "Dipole–dipole interactions as the source of spin-glass behaviour in exchangewise two-dimensional ferromagnetic layer compounds." Canadian Journal of Physics 68, no. 10 (1990): 1134–37. http://dx.doi.org/10.1139/p90-160.

Повний текст джерела
Анотація:
We have studied magnetic layered materials that have in-plane ferromagnetic exchange interactions, and dipole–dipole only interplane interactions. These are biotite mica (including a nearly ideal annite end member) and new graphite bi-intercalation compounds that contain regularly stacked arrays of ferromagnetic and diamagnetic intercalates. All these strictly (exchangewise) two-dimensional materials exhibit hysteretic spin-glass magnetization cusps at temperatures up to 42 K. This proves that, in the presence of ferromagnetic correlations, classical dipole–dipole forces can play an important
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Beck, Fiona J., Sudha Mokkapati, and Kylie R. Catchpole. "Light trapping with plasmonic particles: beyond the dipole model." Optics Express 19, no. 25 (2011): 25230. http://dx.doi.org/10.1364/oe.19.025230.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Dil, H., J. Lobo-Checa, R. Laskowski, et al. "Surface Trapping of Atoms and Molecules with Dipole Rings." Science 319, no. 5871 (2008): 1824–26. http://dx.doi.org/10.1126/science.1154179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Ibrahim, Siti Noorjannah, and Maan M. Alkaisi. "Microelectrode Design for Particle Trapping on Bioanalysis Platform." Advanced Materials Research 1115 (July 2015): 543–48. http://dx.doi.org/10.4028/www.scientific.net/amr.1115.543.

Повний текст джерела
Анотація:
Microelectrode geometry has significant influence on particles trapping techniques used on bioanalysis platforms. In this paper, the particle trapping patterns of dipole, quadrupole and octupole microelectrode using dielectrophoretic force (DEP) are discussed. The microelectrodes were constructed on a metal-insulator-metal platform, built on a silicon nitride (Si3N4) coated silicon substrate. The back contact is made from 20 nm nickel-chromium (NiCr) and 100 nm gold (Au) as the first layer. Then, SU-8-2005 (negative photoresist) is used on the second layer to create microcavities for trapping
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Guo, Jingkun, Zijin Lei, Fan Wang, Jingjing Xu, and Shengyong Xu. "Some Energy Issues for a Nanoscale Electrostatic Potential Well in Saline Solutions." Chemosensors 8, no. 3 (2020): 50. http://dx.doi.org/10.3390/chemosensors8030050.

Повний текст джерела
Анотація:
An electrostatic potential well may be applied to trap and manipulate charged micro- and nanoparticles. An electrostatic potential well obtained from a certain charge distribution may be used to mimic the electrostatic interactions among biomolecules in live biosystems. In this study, we present a simulation study on the trapping performance of dipole clusters, which are arranged in 10 nm-sized, pentagon-shaped structures in a saline solution. The influence of electrostatic energy, entropy, and van der Waals interaction on the trapping performance of these nanostructures is then systematically
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Lavrukhin, Alexander S., Igor I. Alexeev, and Ilya V. Tyutin. "Influence of the Earth's ring current strength on Størmer's allowed and forbidden regions of charged particle motion." Annales Geophysicae 37, no. 4 (2019): 535–47. http://dx.doi.org/10.5194/angeo-37-535-2019.

