Добірка наукової літератури з теми "Directed Energy Deposition Additive Manufacturing"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Directed Energy Deposition Additive Manufacturing".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Directed Energy Deposition Additive Manufacturing":

1

Böß, Volker, Berend Denkena, Marc-André Dittrich, Talash Malek, and Sven Friebe. "Dexel-Based Simulation of Directed Energy Deposition Additive Manufacturing." Journal of Manufacturing and Materials Processing 5, no. 1 (January 11, 2021): 9. http://dx.doi.org/10.3390/jmmp5010009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Additive manufacturing is typically a flexible alternative to conventional manufacturing processes. However, manufacturing costs increase due to the effort required to experimentally determine optimum process parameters for customized products or small batches. Therefore, simulation models are needed in order to reduce the amount of effort necessary for experimental testing. For this purpose, a novel technological simulation method for directed energy deposition additive manufacturing is presented here. The Dexel-based simulation allows modeling of additive manufacturing of varying geometric shapes by considering multi-axis machine tool kinematics and local process conditions. The simulation approach can be combined with the simulation of subtractive processes, which enables integrated digital process chains.
2

Böß, Volker, Berend Denkena, Marc-André Dittrich, Talash Malek, and Sven Friebe. "Dexel-Based Simulation of Directed Energy Deposition Additive Manufacturing." Journal of Manufacturing and Materials Processing 5, no. 1 (January 11, 2021): 9. http://dx.doi.org/10.3390/jmmp5010009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Additive manufacturing is typically a flexible alternative to conventional manufacturing processes. However, manufacturing costs increase due to the effort required to experimentally determine optimum process parameters for customized products or small batches. Therefore, simulation models are needed in order to reduce the amount of effort necessary for experimental testing. For this purpose, a novel technological simulation method for directed energy deposition additive manufacturing is presented here. The Dexel-based simulation allows modeling of additive manufacturing of varying geometric shapes by considering multi-axis machine tool kinematics and local process conditions. The simulation approach can be combined with the simulation of subtractive processes, which enables integrated digital process chains.
3

Chen, Y., S. Clark, A. C. L. Leung, L. Sinclair, S. Marussi, R. Atwood, T. Connoley, M. Jones, G. Baxter, and P. D. Lee. "Melt pool morphology in directed energy deposition additive manufacturing process." IOP Conference Series: Materials Science and Engineering 861 (June 13, 2020): 012012. http://dx.doi.org/10.1088/1757-899x/861/1/012012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Saboori, Abdollah, Alberta Aversa, Giulio Marchese, Sara Biamino, Mariangela Lombardi, and Paolo Fino. "Application of Directed Energy Deposition-Based Additive Manufacturing in Repair." Applied Sciences 9, no. 16 (August 13, 2019): 3316. http://dx.doi.org/10.3390/app9163316.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the circular economy, products, components, and materials are aimed to be kept at the utility and value all the lifetime. For this purpose, repair and remanufacturing are highly considered as proper techniques to return the value of the product during its life. Directed Energy Deposition (DED) is a very flexible type of additive manufacturing (AM), and among the AM techniques, it is most suitable for repairing and remanufacturing automotive and aerospace components. Its application allows damaged component to be repaired, and material lost in service to be replaced to restore the part to its original shape. In the past, tungsten inert gas welding was used as the main repair method. However, its heat affected zone is larger, and the quality is inferior. In comparison with the conventional welding processes, repair via DED has more advantages, including lower heat input, warpage and distortion, higher cooling rate, lower dilution rate, excellent metallurgical bonding between the deposited layers, high precision, and suitability for full automation. Hence, the proposed repairing method based on DED appears to be a capable method of repairing. Therefore, the focus of this study was to present an overview of the DED process and its role in the repairing of metallic components. The outcomes of this study confirm the significant capability of DED process as a repair and remanufacturing technology.
5

Hauser, Tobias, Raven T. Reisch, Tobias Kamps, Alexander F. H. Kaplan, and Joerg Volpp. "Acoustic emissions in directed energy deposition processes." International Journal of Advanced Manufacturing Technology 119, no. 5-6 (January 7, 2022): 3517–32. http://dx.doi.org/10.1007/s00170-021-08598-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractAcoustic emissions in directed energy deposition processes such as wire arc additive manufacturing and directed energy deposition with laser beam/metal are investigated within this work, as many insights about the process can be gained from this. In both processes, experienced operators can hear whether a process is running stable or not. Therefore, different experiments for stable and unstable processes with common process anomalies were carried out, and the acoustic emissions as well as process camera images were captured. Thereby, it was found that stable processes show a consistent mean intensity in the acoustic emissions for both processes. For wire arc additive manufacturing, it was found that by the Mel spectrum, a specific spectrum adapted to human hearing, the occurrence of different process anomalies can be detected. The main acoustic source in wire arc additive manufacturing is the plasma expansion of the arc. The acoustic emissions and the occurring process anomalies are mainly correlating with the size of the arc because that is essentially the ionized volume leading to the air pressure which causes the acoustic emissions. For directed energy deposition with laser beam/metal, it was found that by the Mel spectrum, the occurrence of an unstable process can also be detected. The main acoustic emissions are created by the interaction between the powder and the laser beam because the powder particles create an air pressure through the expansion of the particles from the solid state to the liquid state when these particles are melted. These findings can be used to achieve an in situ quality assurance by an in-process analysis of the acoustic emissions.
6

