Добірка наукової літератури з теми "Distribution des applications"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Distribution des applications".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Distribution des applications":

1

Liebrock, Lorie M., and Ken Kennedy. "Automatic Data Distribution for Composite Grid Applications." Scientific Programming 6, no. 1 (1997): 95–113. http://dx.doi.org/10.1155/1997/174748.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Problem topology is the key to efficient parallelization support for partially regular applications. Specifically, problem topology provides the information necessary for automatic data distribution and regular application optimization of a large class of partially regular applications. Problem topology is the connectivity of the problem. This research focuses on composite grid applications and strives to take advantage of their partial regularity in the parallelization and compilation process. Composite grid problems arise in important application areas, e.g., reactor and aerodynamic simulation. Related physical phenomena are inherently parallel and their simulations are computationally intensive. We present algorithms that automatically determine data distributions for composite grid problems. Our algorithm's alignment and distribution specifications may be used as input to a High Performance Fortran program to apply the mapping for execution of the simulation code. These algorithms eliminate the need for user-specified data distribution for this large class of complex topology problems. We test the algorithms using a number of topological descriptions from aerodynamic and water-cooled nuclear reactor simulations. Speedup-bound predictions with and without communication, based on the automatically generated distributions, indicate that significant speedups are possible using these algorithms.
2

Sarabia, José María, Vanesa Jordá, Faustino Prieto, and Montserrat Guillén. "Multivariate Classes of GB2 Distributions with Applications." Mathematics 9, no. 1 (December 31, 2020): 72. http://dx.doi.org/10.3390/math9010072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The general beta of the second kind distribution (GB2) is a flexible distribution which includes several relevant parametric families of distributions. This distribution has important applications in earnings and income distributions, finance and insurance. In this paper, several multivariate classes of the GB2 distribution are proposed. The different multivariate versions are based on two simple univariate representations of the GB2 distribution. The first type of multivariate distributions are constructed from a stochastic dependent representations defined in terms of gamma random variables. Using this representation and beginning by two particular multivariate GB2 distributions, multivariate Singh–Maddala and Dagum income distributions are presented and several properties are obtained. Then, a general multivariate GB2 distribution is introduced. The second type of multivariate distributions are based on a generalization of the distribution of the order statistics, which gives place to multivariate GB2 distribution with support above the diagonal. We discuss the role of these families in modeling bivariate income distributions. Finally, an empirical application is given, where we show that a multivariate GB2 distribution can be useful for modeling compound precipitation and wind events in the whole range.
3

Nassar, Mazen, Sanku Dey, and Devendra Kumar. "Logarithm Transformed Lomax Distribution with Applications." Calcutta Statistical Association Bulletin 70, no. 2 (November 2018): 122–35. http://dx.doi.org/10.1177/0008068318808135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this article, we introduce a new method for generating distributions which we refer to as logarithm transformed (LT) method. Some statistical properties of the LT method are established. Based on the LT method, we introduce a new generalization of the Lomax distribution that provides better fits than the Lomax distribution and some of its known generalizations. We refer to the new distribution as logarithmic transformed Lomax (LTL) distribution. Various properties of the LTL distribution, including explicit expressions for the moments, quantiles, moment generating function, incomplete moments, conditional moments, Rényi entropy, and order statistics are derived. It appears to be a distribution capable of allowing monotonically decreasing and upside-down bathtub shaped hazard rates depending on its parameters, so it turns out to be quite flexible for analysing non-negative real life data. We discuss the estimation of the model parameters by maximum likelihood method using random censoring scheme. The proposed distribution is utilized to fit a censored data set and the distribution is shown to be more appropriate to the data set than the compared distributions. 2010 Mathematics Subject Classification: 60E05, 60E10, 62E15.
4

Rather, N. A., and T. A. Rather. "New Generalizations of Exponential Distribution with Applications." Journal of Probability and Statistics 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/2106748.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The main purpose of this paper is to present k-Generalized Exponential Distribution which among other things includes Generalized Exponential and Weibull Distributions as special cases. Besides, we also obtain three-parameter extension of Generalized Exponential Distribution. We shall also discuss moment generating functions (MGFs) of these newly introduced distributions.
5