Повний текст джерела
Анотація:
Abstract. Størmer's particles' trapping regions for a planet with an intrinsic dipolar magnetic field are considered, taking into account the ring current which arises due to the trapped particles' drift for the case of the Earth. The influence of the ring current on the particle trapping regions' topology is investigated. It is shown that a critical strength of the ring current exists under which further expansion of the trapping region is no longer possible. Before reaching this limit, the dipole field, although deformed, retains two separated Størmer regions. After transition of critical ma
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Hotter, Christoph, David Plankensteiner, Laurin Ostermann, and Helmut Ritsch. "Superradiant cooling, trapping, and lasing of dipole-interacting clock atoms." Optics Express 27, no. 22 (2019): 31193. http://dx.doi.org/10.1364/oe.27.031193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Beaufils, Q., R. Chicireanu, A. Pouderous, et al. "Trapping metastable chromium atoms in a crossed optical dipole trap." Annales de Physique 32, no. 2-3 (2007): 171–73. http://dx.doi.org/10.1051/anphys:2008035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Lovera, Andrea, and Olivier J. F. Martin. "Plasmonic trapping with realistic dipole nanoantennas: Analysis of the detection limit." Applied Physics Letters 99, no. 15 (2011): 151104. http://dx.doi.org/10.1063/1.3650267.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Zhang, Weihua, Lina Huang, Christian Santschi, and Olivier J. F. Martin. "Trapping and Sensing 10 nm Metal Nanoparticles Using Plasmonic Dipole Antennas." Nano Letters 10, no. 3 (2010): 1006–11. http://dx.doi.org/10.1021/nl904168f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Vinogradov, V. A., K. A. Karpov, S. S. Lukashov, and A. V. Turlapov. "Trapping of lithium atoms in a large hollow optical dipole trap." Quantum Electronics 50, no. 6 (2020): 520–24. http://dx.doi.org/10.1070/qel17362.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Zabolotskiı̆, A. A. "Exciton Self-Trapping in Molecular Media with an Elastic Dipole Moment." Optics and Spectroscopy 99, no. 5 (2005): 695. http://dx.doi.org/10.1134/1.2135844.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Nakamura, K., S. Nagase, T. Nakashita, et al. "Development of a Laser Frequency Stabilization and an Optical Transmission System for the Francium Electric Dipole Moment Search." Journal of Physics: Conference Series 2249, no. 1 (2022): 012010. http://dx.doi.org/10.1088/1742-6596/2249/1/012010.

Повний текст джерела
Анотація:
Abstract We developed a laser frequency stabilization and an optical fiber transmission system for the the francium electric dipole moment search. The absolute accuracy of a laser frequency stabilization scheme using a state-of-the-art commercial wavelength meter was 0.48 MHz at ±2 nm and -1.33 MHz at ±200 nm from calibration wavelength, respectively, and the frequency instability is below 10-9 with a standard deviation of 0.56 MHz over 60 hours. We also demonstrated that a 400 m long fiber laid between laboratories can transmit 30 mW of trapping laser light, which is sufficient for a magneto-
Стилі APA, Harvard, Vancouver, ISO та ін.
29

OLDHAM, TIMOTHY R. "SWITCHING OXIDE TRAPS." International Journal of High Speed Electronics and Systems 14, no. 02 (2004): 581–603. http://dx.doi.org/10.1142/s0129156404002533.

Повний текст джерела
Анотація:
Positive oxide trapped charge is one of the main factors determining the radiation response of a CMOS device. The most widely accepted model for oxide-trapped charge is the dipole model, originally proposed by Lelis et al. The annealing of radiation-induced positive trapped charge proceeds (usually) via the tunneling of electrons, which form metastable dipoles, compensating the trapped positive charge without removing it. Under appropriate bias, these compensating electrons can tunnel back to the Si substrate, restoring the trapped positive charge. The experimental work leading to the developm
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Wang, Yu-Fu, Min-Ruei Tsai, Po-Yang Wang, et al. "Controlling carrier trapping and relaxation with a dipole field in an organic field-effect device." RSC Advances 6, no. 81 (2016): 77735–44. http://dx.doi.org/10.1039/c6ra09676j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Khan, Noor Saeed, Auwalu Hamisu Usman, Arif Sohail, et al. "A Framework for the Magnetic Dipole Effect on the Thixotropic Nanofluid Flow Past a Continuous Curved Stretched Surface." Crystals 11, no. 6 (2021): 645. http://dx.doi.org/10.3390/cryst11060645.

Повний текст джерела
Анотація:
The magnetic dipole effect for thixotropic nanofluid with heat and mass transfer, as well as microorganism concentration past a curved stretching surface, is discussed. The flow is in a porous medium, which describes the Darcy–Forchheimer model. Through similarity transformations, the governing equations of the problem are transformed into non-linear ordinary differential equations, which are then processed using an efficient and powerful method known as the homotopy analysis method. All the embedded parameters are considered when analyzing the problem through solution. The dipole and porosity
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Singh, Sukhjit, Jyoti, Bindiya Arora, B. K. Sahoo, and Yan-mei Yu. "Magic Wavelengths for Optical-Lattice Based Cs and Rb Active Clocks." Atoms 8, no. 4 (2020): 79. http://dx.doi.org/10.3390/atoms8040079.