Kelly, J. P., J. W. Elmer, F. J. Ryerson, J. R. I. Lee, and J. J. Haslam. "Directed energy deposition additive manufacturing of functionally graded Al-W composites." Additive Manufacturing 39 (March 2021): 101845. http://dx.doi.org/10.1016/j.addma.2021.101845.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Heigel, Jarred C., Pan Michaleris, and Todd A. Palmer. "Measurement of forced surface convection in directed energy deposition additive manufacturing." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 230, no. 7 (October 30, 2015): 1295–308. http://dx.doi.org/10.1177/0954405415599928.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Haley, James C., Baolong Zheng, Umberto Scipioni Bertoli, Alexander D. Dupuy, Julie M. Schoenung, and Enrique J. Lavernia. "Working distance passive stability in laser directed energy deposition additive manufacturing." Materials & Design 161 (January 2019): 86–94. http://dx.doi.org/10.1016/j.matdes.2018.11.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Salmi, Mika. "Additive Manufacturing Processes in Medical Applications." Materials 14, no. 1 (January 3, 2021): 191. http://dx.doi.org/10.3390/ma14010191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Additive manufacturing (AM, 3D printing) is used in many fields and different industries. In the medical and dental field, every patient is unique and, therefore, AM has significant potential in personalized and customized solutions. This review explores what additive manufacturing processes and materials are utilized in medical and dental applications, especially focusing on processes that are less commonly used. The processes are categorized in ISO/ASTM process classes: powder bed fusion, material extrusion, VAT photopolymerization, material jetting, binder jetting, sheet lamination and directed energy deposition combined with classification of medical applications of AM. Based on the findings, it seems that directed energy deposition is utilized rarely only in implants and sheet lamination rarely for medical models or phantoms. Powder bed fusion, material extrusion and VAT photopolymerization are utilized in all categories. Material jetting is not used for implants and biomanufacturing, and binder jetting is not utilized for tools, instruments and parts for medical devices. The most common materials are thermoplastics, photopolymers and metals such as titanium alloys. If standard terminology of AM would be followed, this would allow a more systematic review of the utilization of different AM processes. Current development in binder jetting would allow more possibilities in the future.
10

Biegler, Max, Jiahan Wang, Lukas Kaiser, and Michael Rethmeier. "Automated Tool‐Path Generation for Rapid Manufacturing of Additive Manufacturing Directed Energy Deposition Geometries." steel research international 91, no. 11 (May 8, 2020): 2000017. http://dx.doi.org/10.1002/srin.202000017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Directed Energy Deposition Additive Manufacturing":

1

Nain, Vaibhav. "Efficient thermomechanical modeling of large parts fabricated by Directed Energy Deposition Additive Manufacturing processes." Thesis, Lorient, 2022. http://www.theses.fr/2022LORIS630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les procédés de fabrication additive laser par dépôt de poudre offrent une opportunité unique pour la fabrication de grandes pièces à géométrie complexe. Cependant, les déformations mécaniques induites par ces procédés entrainent des défauts pouvant conduire à des pièces rebutées. Au cours de cette thèse, différents modèles ont donc été développés pour mieux comprendre l’apparition de ces déformations en fonction des paramètres opératoires. Un premier modèle thermomécanique prédit le comportement élastoplastique lors de la construction d’un mur en acier inoxydable 316L. L’apport de chaleur est modélisé par une source double ellipsoïdale mobile et la construction des couches se fait à l’aide d’une méthode hybride « Quiet/Active élément ». Un écrouissage isotrope non linéaire est considéré, avec prise en compte de la restauration d’écrouissage à hautes températures. Afin de réduire drastiquement les temps de calcul, une nouvelle source de chaleur est proposée utilisant une source ellipsoïdale allongée qui moyenne l’énergie sur un intervalle d’espace et de temps. Cependant, un intervalle d’espace trop grand diminue la précision du modèle. De nouveaux paramètres sont alors introduits afin d’identifier le meilleur compromis entre temps de calcul et précision. L’ensemble des modèles proposés est confronté avec succès avec des données expérimentales en termes de température et déplacement et ce pour différents paramètres opératoires. Enfin, des modèles multi-échelles basés l’activation par couche ou les méthodes de déformations inhérentes sont étudiés en vue de réduire les temps de calcul
Directed Energy Deposition (DED) Additive Manufacturing technology offers a unique possibility of fabricating large-scale complex-shape parts. However, process-induced deformation in the fabricated part is still a big obstacle in successfully fabricating large-scale parts. Therefore, multiple numerical models have been developed to understand the accumulation of induced deformation in the fabricated part. The first model predicts the thermo-elastoplastic behaviour that captures the laser movement. The laser-material interaction and metal deposition are modeled by employing a double ellipsoid heat source and the Quiet/Active material activation method respectively. The model considers isotropic non-linear material hardening to represent actual metal behaviour. It also employs an instantaneous stress relaxation model to simulate the effects of physical phenomena like annealing, solid-state phase transformation, and melting. Using this model as a reference case, an efficient model is developed with an objective to reduce the computation time and make it feasible to simulate large-part. The model employs an Elongated Ellipsoid heat source that averages the heat source over the laser path which reduces the computational burden drastically. However, averaging over large laser path results in inaccurate results. Therefore, new parameters are developed that identify the best compromise between computation time reduction and accuracy. Both models are validated with experimental data obtained from several experiments with different process parameters. Finally, other Multi- scale methods such as the Layer-by-layer method and Inherent Strain-based methods are implemented and explored
2