Badmus, N. I., Olanrewaju Faweya, and K. A. Adeleke. "Generalized Beta-Exponential Weibull Distribution and its Applications." Journal of Statistics: Advances in Theory and Applications 24, no. 1 (December 10, 2020): 1–33. http://dx.doi.org/10.18642/jsata_7100122158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this article, we investigate a distribution called the generalized beta-exponential Weibull distribution. Beta exponential x family of link function which is generated from family of generalized distributions is used in generating the new distribution. Its density and hazard functions have different shapes and contains special case of distributions that have been proposed in literature such as beta-Weibull, beta exponential, exponentiated-Weibull and exponentiated-exponential distribution. Various properties of the distribution were obtained namely; moments, generating function, Renyi entropy and quantile function. Estimation of model parameters through maximum likelihood estimation method and observed information matrix are derived. Thereafter, the proposed distribution is illustrated with applications to two different real data sets. Lastly, the distribution clearly shown that is better fitted to the two data sets than other distributions.
6

Klakattawi, Hadeel S. "The Weibull-Gamma Distribution: Properties and Applications." Entropy 21, no. 5 (April 26, 2019): 438. http://dx.doi.org/10.3390/e21050438.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new member of the Weibull-generated (Weibull-G) family of distributions—namely the Weibull-gamma distribution—is proposed. This four-parameter distribution can provide great flexibility in modeling different data distribution shapes. Some special cases of the Weibull-gamma distribution are considered. Several properties of the new distribution are studied. The maximum likelihood method is applied to obtain an estimation of the parameters of the Weibull-gamma distribution. The usefulness of the proposed distribution is examined by means of five applications to real datasets.
7

Hassan, Anwar, and Peer Bilal Ahmad. "Misclassified size-biased modified power series distribution and its applications." Mathematica Bohemica 134, no. 1 (2009): 1–17. http://dx.doi.org/10.21136/mb.2009.140633.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Boonthiem, Somchit, Adisak Moumeesri, Watcharin Klongdee, and Weenakorn Ieosanurak. "A New Sushila Distribution: Properties and Applications." European Journal of Pure and Applied Mathematics 15, no. 3 (July 31, 2022): 1280–300. http://dx.doi.org/10.29020/nybg.ejpam.v15i3.4420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, we introduce a new continuous distribution mixing exponential and gamma distributions, called new Sushila distribution. We derive some properties of the distribution include: probability density function, cumulative distribution function, expected value, moments about the origin, coefficient of variation (C.V.), coefficient of skewness, coefficient of kurtosis, moment generating function, and reliability measures. The distribution includes, a special cases, the Sushila distribution as a particular case p=1/2 (θ = 1). The hazard rate function exhibits increasing. The parameter estimations as the moment estimation (ME), the maximum likelihood estimation (MLE), nonlinear least squares methods, and genetic algorithm (GA) are proposed. The application is presented to show that model to fit for waiting time and survival time data. Numerical results compare ME, MLE, weighted least squares (WLS), unweighted least squares (UWLS), and GA. The results conclude that GA method is better performance than the others for iterative methods. Although, ME is not the best estimate, ME is a fast estimate, because it is not an iterative method. Moreover, The proposed distribution has been compared with Lindley and Sushila distributions to a waiting time data set. The result shows that the proposed distribution is performing better than Lindley and Sushila distribution.
9

Rasekhi, Mahdi, Omid Chatrabgoun, and Alireza Daneshkhah. "Discreteweighted exponential distribution: Properties and applications." Filomat 32, no. 8 (2018): 3043–56. http://dx.doi.org/10.2298/fil1808043r.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, we propose a new lifetime model as a discrete version of the continuous weighted exponential distribution which is called discrete weighted exponential distribution (DWED). This model is a generalization of the discrete exponential distribution which is originally introduced by Chakraborty (2015). We present various statistical indices/properties of this distribution including reliability indices, moment generating function, probability generating function, survival and hazard rate functions, index of dispersion, and stress-strength parameter. We first present a numerical method to compute the maximum likelihood estimations (MLEs) of the models parameters, and then conduct a simulation study to further analyze these estimations. The advantages of the DWED are shown in practice by applying it on two real world applications and compare it with some other well-known lifetime distributions.
10

U., Eric, Oti M.O.O., and Francis C.E. "A Study of Properties and Applications of Gamma Distribution." African Journal of Mathematics and Statistics Studies 4, no. 2 (July 8, 2021): 52–65. http://dx.doi.org/10.52589/ajmss-mr0dq1dg.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The gamma distribution is one of the continuous distributions; the distributions are very versatile and give useful presentations of many physical situations. They are perhaps the most applied statistical distribution in the area of reliability. In this paper, we present the study of properties and applications of gamma distribution to real life situations such as fitting the gamma distribution into data, burn-out time of electrical devices and reliability theory. The study employs the moment generating function approach and the special case of gamma distribution to show that the gamma distribution is a legitimate continuous probability distribution showing its characteristics.