Повний текст джерела
Анотація:
Active clocks could provide better stabilities during initial stages of measurements over passive clocks, in which stabilities become saturated only after long-term measurements. This unique feature of an active clock has led to search for suitable candidates to construct such clocks. The other challenging task of an atomic clock is to reduce its possible systematics. A major part of the optical lattice atomic clocks based on neutral atoms are reduced by trapping atoms at the magic wavelengths of the optical lattice lasers. Keeping this in mind, we find the magic wavelengths between all possib
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Karpa, Leon. "Interactions of Ions and Ultracold Neutral Atom Ensembles in Composite Optical Dipole Traps: Developments and Perspectives." Atoms 9, no. 3 (2021): 39. http://dx.doi.org/10.3390/atoms9030039.

Повний текст джерела
Анотація:
Ion–atom interactions are a comparatively recent field of research that has drawn considerable attention due to its applications in areas including quantum chemistry and quantum simulations. In first experiments, atomic ions and neutral atoms have been successfully overlapped by devising hybrid apparatuses combining established trapping methods, Paul traps for ions and optical or magneto-optical traps for neutral atoms, respectively. Since then, the field has seen considerable progress, but the inherent presence of radiofrequency (rf) fields in such hybrid traps was found to have a limiting im
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Peng, Jin-sheng, and Gao-xiang Li. "Effects of the dipole-dipole interaction on dynamic properties and atomic coherent trapping of a two-atom system." Physical Review A 47, no. 5 (1993): 4212–18. http://dx.doi.org/10.1103/physreva.47.4212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Bromley, Benjamin C., and Scott J. Kenyon. "Magnetic Interactions in Orbital Dynamics." Astronomical Journal 164, no. 6 (2022): 229. http://dx.doi.org/10.3847/1538-3881/ac9301.

Повний текст джерела
Анотація:
Abstract The magnetic field of a host star can impact the orbit of a stellar partner, planet, or asteroid if the orbiting body is itself magnetic or electrically conducting. Here, we focus on the instantaneous magnetic forces on an orbiting body in the limit where the dipole approximation describes its magnetic properties as well as those of its stellar host. A permanent magnet in orbit about a star will be inexorably drawn toward the stellar host if the magnetic force is comparable to gravity due to the steep radial dependence of the dipole–dipole interaction. While magnetic fields in observe
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Zheng, Ningxuan, Wenliang Liu, Jizhou Wu, Yuqing Li, Vladimir Sovkov, and Jie Ma. "Parametric Excitation of Ultracold Sodium Atoms in an Optical Dipole Trap." Photonics 9, no. 7 (2022): 442. http://dx.doi.org/10.3390/photonics9070442.

Повний текст джерела
Анотація:
Parametric modulation is an effective tool to measure the trap frequency and investigate the atom dynamics in an optical dipole trap or lattices. Herein, we report on experimental research of parametric resonances in an optical dipole trap. By modulating the trapping potential, we have measured the atomic loss dependence on the frequency of the parametric modulations. The resonance loss spectra and the evolution of atom populations at the resonant frequency have been demonstrated and compared under three modulation waveforms (sine, triangle and square waves). A phenomenological theoretical sim
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Yannopapas, Vassilios, and Emmanuel Paspalakis. "Anisotropic Purcell Effect and Quantum Interference in Fractal Aggregates of Nanoparticles." Photonics 10, no. 8 (2023): 898. http://dx.doi.org/10.3390/photonics10080898.

Повний текст джерела
Анотація:
We study theoretically the emergence of an anisotropic Purcell factor in random two-dimensional fractal aggregates of nanoparticles. These nanoparticles can either be metallic nanoparticles made of silver, which exhibit surface plasmon resonances, or high-index dielectric nanoparticles like silicon, which possess optical Mie resonances. To calculate the spontaneous emission rates of a quantum emitter, we utilize the electromagnetic Green’s tensor within the framework of the coupled-dipole method. Our findings reveal that the Purcell factor exhibits spatial variations, with certain regions, ref
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Bai, Jian-Dong, Shuo Liu, Wen-Yuan Liu, Qi Jie, and Jun-Min Wang. "Theoretical analysis of polarization-angle -dependent magic-wavelength optical dipole trap of cesium atoms." Acta Physica Sinica 72, no. 6 (2023): 063102. http://dx.doi.org/10.7498/aps.72.20222268.

Повний текст джерела
Анотація:
Laser cooling and trapping of neutral atoms is of great significance for studying the physical and chemical properties of atoms. To further realize the spatial localization of atoms, optical dipole trap (ODT) was proposed to manipulate individual atoms, ions or molecules and has become an increasingly important technique in the field of cold atomic physics and quantum optics. To eliminate the differential light shift of transitions between atomic states, ODT can be turned off during excitation/radiation. However, it will shorten the trap lifetime of the atom and reduce the repetition rate of t
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Sun, Chuang, and Jize Yan. "A hybrid method to calculate optical torque: Application to a nano-dumbbell trapped by a metalens." AIP Advances 12, no. 7 (2022): 075024. http://dx.doi.org/10.1063/5.0094665.

Повний текст джерела
Анотація:
The hyper-fast rotation frequency realized in an optical levitation system provides an essential platform for various applications. Benefiting from the development of integrated photonics, optically trapping and manipulating a micro-particle via a metalens has been a significant development trend. The metalens’ powerful and flexible controlling ability of the optical field opens the door to tailoring optical trapping potential. However, the existing methods are difficult to compute optical forces and torques on a non-spherical particle trapped by a metalens-based trapping system, especially wh
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Saakyan, S. A., V. A. Sautenkov, N. V. Morozov, A. A. Bobrov, and B. B. Zelener. "Increasing the trapping lifetime of lithium-7 atoms in optical dipole trap." Journal of Physics: Conference Series 1787, no. 1 (2021): 012046. http://dx.doi.org/10.1088/1742-6596/1787/1/012046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Li, Ai-Xian, Su-Qing Duan, and Wei Zhang. "Nuclear spin cooling by electric dipole spin resonance and coherent population trapping." Physica E: Low-dimensional Systems and Nanostructures 93 (September 2017): 105–10. http://dx.doi.org/10.1016/j.physe.2017.06.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Wang, Zheng Ling, Ming Zhou, Wei Zhang, Chuan Yu Gao, and Guo Rong Cao. "Nanoscale Trap for Isolated Cold Atoms by the Nanoscale Solid-State System." Advanced Materials Research 304 (July 2011): 263–67. http://dx.doi.org/10.4028/www.scientific.net/amr.304.263.

Повний текст джерела
Анотація:
We propose a novel scheme to generate nanoscale optical trap for cold atoms near the tapered Ag nanotip, in which we take a microdisk cavity near the nanoscale trap and form a nanoscale solid-state system to realize the loading of the isolated cold atoms. We calculate the field distribution by the FDTD method near the nanotip, and discuss the intensity, the optical potential and van der Waals potential as well as the dipole force for 87Rb atoms. We find that the total potential and dipole force can form an attracting nanoscale trap for cold atoms with red-detuned field and it can realize the e
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Gavriil, Vassilios, Margarita Chatzichristidi, Zoe Kollia, et al. "Photons Probe Entropic Potential Variation during Molecular Confinement in Nanocavities." Entropy 20, no. 8 (2018): 545. http://dx.doi.org/10.3390/e20080545.

Повний текст джерела
Анотація:
In thin polymeric layers, external molecular analytes may well be confined within tiny surface nano/microcavities, or they may be attached to ligand adhesion binding sites via electrical dipole forces. Even though molecular trapping is followed by a variation of the entropic potential, the experimental evidence of entropic energy variation from molecular confinement is scarce because tiny thermodynamic energy density diverseness can be tracked only by sub-nm surface strain. Here, it is shown that water confinement within photon-induced nanocavities in Poly (2-hydroxyethyl methacrylate), (PHEMA
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Lembessis, Vassilios E., and Demosthenes Ellinas. "Optical dipole trapping beyond the rotating wave approximation: the case of large detuning." Journal of Optics B: Quantum and Semiclassical Optics 7, no. 11 (2005): 319–22. http://dx.doi.org/10.1088/1464-4266/7/11/002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Nikolaev, I. N., L. N. Kalinina, and A. V. Litvinov. "A new type of trapping center for molecules with dipole moments in insulators." Physics of the Solid State 51, no. 6 (2009): 1124–27. http://dx.doi.org/10.1134/s1063783409060067.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

KEVREKIDIS, P. G., R. CARRETERO-GONZÁLEZ, D. J. FRANTZESKAKIS, and I. G. KEVREKIDIS. "VORTICES IN BOSE–EINSTEIN CONDENSATES: SOME RECENT DEVELOPMENTS." Modern Physics Letters B 18, no. 30 (2004): 1481–505. http://dx.doi.org/10.1142/s0217984904007967.

Повний текст джерела
Анотація:
In this brief review we summarize a number of recent developments in the study of vortices in Bose–Einstein condensates, a topic of considerable theoretical and experimental interest in the past few years. We examine the generation of vortices by means of phase imprinting, as well as via dynamical instabilities. Their stability is subsequently examined in the presence of purely magnetic trapping, and in the combined presence of magnetic and optical trapping. We then study pairs of vortices and their interactions, illustrating a reduced description in terms of ordinary differential equations fo
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Semerak, Steven N., and Curtis W. Frank. "Energy migration in the aromatic vinyl polymers. 5. Poly(2-vinyl naphthalene) and polystyrene." Canadian Journal of Chemistry 63, no. 6 (1985): 1328–32. http://dx.doi.org/10.1139/v85-225.

Повний текст джерела
Анотація:
Electronic energy migration in pure poly(2-vinyl naphthalene) (P2VN) is analyzed in terms of a theory for three-dimensional transport and trapping in a homogeneous system of randomly distributed chromophores. A simpler theory for 3-D transport on a spatially periodic lattice, which was applied previously to polystyrene (PS) gave self-contradictory results for P2VN because of higher transport rates in P2VN. The fraction of rings in excimer-forming sites (EFS) in pure P2VN, analyzed by the former theory, is found to be 0.072 – moderately larger than the single-chain fraction of 0.026. In contras
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Neagu, Eugen R., M. Carmo Lança, and José N. Marat-Mendes. "New Experimental Facts Concerning the Thermally Stimulated Discharge Current in Dielectric Materials." Materials Science Forum 587-588 (June 2008): 328–32. http://dx.doi.org/10.4028/www.scientific.net/msf.587-588.328.

Повний текст джерела
Анотація:
The thermally stimulated discharge current (TSDC) method is a very sensitive and a very selective technique to analyze dipole disorientation and the movement of de-trapped space charge (SC). We have proposed a variant of the TSDC method, namely the final thermally stimulated discharge current (FTSDC) technique. The experimental conditions can be selected so that the FTSDC is mainly determined by the SC de-trapping. The temperatures of the maximum intensity of the fractional polarization peaks obtained at low temperature, in the range of the local (secondary) relaxation, are in general about 10
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Smith, Joseph C., Seth T. Rittenhouse, Ryan M. Wilson, and Brandon M. Peden. "Bogoliubov theory of a Bose–Einstein condensate of rigid rotor molecules." Journal of Physics B: Atomic, Molecular and Optical Physics 54, no. 20 (2021): 205302. http://dx.doi.org/10.1088/1361-6455/ac34dd.

Повний текст джерела
Анотація:
Abstract We consider a BEC of rigid rotor molecules confined to quasi-2D through harmonic trapping. The molecules are subjected to an external electric field which polarizes the gas, and the molecules interact via dipole–dipole interactions. We present a description of the ground state and low-energy excitations of the system including an analysis of the mean-field energy, polarization, and stability. Under large electric fields the gas becomes fully polarized and we reproduce a well known density-wave instability which arises in polar BECs. Under smaller applied electric fields the gas develo
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Zhang, Zihan. "Rydberg Atoms and Strongly Coupled Atom-Light Systems." Transactions on Computer Science and Intelligent Systems Research 7 (November 25, 2024): 457–61. https://doi.org/10.62051/pyavcn73.

Повний текст джерела
Анотація:
Since the discovery of the Rydberg atom in 1885, research on the Rydberg atom has presented numerous discoveries about the Rydberg atom. As the atoms has valence electron in a high principal quantum number state, Rydberg atoms can interact with each other in a unique way, such as dipole-dipole interactions, Rydberg blockade and anti-blockade. To reach the Rydberg state, it is usually necessary to use a laser to excite the atoms from their ground state. Due to the special characteristics about Rydberg atoms as well as their interactions, it has demonstrated promising of application in different
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!