Juhasz, Michael J. "In and Ex-Situ Process Development in Laser-Based Additive Manufacturing." Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu15870552278358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kumara, Chamara. "Microstructure Modelling of Additive Manufacturing of Alloy 718." Licentiate thesis, Högskolan Väst, Avdelningen för avverkande och additativa tillverkningsprocesser (AAT), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-13197.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In recent years, additive manufacturing (AM) of Alloy 718 has received increasing interest in the field of manufacturing engineering owing to its attractive features compared to those of conventional manufacturing methods. The ability to produce complicated geometries, low cost of retooling, and control of the microstructure are some of the advantages of the AM process over traditional manufacturing methods. Nevertheless, during the building process, the build material undergoes complex thermal conditions owing to the inherent nature of the process. This results in phase transformation from liquid to solid and solid state. Thus, it creates microstructural gradients in the built objects, and as a result,heterogeneous material properties. The manufacturing process, including the following heat treatment that is used to minimise the heterogeneity, will cause the additively manufactured material to behave differently when compared to components produced by conventional manufacturing methods. Therefore, understanding the microstructure formation during the building and subsequent post-heat treatment is important, which is the objective of this work. Alloy 718 is a nickel-iron based super alloy that is widely used in the aerospace industry and in the gas turbine power plants for making components subjected tohigh temperatures. Good weldability, good mechanical properties at high temperatures, and high corrosion resistance make this alloy particularly suitablefor these applications. Nevertheless, the manufacturing of Alloy 718 components through traditional manufacturing methods is time-consuming and expensive. For example, machining of Alloy 718 to obtain the desired shape is difficult and resource-consuming, owing to significant material waste. Therefore, the application of novel non-conventional processing methods, such as AM, seems to be a promising technique for manufacturing near-net-shape complex components.In this work, microstructure modelling was carried out by using multiphase-field modelling to model the microstructure evolution in electron beam melting (EBM) and laser metal powder directed energy deposition (LMPDED) of Alloy 718 and x subsequent heat treatments. The thermal conditions that are generated during the building process were used as input to the models to predict the as-built microstructure. This as-built microstructure was then used as an input for the heat treatment simulations to predict the microstructural evolution during heat treatments. The results showed smaller dendrite arm spacing (one order of magnitude smaller than the casting material) in these additive manufactured microstructures, which creates a shorter diffusion length for the elements compared to the cast material. In EBM Alloy 718, this caused the material to have a faster homogenisation during in-situ heat treatment that resulting from the elevated powder bed temperature (> 1000 °C). In addition, the compositional segregation that occurs during solidification was shown to alter the local thermodynamic and kinetic properties of the alloy. This was observed in the predicted TTT and CCT diagrams using the JMat Pro software based on the predicted local segregated compositions from the multiphase-field models. In the LMPDED Alloy 718 samples, this resulted in the formation of δ phase in the interdendritic region during the solution heat treatment. Moreover, this resulted in different-size precipitation of γ'/γ'' in the inter-dendritic region and in the dendrite core. Themicro structure modelling predictions agreed well with the experimental observations. The proposed methodology used in this thesis work can be an appropriate tool to understand how the thermal conditions in AM affect themicro structure formation during the building process and how these as-built microstructures behave under different heat treatments.
4