Дисертації з теми "Distribution des applications":

1

Leblanc, Jean-Philippe. "Distribution hyperbolique généralisée et applications financières." Mémoire, Université de Sherbrooke, 2003. http://savoirs.usherbrooke.ca/handle/11143/2360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans ce mémoire nous présentons la distribution hyperbolique généralisée ainsi que quatre de ses sous-classes. La portée de l'analyse de cette distribution peu connue est définie à l'aide des limites de ces paramètres et des distributions qui en découlent. Le second chapitre regroupe la théorie nécessaire aux applications du troisième chapitre. Les applications financières développées dans ce mémoire sont des généralisations de la valeur à risque, de la structure des taux d'intérêts, de la volatilité stochastique et de l'évaluation du prix des options par intégration numérique et par approximation par point fixe. Pour faciliter l'expérimentation statistique nous présentons aussi un algorithme pour générer des variables aléatoires suivant une loi hyperbolique généralisée définie par ces cinq paramètres. Dans le dernier chapitre nous abordons l'estimation et l'utilisation empirique de l'hyperbolique généralisée comme outils d'analyse pour les phénomènes financiers.
2

Leblanc, Jean-Philippe. "Distribution hyperbolique généralisée et applications financières." Sherbrooke : Université de Sherbrooke, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sarkis, Mira. "Création d'applications multi-écrans à partir d'applications existantes." Thesis, Paris, ENST, 2016. http://www.theses.fr/2016ENST0057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'omniprésence des applications Web, la possession et l'utilisation simultanée de plusieurs appareils par un seul utilisateur sont les principaux facteurs de la demande accrue pour les applications multi-écrans. La création des applications multi-écrans imposent des défis sur le développeur d'applications et sur le designer, en particulier s'ils réutilisent les applications web existantes. Par exemple, les developpeurs doivent planifier la distribution de l'interface utilisateur et ils doivent prendre en compte la diversité des dispositifs pour mieux présenter le contenu. En plus, ils doivent re-penser l'organisation du code de l'application afin de préserver la fonctionnalité de l'application et surtout assurer la communication entre les parties distribuées de l'application. Dans ce travail, nous proposons un système de bout en bout pour le refactoring des applications web. Le système permet la réutilisation des applications existante, mono-écran, pour créer automatiquement des applications multi-écrans. Les parties distribuées des applications générées ont leur mise en page adaptée aux petits et grands dispositifs et ils sont prêts â fonctionner de manière synchrone tout en fournissant des tâches complémentaires. La performance du système est évaluée quantitativement sur un ensemble d'applications contenant au moins un élément vidéo et du contenu interactif
The ubiquity of web applications and the user possession and utilization of multiple devices are major factors for the increased demand for multi-screen applications. Multi-screen applications impose challenges on the application developer and designer especially if existing single-screen applications have to be transformed to the multiscreen environment. Designers should plan the user interface distribution and should adapt the layout for various devices. Developers should re-organize the application logic and associate it to the distributed user interface. They should preserve the application functionality and finally they need to adapt it to the underlying multiscreen platform. In this work, we propose an end-to-end refactoring system. The system allows the re-use of existing single-screen applications to automatically create multi-screen applications. The components of the multi-screen applications have their layout adapted to small and large device and they are ready to operate synchronously to provide a complementary usage experience. Our system is quantitatively evaluated on different sets of applications containing at least one video element and interactive content. The content division of our system corresponds to a ground truth division with an average recall of 0.84. In addition, our layout refactoring approach obtains 60% accuracy on the tested applications. In addition, we evaluate the performance of the run-time behavior of one application and we compute the delays that are caused by our system and by the network in a real physical environment: with a total delay of 5 ms, our solution is realistic
4