Crisanti, Roberto. "Laser Direct Energy Deposition per la manifattura additiva: caratterizzazione del processo e prove sperimentali." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Studio condotto presso il Dipartimento di Ingegneria Industriale dell’Università di Bologna su un processo di Laser Direct Energy Deposition, o Laser Cladding, e sulla sua caratterizzazione, avente come fine ultimo quello di realizzare pezzi massicci a base rettangolare dotati di una morfologia esterna regolare e al contempo privi di difetti macroscopici all’interno, quali porosità o zone con mancata fusione del materiale d’apporto. Nella prima parte dello studio sono stati presi in esame i principali parametri di processo, ovvero la potenza della sorgente laser e la portata di polvere, e l’influenza che essi hanno sulle caratteristiche geometriche del deposito (profondità di penetrazione, altezza, larghezza, grado di diluizione, area del deposito e del rinforzo, ampiezza media della ZTA, percentuale di porosità). Tale studio si è basato sull’osservazione ed analisi al microscopio di singoli cordoni di deposizione, realizzati variando la portata di polvere la potenza del laser, a parità di velocità di avanzamento. La seconda parte si basa sull’analisi dei risultati delle prove condotte con lo scopo di realizzare dei campioni massicci a base rettangolare: si sono studiati gli effetti che variazioni dei parametri di processo e della strategia di scansione hanno avuto sulla morfologia finale dei pezzi e sulle loro caratteristiche interne (porosità, zone con mancata fusione). Si sono confrontate due strategie di deposizione, la strategia con ritorno della testa a laser spento (laser OFF) e la strategia con ritorno della testa a laser acceso (laser ON). Tale studio ha permesso di concludere che la strategia con ritorno laser ON risulta essere preferibile in quanto non solo consente di ottenere un risparmio in termini energetici, di tempo e di quantità di polvere utilizzata, ma anche di realizzare dei pezzi massicci che rappresentano il miglior compromesso ottenuto tra una morfologia esterna uniforme e delle buone caratteristiche interne, con una densità prossima al 100%.
5

Daugherty, Timothy J. "Assessment of the ballistic performance of compositional and mesostructural functionally graded materials produced by additive manufacturing." Youngstown State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1596474811965998.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jonsson, Vannucci Tomas. "Investigating the Part Programming Process for Wire and Arc Additive Manufacturing." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-74291.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Wire and Arc Additive Manufacturing is a novel Additive Manufacturing technology. As a result, the process for progressing from a solid model to manufacturing code, i.e. the Part Programming process, is undeveloped. In this report the Part Programming process, unique for Wire and Arc Additive Manufacturing, has been investigated to answer three questions; What is the Part Programming process for Wire and Arc Additive Manufacturing? What are the requirements on the Part Programming process? What software can be used for the Part Programming process? With a systematic review of publications on Wire and Arc Additive Manufacturing and related subjects, the steps of the Part Programming process and its requirements have been clarified. The Part Programming process has been used for evaluation of software solutions, resulting in multiple recommendations for implemented usage. Verification of assumptions, made by the systematic review, has been done by physical experiments to give further credibility to the results.
7

Kalb, Andreas, Florian M. Dambietz, and Peter Hoffmann. "Maschinenkonzept zur additiven Fertigung großdimensionierter Titan-Bauteile." Thelem Universitätsverlag & Buchhandlung GmbH & Co. KG, 2021. https://tud.qucosa.de/id/qucosa%3A75868.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In der vorliegenden Arbeit wird ein Maschinenkonzept präsentiert, welches für die Additive Fertigung von großvolumigen Titanbauteilen speziell entwickelt wurdet. Hierbei wird mit den Direct-Energy_Deposition Verfahren das Bauteil in einer separaten Inertgasatmosphäre erzeugt. Zur Führung der Prozesstechnik soll erstmals ein Roboter verwendet werden, der ebenfalls in dieser Atmosphäre verbaut ist. Dieser ist allerdings schwierigen Bedingungen ausgesetzt, da die Spannungsfestigkeit sowie die Isolationsschwelle in Argon im Vergleich zu Luft drastisch reduziert sind.
8

Ferraro, Mercedes M. "Quantitative Determination of Residual Stress on Additively Manufactured Ti-6Al-4V." Youngstown State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ysu152640278957619.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lindell, David. "Process Mapping for Laser Metal Deposition of Wire using Thermal Simulations : A prediction of material transfer stability." Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-85474.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Additive manufacturing (AM) is a quickly rising method of manufacturing due to its ability to increase design freedom. This allows the manufacturing of components not possible by traditional subtractive manufacturing. AM can greatly reduce lead time and material waste, therefore decreasing the cost and environmental impact. The adoption of AM in the aerospace industry requires strict control and predictability of the material deposition to ensure safe flights.  The method of AM for this thesis is Laser Metal Deposition with wire (LMD-w). Using wire as a feedstock introduces a potential problem, the material transfer from the wire to the substrate. This requires all process parameters to be in balance to produce a stable deposition. The first sign of unbalanced process parameters are the material transfer stabilities; stubbing and dripping. Stubbing occurs when the energy to melt the wire is too low and the wire melts slower than required. Dripping occurs when too much energy is applied and the wire melts earlier than required.  These two reduce the predictability and stability that is required for robust manufacturing.  Therefore, the use of thermal simulations to predict the material transfer stability for LMD-w using Waspaloy as the deposition material has been studied.  It has been shown that it is possible to predict the material transfer stability using thermal simulations and criterions based on preexisting experimental data. The criterion for stubbing checks if the completed simulation result produces a wire that ends below the melt pool. For dripping two criterions shows good results, the dilution ratio is a good predictor if the tool elevation remains constant. If there is a change in tool elevation the dimensionless slenderness number is a better predictor.  Using these predictive criterions it is possible to qualitatively map the process window and better understand the influence of tool elevation and the cross-section of the deposited material.
Additiv tillverkning (AT) är en kraftigt växande tillverkningsmetod på grund av sin flexibilitet kring design och möjligheten att skapa komponenter som inte är tillverkningsbara med traditionell avverkande bearbetning.  AT kan kraftigt minska tid- och materialåtgång och på så sett minskas kostnader och miljöpåverkan. Införandet av AT i flyg- och rymdindustrin kräver strikt kontroll och förutsägbarhet av processen för att försäkra sig om säkra flygningar.  Lasermetalldeponering av tråd är den AT metod som hanteras i denna uppsats. Användandet av tråd som tillsatsmaterial skapar ett potentiellt problem, materialöverföringen från tråden till substratet. Detta kräver att alla processparametrar är i balans för att få en jämn materialöverföring. Är processen inte balanserad syns detta genom materialöverföringsstabiliteterna stubbning och droppning. Stubbning uppkommer då energin som tillförs på tråden är för låg och droppning uppkommer då energin som tillförs är för hög jämfört med vad som krävs för en stabil process. Dessa två fenomen minskar möjligheterna för en kontrollerbar och stabil tillverkning.  På grund av detta har användandet utav termiska simuleringar för att prediktera materialöverföringsstabiliteten för lasermetalldeponering av tråd med Waspaloy som deponeringsmaterial undersökts. Det har visat sig vara möjligt att prediktera materialöverföringsstabiliteten med användning av termiska simuleringar och kriterier baserat på tidigare experimentell data. Kriteriet för stubbning kontrolleras om en slutförd simulering resulterar i en tråd som når under smältan.  För droppning finns två fungerande kriterier, förhållandet mellan svetshöjd och penetrationsdjup om verktygshöjden är konstant, sker förändringar i verktygshöjden är det dimensionslös ”slenderness” talet ett bättre kriterium.  Genom att använda dessa kriterier är det möjligt att kvalitativt kartlägga processfönstret och skapa en bättre förståelse för förhållandet mellan verktygshöjden och den deponerade tvärsnittsarean.
10

Sreekanth, Suhas. "Laser-Directed Energy Deposition : Influence of Process Parameters and Heat-Treatments." Licentiate thesis, Högskolan Väst, Avdelningen för svetsteknologi (SV), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hv:diva-15767.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Laser-Directed Energy Deposition (L-DED), an Additive Manufacturing (AM) processused for the fabrication of parts in a layer-wise approach has displayed an immense potential over the last decade. The aerospace industry stands as the primary beneficiary due to the L-DED process capability to build near-net-shape components with minimal tooling and thereby producing minimum wastage because of reduced machining. The widespread use of Alloy 718 in the aero-engine application has prompted huge research interest in the development of L-DED processing of this superalloy. AM processes are hindered by low build rates and high cycle times which directly affects the process costs. To overcome these issues, the present work focusses on obtaining high deposition rates through a high material feed. Studying the influence of process parameters during the L-DED process is of prime importance as they determine the performance of in-service structures. In the present work, process parameters such as laser power, scanning speed, feed rate and stand-offdistances are varied and their influence on geometry and microstructure of Alloy 718 single-track deposits are analyzed. The geometry of deposits is measured in terms of height, width and depth; and the powder capture efficiency is determined by measuring areas of deposition and dilution. The microstructure of the deposits shows a column ardendritic structure in the middle and bottom region of the deposits and equiaxed grains in the top region. Nb-rich segregation involving laves and NbC phases, typical of Alloy718 is found in the interdendritic regions and grain boundaries. The segregation increases along the height of the deposit with the bottom region having the least and the top region showing the highest concentration of Nb-rich phases due to the variation in cooling rates. A high laser power (1600 W – 2000 W) and a high scanning speed (1100 mm/min) are found to be the preferable processing conditions for minimizing segregation. Another approach to minimize segregation is by performing post-build heat treatments. The solution treatment (954 °C/1 hr) and double aging (718 °C/8 hr + 621 °C/ 8 hr) standardized for the wrought form of Alloy 718 is applied to as-built deposits which showed a reduction in segregation due to the dissolution of Nb-rich phases. Upon solution treatment, this reduction is accompanied by precipitation of the delta phase, found predominantly in top and bottom regions and sparsely in the middle region of the deposit.