George, Michael. "Distribution feeder reduction for dispersed generation applications." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=117136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Electric power systems today are undergoing a paradigm shift in operational and market philosophy through technologies like distributed generation and the "smart grid." Decentralizing the power system and allowing users to inject power into the grid, however, introduces a wide array of problems, and much research has gone towards implementing a growing number of small generation sources throughout the existing electric power network infrastructure. This thesis describes the issues involved in reducing a typical rural distribution feeder to a model that can be used for distributed generation interconnection studies, particularly for islanding studies.
Nos systèmes de puissance électrique procèdent présentement à un changement de paradigme autant dans leurs philosophies opérationnelles que dans celles du marché grâce à des technologies telles que la génération distribuée et la plateforme «smart grid». Décentraliser le système d'énergie et permettre aux usagers d'injecter de l'énergie dans le réseau présente néanmoins de nombreux problèmes, et beaucoup de nouvelles études cherchent à établir un nombre croissant de petites sources de génération dans le cadre du réseau d'infrastructure d'énergie électrique existant présentement. Cette thèse décrit les questions liées à la réduction d'une artère de distribution rurale typique d'un modèle qui peut être utilisé pour des études d'interconnexion distribués génération, en particulier pour les études îlotage.
5

Jiang, Xiao. "Contributions to statistical distribution theory with applications." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/contributions-to-statistical-distribution-theory-with-applications(fa612f53-1950-48c2-9cdf-135b2d145587).html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The whole thesis contains 10 chapters. Chapter 1 is the introductory chapter of my thesis and the main contributions are presented in Chapter 2 through to Chapter 9. Chapter 10 is the conclusion chapter. These chapters are motivated by applications to new and existing problems in finance, healthcare, sports, and telecommunications. In recent years, there has been a surge in applications of generalized hyperbolic distributions in finance. Chapter 2 provides a review of generalized hyperbolic and related distributions, including related programming packages. A real data application is presented which compares some of the distributions reviewed. Chapter 3 and Chapter 4 derive conditions for stochastic, hazard rate, likelihood ratio, reversed hazard rate, increasing convex and mean residual life orderings of Pareto distributed variables and Weibull distributed variables, respectively. A real data application of the conditions is presented in each chapter. Motivated by Lee and Cha [The American Statistician 69 (2015) 221-230], Chapter 5 introduces seven new families of discrete bivariate distributions. We reanalyze the football data in Lee and Cha (2015) and show that some of the newly proposed distributions provide better fits than the two families proposed by Lee and Cha (2015). Chapter 6 derives the distribution of amplitude, its moments and the distribution of phase for thirty-four flexible bivariate distributions. The results in part extend those given in Coluccia [IEEE Communications Letters, 17, 2013, 2364-2367]. Motivated by Schoenecker and Luginbuhl [IEEE Signal Processing Letters, 23, 2016, 644-647], Chapter 7 studies the characteristic function of products of two independent random variables. One follows the standard normal distribution and the other follows one of forty other continuous distributions. In this chapter, we give explicit expressions for the characteristic function of products, and some of the results are verified by simulations. Cossette, Marceau, and Perreault [Insurance: Mathematics and Economics, 64, 2015, 214-224] derived formulas for aggregation and capital allocation based on risks following two bivariate exponential distributions. Chapter 8 derives formulas for aggregation and capital allocation for thirty-three commonly known families of bivariate distributions. This collection of formulas could be a useful reference for financial risk management. Chapter 9 derives expressions for the kth moment of the dependent random sum using copulas. It also extends Mao and Zhao[IMA Journal of Management Mathematics, 25, 2014, 421-433]’s results to the case where the components of the sum are not identically distributed. The practical usefulness of the results in terms of computational time and computational accuracy is demonstrated by simulation.
6

Chu, Jeffrey. "Statistical distribution theory with applications to finance." Thesis, University of Manchester, 2018. https://www.research.manchester.ac.uk/portal/en/theses/statistical-distribution-theory-with-applications-to-finance(415d8a76-64d1-4c78-a299-a931f7e1b48c).html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The whole thesis comprises six chapters, where the running theme focuses on the development of statistical methods and distribution theory, with applications to finance. It begins with Chapter 1, which provides the introduction and background to my thesis. This is then followed by Chapters 2 through to 6, which provide the main contributions. The exact distribution of the sum of more than two independent beta random variables is not a known result. Even in terms of approximations, only the normal approximation is known for the sum. Motivated by Murakami (2014), Chapter 2 derives a saddlepoint approximation for the distribution of the sum. An extensive simulation study shows that it always gives better performance than the normal approximation. Jin et al. (2016) proposed a novel moments based approximation based on the gamma distribution for the compound sum of independent and identical random variables, and illustrated their approximation through the use of six examples. Chapter 3 revisits four of their examples, and it is shown that moments based approximations based on simpler distributions can be good competitors. The moments based approximations are also shown to be more accurate than the truncated versions of the exact distribution of the compound sum. Results regarding the performances of the approximations are provided, which could be useful in determining which approximation should be used given a real data set. The estimation of the size of large populations can often be a significant problem. Chapter 4 proposes a new population size estimator and provides a comparison of its performance with two recent estimators known in the literature. The comparison is based on a simulation study and applications to two real big data sets from the Twitter and LiveJournal social networks. The proposed estimator is shown to outperform the known estimators, at least for small sample sizes. In recent years, with a growing interest in big or large datasets, there has been a rise in the application of large graphs and networks to financial big data. Much of this research has focused on the construction and analysis of the network structure of stock markets, based on the relationships between stock prices. Motivated by Boginski et al. (2005), who studied the characteristics of a network structure of the US stock market, Chapter 5 constructs network graphs of the UK stock market using the same method. Four distributions are fitted to the degree density of the vertices from these graphs: the Pareto I, Frechet, lognormal, and generalised Pareto distributions, and their goodness of fits are assessed. Results show that the degree density of the complements of the market graphs, constructed using a negative threshold value close to zero, can be fitted well with the Frechet and lognormal distributions. Chapter 6 analyses statistical properties of the largest cryptocurrencies (determined by market capitalisation), of which Bitcoin is the most prominent example. The analysis characterises their exchange rates versus the US Dollar by fitting parametric distributions to them. It is shown that cryptocurrency returns are clearly non-normal, however, no single distribution fits well jointly to all of the cryptocurrencies analysed. We find that for the most popular cryptocurrencies, such as Bitcoin and Litecoin, the generalised hyperbolic distribution gives the best fit, whilst for the smaller cryptocurrencies the normal inverse Gaussian distribution, generalised t distribution, and Laplace distribution give good fits. The results are important for investment and risk management purposes.
7

Chabbouh, Ikram. "Fracs : un système de fragmentation et de distribution d'applications Web." Paris 6, 2007. http://www.theses.fr/2007PA066582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le but de cette thèse est de proposer une solution efficace pour améliorer les performances des applications Web. Les systèmes d’accélération visent, en particulier, à résoudre ce problème. Le système que nous proposons s’appelle FRACS. L’idée centrale de FRACS est de fragmenter les applications Web, identifier les fragments réplicables, et les répliquer dynamiquement avec les tables de la base de données qu’ils accèdent, en vue de générer le contenu dynamique demandé au niveau du réseau. FRACS cache également le résultat d’exécution des fragments lorsque cela est possible pour accélérer la génération du contenu dynamique. FRACS a principalement quatre majeures contributions. D’abord, il fournit un module qui fragmente automatiquement le code des applications Web d’une manière statique. Les filtres représentent également une contribution intéressante de FRACS. En plus d’identifier le contenu généré d’une manière unique, les filtres permettent de déterminer les identificateurs des fragments nécessaires à la construction d’une page, même si l’URL exacte de cette page n’a pas été accédée. Une autre contribution de notre travail réside dans les protocoles de cohérence proposés pour les fragments de contenu cachés et les bases de données partiellement répliquées. Enfin contrairement aux CDNs existants, FRACS permet aux fournisseurs de contenu d’adapter les politiques de réplication du CDN aux besoins spécifiques de leurs applications, ainsi que de maîtriser leur utilisation des ressources du CDN.
8