Книги з теми "Directed Energy Deposition Additive Manufacturing":

1

Government, U. S., U. S. Military, Department of Defense (DoD), and U. S. Navy (USN). Navy Additive Manufacturing: Adding Parts, Subtracting Steps - 3D Printing, Tooling, Aerospace, Binder Jetting, Directed Energy Deposition, Material Extrusion, Powder Fusion, Photopolymerization. Independently Published, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Directed Energy Deposition Additive Manufacturing":

1

Gibson, Ian, David Rosen, Brent Stucker, and Mahyar Khorasani. "Directed Energy Deposition." In Additive Manufacturing Technologies, 285–318. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56127-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gibson, Ian, David Rosen, and Brent Stucker. "Directed Energy Deposition Processes." In Additive Manufacturing Technologies, 245–68. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2113-3_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Srivastava, Manu, Sandeep Rathee, Sachin Maheshwari, and T. K. Kundra. "Additive Manufacturing Processes Utilizing Directed Energy Deposition Processes." In Additive Manufacturing, 155–66. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2019.: CRC Press, 2019. http://dx.doi.org/10.1201/9781351049382-12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gokhale, Nitish P., and Prateek Kala. "Directed Energy Deposition for Metals." In Additive and Subtractive Manufacturing Processes, 259–71. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003327394-13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Verdi, Davide, Shanshan Yang, Norman Soh, Grace Tay, and Alin Patran. "The Role of Powder Feedstock in Directed Energy Deposition Sustainability." In Progress in additive manufacturing 2020, 13–24. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2022. http://dx.doi.org/10.1520/stp163720200088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jardon, Zoé, Julien Ertveldt, Michaël Hinderdael, and Patrick Guillaume. "Powder-Gas Jet Velocity Characterization during Coaxial Directed Energy Deposition Process." In Progress in Additive Manufacturing 2021, 37–58. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2022. http://dx.doi.org/10.1520/stp164420210124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ya, Wei, and Kelvin Hamilton. "On-Demand Spare Parts for the Marine Industry with Directed Energy Deposition: Propeller Use Case." In Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017, 70–81. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66866-6_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Snyers, Charles, Julien Ertveldt, Jorge Sanchez-Medina, Zoé Jardon, and Jan Helsen. "Prediction of Melt Pool Temperature for Directed Energy Deposition Using Supervised Learning Methods on Optical Measurement Data." In Progress in Additive Manufacturing 2021, 59–73. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2022. http://dx.doi.org/10.1520/stp164420210133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Jardon, Zoé, Julien Ertveldt, and Patrick Guillaume. "Effect of Coaxial Powder Nozzle Jet Process Parameters on Single-Track Geometry for Laser Beam Directed Energy Deposition Process." In Progress in additive manufacturing 2020, 51–74. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2022. http://dx.doi.org/10.1520/stp163720200108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dalpadulo, Enrico, Fabio Pini, and Francesco Leali. "Directed Energy Deposition Process Simulation to Sustain Design for Additive Remanufacturing Approaches." In Advances on Mechanics, Design Engineering and Manufacturing IV, 1067–78. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15928-2_93.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Directed Energy Deposition Additive Manufacturing":

1

Weisz-Patrault, Daniel. "Residual strains in directed energy deposition additive manufacturing." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0026504.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nain, Vaibhav, Thierry Engel, Muriel Carin, and Didier Boisselier. "Numerical modeling for large-scale parts fabricated by directed energy deposition." In 3D Printed Optics and Additive Photonic Manufacturing III, edited by Georg von Freymann, Alois M. Herkommer, and Manuel Flury. SPIE, 2022. http://dx.doi.org/10.1117/12.2624947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Weisz-Patrault, D., S. Sakout, and A. Ehrlacher. "Fast Simulation Of Temprature And Grain Growth In Directed Energy Deposition Additive Manufacturing." In 14th WCCM-ECCOMAS Congress. CIMNE, 2021. http://dx.doi.org/10.23967/wccm-eccomas.2020.143.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Garg, Richie, Harish Singh Dhami, Priti Ranjan Panda, and Koushik Viswanathan. "Directed Energy Deposition Using Non-Spherical Metal Powders?" In ASME 2022 17th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/msec2022-84945.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Metal additive manufacturing (AM) enables the production of non-trivial geometries and intricate internal structures. Directed energy deposition (DED) is one such AM process that has the inherent advantage of producing multi-material components on complex pre-existing geometries. Significant recent interest in DED processes has been driven by the need for inexpensive powders and potential material recycling. In this work, we explore the possibility of using non-standard arbitrary shaped metal powders within the DED process. A standard numerical model, comprising a three-dimensional viscous, compressible, turbulent solver with two-way discrete phase coupling is employed to understand the mechanics of gas-driven non-spherical powder flow. Spatial distributions of non-spherical powder on a set of pre-existing geometric features (e.g., corners, curved surfaces) are evaluateds and compared with standard spherical powders. The effect of particle collisions on the substrate is evaluated and corresponding density distributions are quantified. Non-spherical particles are generally found to exhibit higher velocities, and greater deposition track width, compared to spherical particles. Our simulations also reveal the effect of particle shape on their flow properties and final powder density. Using a custom-built DED configuration, we present preliminary experimental results of single-track depositions using both spherical and non-spherical powder particles. Based on our findings, we make a case for the use of non-spherical powders for DED applications.
5

Chen, Ze, Chengcheng Wang, Sastry Yagnanna Kandukuri, and Kun Zhou. "Additive Manufacturing of Monel K-500 via Directed Energy Deposition for Pressure Vessel Applications." In ASME 2022 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/pvp2022-85735.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Metal additive manufacturing has rapidly revolutionized the production processes across various industries. Laser-assisted powder-fed directed energy deposition (DED) has eminent advantages such as high deposition rate, capability for cladding and repairing valuable parts, and great potential for in-situ alloying, which are highly desirable attributes for pressure vessel applications. This study used DED to process Monel K-500, a nickel-based alloy approved by the American Society Of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code. Fully dense Monel K-500 parts were printed by DED with the tensile strength of ∼ 20% and elongation of ∼ 120% higher than their casted counterparts. Besides, the anisotropy of mechanical properties of DED fabricated Monel K-500 parts were investigated. This work provides a technical reference for industries to utilize DED to manufacture Monel K-500 parts with desirable performance for pressure vessel applications.
6

Landes, Scott, Trupti Suresh, Anamika Prasad, Todd Letcher, Paul Gradl, and David Ellis. "Investigation of Additive Manufactured GRCop-42 Alloy Developed by Directed Energy Deposition Methods." In ASME 2020 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/imece2020-24400.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract GRCop is an alloy family constructed of copper, chromium, and niobium and was developed by NASA for high heat flux applications. GRCop-alloys were specifically formulated for the requirements in channel-cooled main combustion chambers allowing for repeat use in high heat flux environments [1]. GRCop-84 was evolved using additive manufacturing techniques under a NASA development program. To further increase thermal conductivity while maintaining material strength characteristics, the percentage of alloying elements were cut in half and GRCop-42 was developed. In recent years, NASA has successfully additively manufactured GRCop-42 with comparable material characteristics to extruded GRCop-42 using a Laser Powder Bed Fusion (L-PBF) process. Benefits of this process include fabrication of intricate internal cooling channels as well as a decrease in manufacturing time. However, there are some large disadvantages in using this process. The nature of the powder bed process imposes a strict volume constraint as well as an excessive amount of material inventory required. A Directed Energy Deposition (DED) process addresses these limitations while also speeding up the manufacturing process. With little data on how DED performs with GRCop-42, an investigation into the mechanical properties was conducted. More specifically, Blown Powder Directed Energy Deposition (BPD), was used to compare material properties to that of the L-PBF manufactured GRCop-42. The DED manufactured material was found to have less than 0.1% porosity. Tensile tests concluded that the DED manufactured GRCop-42 had lower tensile strengths at room temperature. The results point towards a process capable of producing fully dense parts capable of meeting mechanical strength requirements with some possible refinement of printing parameters.
7

Ishiyama, Keiya, Ryo Koike, Yasuhiro Kakinuma, Tetsuya Suzuki, and Takanori Mori. "Cooling Process for Directional Solidification in Directed Energy Deposition." In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6437.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Additive manufacturing (AM) for metals has attracted attention from industry because of its great potential to enhance production efficiency and reduce production costs. Directed energy deposition (DED) is a metal AM process suitable to produce large-scale freeform metal products. DED entails irradiating the baseplate with a laser beam and launching the metal powder onto the molten spot to produce a metal part on the baseplate. Because the process enables powder from different materials to be used, DED is widely applicable to valuable production work such as for a dissimilar material joint, a graded material, or a part with a special structure. With regard to parts with a special structure, directional solidification can prospectively be used in the power plant and aerospace industries because it can enhance the stiffness in a specific direction via only a simple process. However, conventional approaches for directional solidification require a special mold in order to realize a long-lasting thermal gradient in the part. On the other hand, from the viewpoint of thermal distribution in a produced part, DED is able to control the gradient by controlling the position of the molten pool, i.e., the position of the laser spot. Moreover, unlike casting, the thermal gradient can be precisely oriented in the expected direction, because the laser supplies heat energy on the regulated spot. In this study, the applicability of DED to directional solidification in Inconel® 625 is theoretically and experimentally evaluated through metal structure observation and Vickers hardness measurements. Furthermore, the effect of two different cooling processes on directional solidification is also considered with the aim of improving the mechanical stiffness of a part produced by DED. The observations and experimental results show that both the cooling methods (baseplate cooling and intermittent treatment with coolant) are able to enhance the hardness while retaining the anisotropy.
8

Moylan, Shawn, Michael McGlauflin, Jared Tarr, and M. Alkan Donmez. "Geometric Performance Testing of Directed Energy Deposition Additive Manufacturing Machine Using Standard Tests for Machine Tools." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-71737.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract While performance testing of additive manufacturing machines is still nascent, standard tests for performance of machine tools used in metal cutting are well established. Our hypothesis is that because directed energy deposition (DED) additive manufacturing machines physically resemble typical vertical machining centers, standard geometric performance tests for machine tools will directly apply to DED machines. Standard tests of positioning error motions and circular motion were successfully conducted on a commercially-available DED system. With all tests providing reasonable and expected results, there is nothing to falsify our hypothesis. One additional consideration is the need for testing of the Z-axis on additive manufacturing machines using target positioning intervals on the order of a typical layer thickness at several positions along the axis.
9

Nassar, Abdalla R., Edward W. Reutzel, Stephen W. Brown, John P. Morgan, Jacob P. Morgan, Donald J. Natale, Rick L. Tutwiler, David P. Feck, and Jeffery C. Banks. "Sensing for directed energy deposition and powder bed fusion additive manufacturing at Penn State University." In SPIE LASE, edited by Bo Gu, Henry Helvajian, and Alberto Piqué. SPIE, 2016. http://dx.doi.org/10.1117/12.2217855.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liu, Michael, and Mathew Kuttolamadom. "Characterization of Co-Cr-Mo Alloys Manufacturing via Directed Energy Deposition." In ASME 2021 16th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/msec2021-64111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract In this study, Co-Cr-Mo samples that were fabricated via directed energy deposition (DED) at various laser powers and powder feed rates were characterized to ascertain their microstructure and mechanical properties. Co-Cr-Mo is a common alloy for total hip and knee replacements, dental, and support structures due to its biocompatibility, hardness and abrasion resistance, making them a preferred alloy for metal-on-metal (MOM) contact. This study was undertaken to understand the pertinent process parameters that would generate structurally viable bulk structures. High-resolution microscopy and spectroscopy revealed the presence of networked and jagged carbides with varying amounts of Mo. Further, XRD confirmed the presence of the γ and ε phases. Micro- and nano-scale characterization of the alloy fabricated at different process conditions showed material properties in line with those made via traditional processing approaches such as casting. Altogether, this investigation provided an understanding of the effect of additive manufacturing process parameters on the microstructure and properties of Co-Cr-Mo.

Звіти організацій з теми "Directed Energy Deposition Additive Manufacturing":

1

Tekalur, Arjun, Jacob Kallivayalil, Jason Carroll, Mike Killian, Benjamin Schultheis, Anil Chaudhary, Zackery McClelland, Jeffrey Allen, Jameson Shannon, and Robert Moser. Additive manufacturing of metallic materials with controlled microstructures : multiscale modeling of direct metal laser sintering and directed energy deposition. Engineer Research and Development Center (U.S.), July 2019. http://dx.doi.org/10.21079/11681/33481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Slattery, Kevin, and Kirk A. Rogers. Internal Boundaries of Metal Additive Manufacturing: Future Process Selection. SAE International, March 2022. http://dx.doi.org/10.4271/epr2022006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the early days, there were significant limitations to the build size of laser powder bed fusion (L-PBF) additive manufacturing (AM) machines. However, machine builders have addressed that drawback by introducing larger L-PBF machines with expansive build volumes. As these machines grow, their size capability approaches that of directed energy deposition (DED) machines. Concurrently, DED machines have gained additional axes of motion which enable increasingly complex part geometries—resulting in near-overlap in capabilities at the large end of the L-PBF build size. Additionally, competing technologies, such as binder jet AM and metal material extrusion, have also increased in capability, albeit with different starting points. As a result, the lines of demarcation between different processes are becoming blurred. Internal Boundaries of Metal Additive Manufacturing: Future Process Selection examines the overlap between three prominent powder-based technologies and outlines an approach that a product team can follow to determine the most appropriate process for current and future applications.

До бібліографії