Reggente, Matteo. "Statistical gas distribution modelling for mobile robot applications." Doctoral thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-37896.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this dissertation, we present and evaluate algorithms for statistical gas distribution modelling in mobile robot applications. We derive a representation of the gas distribution in natural environments using gas measurements collected with mobile robots. The algorithms fuse different sensors readings (gas, wind and location) to create 2D or 3D maps. Throughout this thesis, the Kernel DM+V algorithm plays a central role in modelling the gas distribution. The key idea is the spatial extrapolation of the gas measurement using a Gaussian kernel. The algorithm produces four maps: the weight map shows the density of the measurements; the confidence map shows areas in which the model is considered being trustful; the mean map represents the modelled gas distribution; the variance map represents the spatial structure of the variance of the mean estimate. The Kernel DM+V/W algorithm incorporates wind measurements in the computation of the models by modifying the shape of the Gaussian kernel according to the local wind direction and magnitude. The Kernel 3D-DM+V/W algorithm extends the previous algorithm to the third dimension using a tri-variate Gaussian kernel. Ground-truth evaluation is a critical issue for gas distribution modelling with mobile platforms. We propose two methods to evaluate gas distribution models. Firstly, we create a ground-truth gas distribution using a simulation environment, and we compare the models with this ground-truth gas distribution. Secondly, considering that a good model should explain the measurements and accurately predicts new ones, we evaluate the models according to their ability in inferring unseen gas concentrations. We evaluate the algorithms carrying out experiments in different environments. We start with a simulated environment and we end in urban applications, in which we integrated gas sensors on robots designed for urban hygiene. We found that typically the models that comprise wind information outperform the models that do not include the wind data.
9

Kasolis, Fotios. "The Material Distribution Method : Analysis and Acoustics applications." Doctoral thesis, Umeå universitet, Institutionen för datavetenskap, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-92538.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
For the purpose of numerically simulating continuum mechanical structures, different types of material may be represented by the extreme values {,1}, where 0<1, of a varying coefficient  in the governing equations. The paramter  is not allowed to vanish in order for the equations to be solvable, which means that the exact conditions are approximated. For example, for linear elasticity problems, presence of material is represented by the value  = 1, while  =  provides an approximation of void, meaning that material-free regions are approximated with a weak material. For acoustics applications, the value  = 1 corresponds to air and  to an approximation of sound-hard material using a dense fluid. Here we analyze the convergence properties of such material approximations as !0, and we employ this type of approximations to perform design optimization. In Paper I, we carry out boundary shape optimization of an acoustic horn. We suggest a shape parameterization based on a local, discrete curvature combined with a fixed mesh that does not conform to the generated shapes. The values of the coefficient , which enters in the governing equation, are obtained by projecting the generated shapes onto the underlying computational mesh. The optimized horns are smooth and exhibit good transmission properties. Due to the choice of parameterization, the smoothness of the designs is achieved without imposing severe restrictions on the design variables. In Paper II, we analyze the convergence properties of a linear elasticity problem in which void is approximated by a weak material. We show that the error introduced by the weak material approximation, after a finite element discretization, is bounded by terms that scale as  and 1/2hs, where h is the mesh size and s depends on the order of the finite element basis functions. In addition, we show that the condition number of the system matrix scales inversely proportional to , and we also construct a left preconditioner that yields a system matrix with a condition number independent of . In Paper III, we observe that the standard sound-hard material approximation with  =  gives rise to ill-conditioned system matrices at certain wavenumbers due to resonances within the approximated sound-hard material. To cure this defect, we propose a stabilization scheme that makes the condition number of the system matrix independent of the wavenumber. In addition, we demonstrate that the stabilized formulation performs well in the context of design optimization of an acoustic waveguide transmission device. In Paper IV, we analyze the convergence properties of a wave propagation problem in which sound-hard material is approximated by a dense fluid. To avoid the occurrence of internal resonances, we generalize the stabilization scheme presented in Paper III. We show that the error between the solution obtained using the stabilized soundhard material approximation and the solution to the problem with exactly modeled sound-hard material is bounded proportionally to .
10

Blasi, Bronson Richard. "DC microgrids: review and applications." Kansas State University, 2013. http://hdl.handle.net/2097/16823.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Master of Science
Department of Architectural Engineering and Construction Science
Fred Hasler
This paper discusses a brief history of electricity, specifically alternating current (AC) and direct current (DC), and how the current standard of AC distribution has been reached. DC power was first produced in 1800, but the shift to AC occurred in the 1880’s with the advent of the transformer. Because the decisions for distribution were made over 100 years ago, it could be time to rethink the standards of power distribution. Compared to traditional AC distribution, DC microgrids are significantly more energy efficient when implemented with distributed generation. Distributed generation, or on-site generation from photovoltaic panels, wind turbines, fuel cells, or microturbines, is more efficient when the power is transmitted by DC. DC generation, paired with the growing DC load profile, increases energy savings by utilizing DC architecture and eliminating wasteful conversions. Energy savings would result from a lower grid strain and more efficient utilization of the utility grid. DC distribution results in a more reliable electrical service due to short transmission distances, high service reliability when paired with on-site generation, and efficient storage. Occupant safety is a perceived concern with DC microgrids due to the lack of knowledge and familiarity in regards to these systems. However, with proper regulation and design standards, building occupants never encounter voltage higher than 24VDC, which is significantly safer than existing 120VAC in the United States. DC Microgrids have several disadvantages such as higher initial cost due, in part, to unfamiliarity of the system as well as a general lack of code recognition and efficiency metric recognition leading to difficult certification and code compliance. Case studies are cited in this paper to demonstrate energy reduction possibilities due to the lack of modeling ability in current energy analysis programs and demonstrated energy savings of approximately 20%. It was concluded that continued advancement in code development will come from pressure to increase energy efficiency. This pressure, paired with the standardization of a 24VDC plug and socket, will cause substantial increases in DC microgrid usage in the next 10 years.

Книги з теми "Distribution des applications":

1

Mentzer, John T. Computer applications in distribution. Bradford: MCB University Press, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schnekenburger, Thomas. Dynamic load distribution for parallel applications. Stuttgart: Teubner, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bryc, Wlodzimierz. The normal distribution: Characterizations with applications. New York: Springer-Verlag, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Schnekenburger, Thomas, and Georg Stellner, eds. Dynamic Load Distribution for Parallel Applications. Wiesbaden: Vieweg+Teubner Verlag, 1997. http://dx.doi.org/10.1007/978-3-663-01522-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Burke, James J. Power distribution engineering: Fundamentals and applications. New York: M. Dekker, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Consul, P. C. Generalized Poisson distributions: Properties and applications. New York: M. Dekker, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kotz, Samuel. Models and Applications. 2nd ed. New York, USA: Wiley-Interscience, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gine, Evarist. Stochastic Inequalities and Applications. Basel: Birkhäuser Basel, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Seshadri, V. The inverse Gaussian distribution: Statistical theory and applications. New York: Springer, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Barndorff-Nielsen, Ole E. Lévy Processes: Theory and Applications. Boston, MA: Birkhäuser Boston, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Distribution des applications":

1

Samitier, Carlos. "Smart Distribution Applications." In Utility Communication Networks and Services, 45–46. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40283-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lo, Yang. "The Spread Relation and Its Applications." In Value Distribution Theory, 216–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-02915-2_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Anderson, Gordon. "Some Applications." In Global Perspectives on Wealth and Distribution, 181–202. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21130-1_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chang, Gerard J., Lirong Cui, and Frank K. Hwang. "The Lifetime Distribution." In Network Theory and Applications, 61–76. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4613-0273-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Goudriaan, Jan. "Light Distribution." In Canopy Photosynthesis: From Basics to Applications, 3–22. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-7291-4_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chatzis, G., S. Livieratos, and P. G. Cottis. "The Use of PLC Technology for Smart Grid Applications Over the MV Grid: The DG Paradigm." In Electricity Distribution, 81–117. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49434-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Feng, Shui. "The Poisson–Dirichlet Distribution." In Probability and its Applications, 15–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11194-5_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mininno, Ernesto, and Ferrante Neri. "Estimation Distribution Differential Evolution." In Applications of Evolutionary Computation, 522–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12239-2_54.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Prodinger, Helmut. "The Cantor-Fibonacci Distribution." In Applications of Fibonacci Numbers, 311–18. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5020-0_35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schinazi, Rinaldo B. "Conditional Distribution and Expectation." In Probability with Statistical Applications, 197–208. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-93635-8_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Distribution des applications":

1

Lux, Thomas C. H., Layne T. Watson, Tyler H. Chang, Li Xu, Yueyao Wang, Jon Bernard, Yili Hong, and Kirk W. Cameron. "Effective Nonparametric Distribution Modeling for Distribution Approximation Applications." In SoutheastCon 2020. IEEE, 2020. http://dx.doi.org/10.1109/southeastcon44009.2020.9368295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Esteban, P. "SMES systems applications to improve quality service." In 14th International Conference and Exhibition on Electricity Distribution (CIRED 1997 - Distributing Power for the Millennium). IEE, 1997. http://dx.doi.org/10.1049/cp:19970481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gosme, J., and C. Richard. "Diffused distribution reassignment." In 2005 Microwave Electronics: Measurements, Identification, Applications. IEEE, 2005. http://dx.doi.org/10.1109/ssp.2005.1628717.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Romanyuk, O. N., S. V. Pavlov, R. Yu Dovhaliuk, N. P. Babyuk, M. D. Obidnyk, P. Kisala, and B. Suleimenov. "Microfacet distribution function for physically based bidirectional reflectance distribution functions." In Optical Fibers and Their Applications 2012. SPIE, 2013. http://dx.doi.org/10.1117/12.2019338.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Samuels, William B., and Rakesh Bahadur. "Integrated Network-Based Modeling — Applications to the Water Infrastructure Sector." In Water Distribution Systems Analysis 2008. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41024(340)85.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Isaac, Samantha, Andrew Conrad, Alex Hill, Kyle Herndon, Brian Wilens, Dalton Chaffee, Daniel Sanchez-Rosales, Roderick Cochran, Daniel Gauthier, and Paul Kwiat. "Drone-Based Quantum Key Distribution." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cleo_at.2020.jw2a.16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Curty, Marcos. "Device-Independent Quantum Key Distribution." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/cleo_at.2012.jth4k.6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Isaac, Samantha, Andrew Conrad, Tahereh Rezaei, Daniel Sanchez-Rosales, Roderick Cochran, Akash Gutha, Daniel Gauthier, and Paul Kwiat. "Drone-Based Quantum Key Distribution." In CLEO: Applications and Technology. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cleo_at.2021.atu1s.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Isaac, Samantha, Andrew Conrad, AJ Schroeder, Timur Javid, Daniel Sanchez-Rosales, Roderick D. Cochran, Akash Gutha, Daniel Gauthier, and Paul G. Kwiat. "Drone-Based Quantum Key Distribution." In CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.am3d.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Current quantum cryptography implementations primarily use fixed free-space or fiber-based communication channels. We seek to broaden this to include mobile platforms. Here we report progress towards optical tracking system stabilization leading to efficient quantum state transmission.
10

Wu, Ting-wan, and Guo-hua Wu. "An improved quantum key distribution protocol." In Optical Engineering + Applications, edited by Abdul A. S. Awwal, Khan M. Iftekharuddin, and Bahram Javidi. SPIE, 2008. http://dx.doi.org/10.1117/12.796401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Distribution des applications":

1

Dunleavy, G. J. Technology Insertion - Migration and Distribution of Applications. Fort Belvoir, VA: Defense Technical Information Center, November 1988. http://dx.doi.org/10.21236/ada218301.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Staunton, RH. Evaluation of Distribution Analysis Software for DER Applications. Office of Scientific and Technical Information (OSTI), January 2003. http://dx.doi.org/10.2172/885716.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alleyne, Andrew. Optimized Power Generation and Distribution Unit for Mobile Applications. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada483738.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tolbert, L. M. Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications. Office of Scientific and Technical Information (OSTI), December 2005. http://dx.doi.org/10.2172/885985.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Merritt, Alexander M., and Kevin Thomas Tauke Pedretti. LDRD final report : managing shared memory data distribution in hybrid HPC applications. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/1007320.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Meyer, Jack, and Robert Rasche. Kolmogorov-Smirnov Tests For Distribution Function Similarity With Applications To Portfolios of Common Stock. Cambridge, MA: National Bureau of Economic Research, March 1989. http://dx.doi.org/10.3386/t0076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

SIPOLA, DIANA L., JAMES A. VOIGT, STEVEN J. LOCKWOOD, and EMILY D. RODMAN-GONZALES. Chem-Prep PZT 95/5 for Neutron Generator Applications: Particle Size Distribution Comparison of Development and Production-Scale Powders. Office of Scientific and Technical Information (OSTI), July 2002. http://dx.doi.org/10.2172/801386.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lackritz, Hilary L. Nonlinear Optical and Charge Distribution Studies Probing Electric Field Effects in Polymer Thin Films for Second Order Nonlinear Optical Applications. Fort Belvoir, VA: Defense Technical Information Center, September 1996. http://dx.doi.org/10.21236/ada315598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Freund, F., and J. J. Plombon. A Charge Distribution Analysis instrument for catalysis and material science applications. Second quarterly technical progress report, January 1, 1994--March 31, 1994. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10157578.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Freund, F. A charge distribution analysis instrument for catalysis and material science applications; First quarterly technical progress report, October 1, 1993--December 31, 1993. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/143987.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії