Добірка наукової літератури з теми "Dosimetry gel"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dosimetry gel".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Dosimetry gel":

1

Gafar, Sameh Mohamed, and Nehad Magdy Abdel-Kader. "Radiation induced degradation of murexide dye in two media for possible use in dosimetric applications." Pigment & Resin Technology 48, no. 6 (November 4, 2019): 540–46. http://dx.doi.org/10.1108/prt-02-2019-0014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Purpose The purpose of this paper is to study the effect of gamma-rays on murexide (Mx) dye and its possible use as radiation dosimeters in two different dosimetry systems. The first system depends on the Mx dye as a liquid dosimeter. The second dosimetry system depends also on the same dye but as in a gel form, which is more sensitive to gamma-rays. Design/methodology/approach The prepared Mx (solutions/gels) have a considerable two peaks at 324 and 521 nm that upon irradiation, the intensity of these peaks decreases with the increasing radiation dose. Findings The gamma-ray absorbed dose for these dosimeters was found to be up to 2 kGy for the solution samples and 40 Gy for the gels. Radiation chemical yield, dose response function, radiation sensitivity and before and after-irradiation stability under various conditions were discussed and studied. Practical implications It is expected that the radiolysis of the Mx dye can be used as radiation dosimeters in two different dosimetry systems; liquid and gel dosimeters. This can be applied in a wide range of gamma radiation practical industrial applications in water treatment, food irradiation dosimeters, radiotherapy and fresh food irradiation and seed production. Originality/value Both of the prepared Mx dyes, either as solutions or gel samples, can be facilely prepared from commercially, cheap, safe, available chemicals and suitable for useful applied Mx solutions and gels radiation dosimeters.
2

Dhakal, Rabin, Mohammad Yosofvand, and Hanna Moussa. "Development and Application of MAGIC-f Gel in Cancer Research and Medical Imaging." Applied Sciences 11, no. 17 (August 24, 2021): 7783. http://dx.doi.org/10.3390/app11177783.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Much of the complex medical physics work requires radiation dose delivery, which requires dosimeters to accurately measure complex three-dimensional dose distribution with good spatial resolution. MAGIC-f polymer gel is one of the emerging new dosimeters widely used in medical physics research. The purpose of this study was to present an overview of polymer gel dosimetry, using MAGIC-f gel, including its composition, manufacture, imaging, calibration, and application to medical physics research. In this review, the history of polymer gel development is presented, along with the applications so far. Moreover, the most important experiments/applications of MAGIC-f polymer gel are discussed to illustrate the behavior of gel on different conditions of irradiation, imaging, and manufacturing techniques. Finally, various future works are suggested based on the past and present works on MAGIC-f gel and polymer gel in general, with the hope that these bits of knowledge can provide important clues for future research on MAGIC-f gel as a dosimeter.
3

Chacón, D., M. Romero, F. Mattea, and M. Valente. "DEVELOPMENT OF A LASER SCANNER FOR POLYMER GEL DOSIMETRY." AnalesAFA Vol.31 N.2 31, no. 2 (2020): 55–61. http://dx.doi.org/10.31527/analesafa.2020.31.2.55.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Advances of the medical application of ionizing radiation, and specifically in cancer treatment, are continuously evolving and gaining higher degrees of complexity. Therefore, the ability to determine and ensure the safety and precision of these techniques must be accompanied by novel dosimetry systems. Polymer gel dosimetry is one of the new and re-markable dosimetry systems that can quantitatively record the absorbed dose and register 3D dose distributions with high resolution while maintaining tissue-equivalent properties. Typical methods used to read the recorded signal in a polymer gel dosimeter, such as magnetic resonance imaging, X-ray tomography, and ultrasound-based techniques in-clude complex and expensive instruments. On the other hand, there are low-cost alternatives like optical methods that can be optimized and designed for the study of polymer gel dosimetry. The objective of this study is to present the de-sign, construction, development, and characterization of a low-cost laser scanner for bi-dimensional PGD analysis. With this equipment, characterization and optimization assays were performed on typical samples, and compared to those obtained by commercial or validated instruments with similar results, proving the capacity of the designed instrument as a reading tool for polymeric gel dosimetry.
4

Razak, Nik, Azhar Rahman, Sivamany Kandaiya, Iskandar Mustafa, Nor Yahaya, Amer Mahmoud, and Ramzun Maizan. "Accuracy and Precision of Magat Gel As a Dosimeter." Material Science Research India 12, no. 1 (February 26, 2015): 01–07. http://dx.doi.org/10.13005/msri/120101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Polymer gel dosimeter is a radiation sensitive chemical dosimeter that can measure 3 D dose distribution with high resolution. Due to the increasing complexity of radiotherapy treatment planning and delivery, accurate experimental radiation dosimetry plays an important role in the implementation and quality assurance of new treatment techniques. A polymer gel dosimeter must possess several important characteristics of a dosimeter to be able to measure absorbed dose precisely. two important dosimetric properties of a dosimeter were determined in this study; accuracy and precision. The MAGAT gels were made of 5% gelatin, 6% methacrylic acid and 10 mM tetrakis-hydroxy-methyl-phosphonium chloride (THPC). The irradiation of MAGAT gel was performed by 6-MV photon beam at a dose range 1 to 10 Gy and was imaged by 1.5 T Magnetic Resonance Imaging (MRI). The dose response of MAGAT gel dosimeter was obtained from spin-spin relaxation rate (R2) of MRI signal. The accuracy of MAGAT gel dosimeter has a range within 4% for doses greater than and equal to 3 Gy. The reproducibility of the MAGAT gel dosimeter at one irradiation was less than 1% whilst the long term reproducibility was within 3% over the five month period. For temporal stability, the dose sensitivity of MAGAT gel dosimeter irradiate at 1 to 11 days post-manufacturing decreased over time. While the dose sensitivity imaged at 1 to 9 days post-irradiation increased up to 4 days post-irradiation and subsequently starts decreasing after 4 days till 9 days. From the study of two dosimetric properties, MAGAT gel dosimeter shows a great dose response with a superior dose response. Thus the MAGAT gel dosimeter can be apply as a 3 D radiotherapy dosimeter.
5

Morin, Richard L., and Geoffrey S. Ibbott. "Gel Dosimetry." Journal of the American College of Radiology 3, no. 2 (February 2006): 144–46. http://dx.doi.org/10.1016/j.jacr.2005.10.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

De Deene, Yves. "Radiation Dosimetry by Use of Radiosensitive Hydrogels and Polymers: Mechanisms, State-of-the-Art and Perspective from 3D to 4D." Gels 8, no. 9 (September 19, 2022): 599. http://dx.doi.org/10.3390/gels8090599.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Gel dosimetry was developed in the 1990s in response to a growing need for methods to validate the radiation dose distribution delivered to cancer patients receiving high-precision radiotherapy. Three different classes of gel dosimeters were developed and extensively studied. The first class of gel dosimeters is the Fricke gel dosimeters, which consist of a hydrogel with dissolved ferrous ions that oxidize upon exposure to ionizing radiation. The oxidation results in a change in the nuclear magnetic resonance (NMR) relaxation, which makes it possible to read out Fricke gel dosimeters by use of quantitative magnetic resonance imaging (MRI). The radiation-induced oxidation in Fricke gel dosimeters can also be visualized by adding an indicator such as xylenol orange. The second class of gel dosimeters is the radiochromic gel dosimeters, which also exhibit a color change upon irradiation but do not use a metal ion. These radiochromic gel dosimeters do not demonstrate a significant radiation-induced change in NMR properties. The third class is the polymer gel dosimeters, which contain vinyl monomers that polymerize upon irradiation. Polymer gel dosimeters are predominantly read out by quantitative MRI or X-ray CT. The accuracy of the dosimeters depends on both the physico-chemical properties of the gel dosimeters and on the readout technique. Many different gel formulations have been proposed and discussed in the scientific literature in the last three decades, and scanning methods have been optimized to achieve an acceptable accuracy for clinical dosimetry. More recently, with the introduction of the MR-Linac, which combines an MRI-scanner and a clinical linear accelerator in one, it was shown possible to acquire dose maps during radiation, but new challenges arise.
7

Mohyedin, Muhammad Zamir, Hafiz Mohd Zin, Mohd Zulfadli Adenan, and Ahmad Taufek Abdul Rahman. "A Review of PRESAGE Radiochromic Polymer and the Compositions for Application in Radiotherapy Dosimetry." Polymers 14, no. 14 (July 16, 2022): 2887. http://dx.doi.org/10.3390/polym14142887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Recent advances in radiotherapy technology and techniques have allowed a highly conformal radiation to be delivered to the tumour target inside the body for cancer treatment. A three-dimensional (3D) dosimetry system is required to verify the accuracy of the complex treatment delivery. A 3D dosimeter based on the radiochromic response of a polymer towards ionising radiation has been introduced as the PRESAGE dosimeter. The polyurethane dosimeter matrix is combined with a leuco-dye and a free radical initiator, whose colour changes in proportion to the radiation dose. In the previous decade, PRESAGE gained improvement and enhancement as a 3D dosimeter. Notably, PRESAGE overcomes the limitations of its predecessors, the Fricke gel and the polymer gel dosimeters, which are challenging to fabricate and read out, sensitive to oxygen, and sensitive to diffusion. This article aims to review the characteristics of the radiochromic dosimeter and its clinical applications. The formulation of PRESAGE shows a delicate balance between the number of radical initiators, metal compounds, and catalysts to achieve stability, optimal sensitivity, and water equivalency. The applications of PRESAGE in advanced radiotherapy treatment verifications are also discussed.
8

Baldock, C., Y. De Deene, S. Doran, G. Ibbott, A. Jirasek, M. Lepage, K. B. McAuley, M. Oldham, and L. J. Schreiner. "Polymer gel dosimetry." Physics in Medicine and Biology 55, no. 5 (February 11, 2010): R1—R63. http://dx.doi.org/10.1088/0031-9155/55/5/r01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schreiner, L. J., T. Olding, and K. B. McAuley. "Polymer gel dosimetry." Journal of Physics: Conference Series 250 (November 1, 2010): 012014. http://dx.doi.org/10.1088/1742-6596/250/1/012014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wolfel, A., D. Chacón, M. R. Romero, M. Valente, and F. Mattea. "DEVELOPMENT OF POLYMERIC MATERIALS FOR X-RAY DOSIMETRY WITH ENHANCED OPTICAL SENSIBILITY." Anales AFA 31, no. 3 (2020): 101–6. http://dx.doi.org/10.31527/analesafa.2020.31.3.101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The use of a new reagent with the capacity of forming colored organo-metallic complexes with metal ions is herein studied for its application in X-Ray dosimetry, aiming to assess its effect on the dose-sensitivity of polymer gel dosimetry. The improvement of the sensitivity of polymeric dosimeters, commonly used to quantitatively register dose distribution in radiotherapy, requires considering both the intrinsic mechanism involved in the irradiation of the dosimetry system (polymerization) and the selected readout technique (e.g. spectroscopy techniques). One of the most used readout methods is measuring the change in the optical density of the dosimeters after their irradiation. The formulation of a new sensitive material able to form organo-metallic complexes and the potentiality of achieving significant changes in the optical density in the irradiated region is studied in this work. For this purpose, a new monomer (GMA-IDA) was synthesized and used in the polymerization with other monomers, commonly employed in polymer gel dosimetry (acrylamide, N,N’-methylenebisacrylamide y N-isopropilacrylamide. The polymerization of the new sensitive material was initiated by a redox reaction (APS/TEMED) or by ionizing radiation (X-Rays), then the effect of the new monomer over the performance of the dosimetry material was evaluated. Results indicated that the new formed polymer has the capacity of forming colored complexes with Cu2+.

Дисертації з теми "Dosimetry gel":

1

Wong, Christopher James, and chrisjwong@yahoo com au. "High Resolution Polymer Gel Dosimetry for Small and Micro Field Dosimetry, and Development of Innovative Polymer Gel Dosimeters." RMIT University. Medical Sciences, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20091002.161512.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Current radiotherapy techniques are focused on delivering effective treatments while sparing surrounding healthy tissues. As a result, radiotherapy treatments are using narrower and more tightly conforming therapy techniques. For these treatments to be effective an accurate measure of the dose delivered by these very narrow radiotherapy beams, both in and around the target volume, is required. It is a challenging task for the conventional type dosimeters to determine dose distribution in such small fields. The best example of such fields is microbeam beam radiotherapy (MRT), a developing treatment technique that takes this requirement even further. MRT delivers an array of micrometre size radiotherapy beams to the target. MRT has been shown to be highly effective, but reliable dosimetry of MRT is challenging due to the micrometre scales involved. Attempts to determine the MRT dose distribution have been documented for using special type dosimeters such as radioch romic film and MOSFET detectors, as well as Monte Carlo simulations. This thesis investigates polymer gels as a dosimeter for dose distribution measurements of small radiotherapy fields and microbeams. Polymer gel dosimetry is a technique which uses a tissue-equivalent gel to act as both a three-dimensional dosimeter and a phantom at the same time. These gels polymerise when exposed to ionising radiation and the response is locally dose dependent linearly. This thesis investigates the use of polymer gels for the dosimetry of small sub-centimetre (down to 3 × 3 mm2) and micrometre radiotherapy fields. A high resolution imaging technique is also required for such small beam dosimetry. This work used special high strength MRI scanners to analyse polymer gels at high resolution. This work explores the feasibility of polymer gels irradiated by microbeams and analysed using Raman spectroscopy as a dosimeter for synchrotron generated microbeams. MRT is characterised by very high doses, and special high-dose resistive types of gel were developed as part of this work. It is shown that polymer gels imagined using Raman spectroscopy techniques are capable of measuring the dose distribution of microbeam radiation techniques. This thesis also investigates the use of polymer gels to measure dose perturbations caused by metallic artefacts. Metallic artefacts, such as a surgical aneurysm clip, can be left in a patient and cause dose perturbations during radiotherapy procedures. Polymer gels were used to determine the degree of dose enhancement induced by an aneurysm clip placed inside when irradiated with a typical stereotactic radiotherapy procedure. In addition, this thesis used gels in several other innovative applications. Photonuclear interactions generated in gel by high energy x-ray beams were measured via secondary neutrons. Special clear-type gels that do not change colour with irradiation were developed. Polymer gels were investigated for dosimetry of an extremely high dose rate capacitor type linear accelerator. And polymer gels were for measurement of a high energy proton beam.
2

Pavoni, Juliana Fernandes. "Dosimetria tridimensional por imagens de ressonância magnética com gel MAGIC modificado." Universidade de São Paulo, 2009. http://www.teses.usp.br/teses/disponiveis/59/59135/tde-27042010-171038/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Os avanços nas técnicas de tratamento com radiação ionizante estão gerando distribuições de dose muito complexas que precisam ser verificadas antes da aplicação do tratamento no paciente. Diversos dosímetros já foram propostos para esta verificação, mas o que vem apresentando os melhores resultados são os géis poliméricos que permitem a visualização tridimensional da dose. Neste trabalho desenvolvemos um gel dosimétrico do tipo MAGIC com componentes nacionais, para baratear o custo e assim, facilitar a sua aplicação na rotina clínica. Nós adicionamos formaldeído ao gel para aumentar seu ponto de fusão e facilitar seu manuseio em temperatura ambiente. A avaliação das doses foi feita através da relaxometria em imagens de ressonância magnética nuclear (IRMN). Foi encontrada uma resposta linear para dose de até 15Gy e uma dependência energética significativa para feixes de baixa energia (kVp), enquanto que para alta energia (MV) a dependência encontrada foi pequena. A variação da resposta do dosímetro em função da taxa de dose da irradiação foi menor que 5% nas taxas de 100 a 600cGy/min. A adição de formaldeído não eliminou a dependência da resposta do dosímetro para variações na temperatura durante a aquisição das IRMN, já a integridade da distribuição de dose se manteve inalterada por um período de três meses na irradiação de um campo blindado ao meio. Medidas tridimensionais de distribuição de dose foram realizadas para dois planos de radioterapia com intensidade modulada de feixe o primeiro em um acelerador linear e o segundo em um equipamento de tomoterapia, grande semelhança entre a sobreposição das isodoses e dos perfis de dose das imagens medidas com o gel e esperadas pelo sistema de planejamento (TPS) foi encontrada. A avaliação realmente tridimensional foi feita com os histogramas dose-volume (DVH), sendo que uma sobreposição entre os DVHs calculados para o volume planejado e os esperados pelo TPS foi encontrada nos dois planejamentos. Por tudo o que foi estudado, pode-se concluir que a modificação realizada no gel MAGIC resultou em um dosímetro de fácil manuseio que pode ser aplicado para medidas tridimensionais.
Advances in the treatment techniques with ionizing radiation are resulting in complex dose distributions that need to be verified before the application of the treatment in the patient. Several dosimeters have been suggested for this application, but polymeric gel dosimeters are presenting the best results so far, since they allow three dimensional dose visualization, are tissue equivalent, don\'t have dependence with angular distribution of the incident radiation and have a high spatial resolution. In this work a polymeric gel dosimeter with national components, to reduce de costs and facilitate its introduction in the clinical practice was developed. Formaldehyde was added to the gel formulation to increase its melting temperature and facilitate its use in typical room temperatures found in our country. Dose response analysis was done using nuclear magnetic resonance relaxometry. All the dosimetric characterization was done. We found a linear dose-response curve for doses until 15Gy and significant energy dependence for low energy beams (kVp), but for high energy beams (MV) this dependence is smaller. The response variation when varying the dose rate of irradiation was smaller than 5% in the dose rate range of clinical use in teletherapy (100-600cGy/min). The addition of formaldehyde did not eliminate the dosimeter dependence with variation of the scanning temperature; the integrity of dose distribution was unaltered at least for a tree month period of time in a half beam irradiation phantom. Tri-dimensional dose distributions were measured in two radiotherapy systems using intensity modulated beams, the first one in a linear accelerator and the second in a tomotherapy machine. A high similarity was found between the overlapping of isodoses and dose profiles of the dose distribution measured with the gel and expected by the treatment planning. The real tri- dimensional analysis was done with dose-volume histograms (DVH) and the DVHs measured for the planning volume and expected by the treatment planning were in good agreement. Our results show that the modification done in the gel formulation resulted in a dosimeter easy to handle and feasible for tri-dimensional measurements.
3

Atkins, Timothy John. "Investigation of ultrasonic properties of MAGIC gels for pulse-echo gel dosimetry." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/371793/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis describes investigations into the design and evaluation of novel ultrasonic methods for 3-dimensional ionising radiation dose verification. Pulse-echo ultrasound methods were investigated for the measurement and analysis of complex radiation therapy dose delivery. The physical properties of MAGIC (Methacrylic and Ascorbic acid in Gelatin Initiated by Copper) polymer gel dosimeters have been characterized. The variations of speed of sound, ultrasonic attenuation coefficient and density of MAGIC gel with radiation dose and temperature have been quantified. This extends work that has previously been reported for the properties of this gel to the effect of measurement temperature on the results. The facilities to perform these measurements were specified, constructed and evaluated as part of the project. The measurement of radiation dose using ultrasound back scatter from an interface between the polymer gel dosimeter and an inert reflector is demonstrated. To enable the measurement of radiation dose using pulse-echo ultrasound methods a novel inert material has been specified, manufactured and characterised. This material is matched to the acoustic impedance of MAGIC gel to produce the most dose-sensitive reflections. The reflections from the interface between the inert reflector and dose-dependent MAGIC gel have been analysed using both a single element transducer and a commercial ultrasound scanner. Both measurement systems demonstrate the same dose and temperature dependence of the ultrasonic reflection. A methodology has been developed to relate pixel values from the ultrasound scanner to the amplitude of the reflected ultrasound signal. A phantom consisting of an array of threads formed from the inert backscattering material has been designed and constructed and a method of extracting pixel data from images of the array acquired using a commercial ultrasound scanner has been developed, so that multiple imaging positions could be used to perform a 3-dimensional assessment of radiation dose distributions. It has been demonstrated that a pulse-echo technique using a commercial ultrasound scanner shows promise for radiation gel dosimetry. Further investigation and alternative polymer gel and inert reflector combinations may improve these techniques.
4

Bäck, Sven Å J. "Implementation of MRI gel dosimetry in radiation therapy." Malmö : Lund : Malmö University Hospital ; Lund University, 1998. http://catalog.hathitrust.org/api/volumes/oclc/68945079.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Silveira, Michely Cristina da. "Distribuição da dose absorvida no tratamento da micose fungóide através da dosimetria Fricke Xilenol Gel." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/59/59135/tde-04032011-155301/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A radioterapia utiliza a radiação ionizante para a destruição de células tumorais. O controle da dose absorvida de um tipo específico de radiação aplicada a um volume alvo (tumor) é feito através da dosimetria, (uso de sensores de radiação), que neste trabalho foram utilizados os dosímetros químicos Fricke e filme. Dentre os diversos tipos de câncer, indicados para tratamento, utilizando a radiação ionizante, têm-se também a neoplasia Micose Fungóide (MF), linfoma que se alastra na superfície e em profundidade na pele para o qual elétrons com alta energia são utilizados para seu tratamento, devido aos seus alcances. Neste trabalho o Fricke Xilenol Gel (FXG) foi utilizado para o planejamento do tratamento da MF, para averiguar a distribuição da dose absorvida proveniente das interações dos elétrons com os tecidos. Para tal, foram construídas cubetas especiais em acrílico (tomos) conformacionadas aos contornos do crânio e do abdômen, que uma vez preenchidas com o FXG serviram para avaliar as doses absorvidas num objeto simulador antropomórfico, o Rando Phantom. O simulador, completado com cubetas e filmes radiocrômicos, este último também conformacionado aos dois contornos de interesse, foi submetido à técnica de Stanford para irradiação do corpo total com elétrons de 6 MeV. Imagens CCD e de densidade radiográfica foram feitas e posteriormente avaliadas, através de perfis horizontais e verticais passando por seus centros. Estes a seguir foram analisados por programas computacionais: um desenvolvido no Matlab para as imagens do FXG e o outro pelo programa já conhecido, ImageJ, para as imagens do filme. Das medidas, pode-se inferir que o dosímetro FXG se presta, similarmente ao filme, para as avaliações da dose absorvida devida aos elétrons na superfície do paciente e no seu interior, devida à contaminação por raios-X.
Radioterapy uses ionizing radiation to destroy tumor cells. The absorbed dose control in a target volume is done through dosimetry, using radiation sensors, being the Fricke and film used in this study. Among several types of cancer indicated for treatment using ionizing radiation, there is also the Mycosis Fungoides (MF), lymphom that spreads on surface and depth in the skin, for which high-energy electrons are used for its treatment. In this work the Fricke Xylenol Gel (FXG) was used for MF treatment control, to obtain the absorbed dose distribution from electrons interaction with the tissues. For this scope cuvettes were manufactured of acrylic (slices), with the same contours of the skull and abdomen anthropomorphic simulator tomos. Once filled with the FXG, these cuvettes were used to infer the absorbed dose by the anthropomorphic simulator Rando Phantom. This simulator, completed with the cuvettes and radiochromic films, this last one also with the same contours similar to skull and abdomen were submitted to the Stanford technique, for 6 MeV electrons total body irradiation. CCD and radiographic density images were acquired and evaluated by horizontal and vertical profiles through theirs centers. These profiles were analyzed through a computer programs: one developed in Matlab for FXG images and the other by an already known program, ImageJ, for film images. From the results one can infer that the FXG dosimeter presents similarity with that of film, in the evaluation of the absorbed dose distribution on surface and also inside of the patient.
6

Sakuraba, Roberto Kenji. "Desenvolvimento de um sistema de verificação dosimétrica tridimensional utilizando Solução Fricke gel na aplicação para a verificação da Radioterapia em Arco Modulado Volumétrico (VMAT) nos tratamentos com movimentação do alvo pela respiração." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/85/85131/tde-03032016-091027/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A Radioterapia em arco modulado volumétrico (VMAT) é uma das modalidades mais avançadas em teleterapia para o tratamento de câncer. Os diversos avanços tecnológicos, bem como a evolução das técnicas de tratamento tornaram o VMAT como uma das modalidades de estado da arte para o tratamento de alguns cânceres. Parte deste avanço é creditada à melhoria na acurácia e na prescrição de dose absorvida recomendada ao paciente ao longo dos anos. Este avanço permite que atualmente seja possível realizar os cálculos dosimétricos, por meio de sistemas de planejamento computadorizado, considerando as heterogeneidades dos pacientes, tais como: tecidos e órgãos com composições diferentes da água (meio de referência em radioterapia), contorno do paciente individualizado e o movimento dos tumores com a respiração. Tais avanços demandam o controle de qualidade destas ferramentas, com objetivo de assegurar que todo o processo de tratamento seja satisfatório e acurado. A comunidade dispõe poucos sistemas experimentais capazes de avaliar, considerando os níveis de incerteza, se os sistemas de planejamento computadorizados são aptos a considerar a movimentação dos alvos nos tratamentos com VMAT. Neste trabalho serão apresentados os resultados obtidos empregando um objeto simulador Fricke Xylenol Gel, com capacidade de mensurar as diferenças introduzidas pela movimentação, utilizando Imagem por Ressonância Magnética - MRI e comparando qualitativamente e quantitativamente os resultados. São discutidas as principais etapas de desenvolvimento deste objeto simulador, seus resultados experimentais, conclusões.
Volumetric Modulated Arc Therapy (VMAT) is one of the methods most commonly used in teletherapy to treat cancer. The various technological advances and the evolution of treatment techniques made the VMAT as one of the state of the art methods for the treatment of some cancers. Part of this improvement is credited to improvements in accuracy and prescription dose absorbed recommended to the patient over the years. This advance allows currently is possible to perform dosimetric calculations by means of the computerized planning system, considering the heterogeneity of patients, such as tissues and organs with different water compositions medium (reference radiation), and individual patient contour the movement of tumors breathing. Such advances require quality control of these tools, in order to ensure that the entire treatment process is satisfactory and accurate. Up to now, the community lacks an experimental system capable of evaluating, considering the uncertainty levels if the computerized planning systems are able to consider the movement of targets in the treatments with VMAT. In this paper, will be presented the results obtained with the phantom Fricke Xylenol Gel, capable of measuring the differences introduced by movement using the Magnetic Resonance Image - MRI and compared qualitatively and quantitatively. The main stages of the phantom development, their experimental results, conclusions and comparisons with other systems are discussed.
7

Hurley, Christopher Anthony. "The development of normoxic polymer gel dosimetry using high resolution MRI." Queensland University of Technology, 2006. http://eprints.qut.edu.au/16442/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dosimetry is a vital component of treatment planning in radiation therapy. Methods of radiation dosimetry currently include the use of: ionization chambers, thermoluminescent dosimeters (TLDs), solid-state detectors and radiographic film. However, these methods are inherently either 1D or 2D and their use involves the perturbation of the radiation beam. Although the dose distribution within tissues following radiation therapy treatments can be modeled using computerized treatment planning systems, a need exists for a dosimeter that can accurately measure dose distributions directly and produce 3D dose maps. Some radiation therapy and brachytherapy treatments require mapping the dose distributions in high-resolution (typically < 1 mm). A dosimetry technique that is capable of producing high resolution 3D dose maps of the absorbed dose distribution within tissues is required. Gel dosimetry is inherently a 3D integrating dosimeter that offers high spatial resolution, precision and accuracy. Polymer gel dosimetry is founded on the basis that monomers dissolved in the gel matrix polymerize due to the presence of free radicals produced by the radiolysis of water molecules. The amount of polymerization that occurs within a polymer gel dosimeter can be correlated to the absorbed dose. The gel matrix maintains the spatial integrity of the polymers and hence a dose distribution can be determined by imaging the irradiated polymer gel dosimeter using an imaging modality such as MRI, x-ray computed tomography (CT), ultrasound, optical CT or vibrational spectroscopy. Polymer gel dosimeters, however, suffer from oxygen contamination. Oxygen inhibits the polymerization reaction and hence polymer gel dosimeters must be manufactured, irradiated and scanned in hypoxic environments. Normoxic polymer gel dosimeters incorporate an anti-oxidant into the formulation that binds the oxygen present in the gel and allows the dosimeter to be made under normal atmospheric conditions. The first part of this study was to provide a comprehensive investigation into various formulations of polymer and normoxic polymer gel dosimeters. Several parameters were used to characterize and assess the performance of each formulation of polymer gel dosimeter including: spatial resolution and stability, temporal stability of the R2-dose response, optimal R2-dose response for changes in concentration of constituents and the effects of oxygen infiltration. This work enabled optimal formulations to be determined that would provide greater dose sensitivity. Further work was done to investigate the chemical kinetics that take place within normoxic polymer gel dosimeters from manufacture to post-irradiation. This study explored the functions that each of the constituent chemicals plays in a polymer gel dosimeter. Although normoxic polymer gel dosimeters exhibit very similar characteristics to polyacrylamide polymer gel dosimeters, one important difference between them was found to be a decrease in R2-dose sensitivity over time in the normoxic polymer gel dosimeter compared to an increase in the polyacrylamide polymer gel dosimeters. From an investigation into the function of anti-oxidants in normoxic polymer gel dosimeters, alternatives were proposed. Several alternative anti-oxidants were explored in this study that found that whilst some were reasonably effective, tetrakis (hydroxymethyl) phosphonium chloride (THPC) had the highest reaction rate. THPC was found not only to be an aggressive scavenger of oxygen, but also to increase the dose sensitivity of the gel. Hence, a formulation of normoxic polymer gel dosimeter was proposed, called MAGAT, that comprised: methacrylic acid, gelatin, hydroquinone and THPC. This formulation was examined in a similar fashion to the studies of the other formulations of polymer and normoxic polymer gel dosiemeters. The gel was found to exhibit spatial and temporal stability and an optimal formulation was proposed based on the R2-dose response. Applications such as IVBT require high-resolution dosimetry. Combined with high-resolution MRI, polymer gel dosimetry has potential as a high-resolution 3D integrated dosimeter. Thus, the second component of this study was to commission a micro-imaging MR spectrometer for use with normoxic polymer gel dosimeters and investigate artifacts related to imaging in high-resolutions. Using high-resolution MRI requires high gradient strengths that, combined with the Brownian motion of water molecules, was found to produce an attenuation of the MR signal and hence lead to a variation in the measured R2. The variation in measured R2 was found to be dependent on both the timing and amplitude of pulses in the pulse sequence used during scanning. Software was designed and coded that could accurately determine the amount of variation in measured R2 based on the pulse sequence applied to a phantom. Using this software, it is possible to correct for differences between scans using different imaging parameters or pulse sequences. A normoxic polymer gel dosimeter was irradiated using typical brachytherapy delivery and the resulting dose distributions compared with dose points predicted by the computerized treatment planning system.The R2-dose response was determined and used to convert the R2 maps of the phantoms to dose maps. The phantoms and calibration vials were imaged with an in-plane resolution of 0.1055 mm/pixel and a slice thickness of 2 mm. With such a relatively large slice thickness compared to the in-plane resolution, partial volume effects were significant, especially in the region immediately adjacent the source where high dose gradients typically exist. Estimates of the partial volume effects at various distances within the phantom were determined using a mathematical model based on dose points from the treatment planning system. The normalized and adjusted dose profiles showed very good agreement with the dose points predicted by the treatment planning system.
8

Hepworth, Stephen J. "Investigations into polymer gel dosimetry using magnetic resonance imaging." Thesis, University of Surrey, 2000. http://epubs.surrey.ac.uk/978/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Alrushoud, Abdullah A. "Polymer gel dosimetry in radiation therapy using computed tomography." Thesis, University of Surrey, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.616921.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
There have been developments in radiation therapy treatment techiques, which lead to an increase in the complexity of these treatments. The aim is to deliver highly conformal three-dimensional (3D) dose distributions, such as stereotactic radiosurgery (SRS). Polymer gel dosimetry offers three-dimensional (3D) dosimetry techniques for dose verification of dose distributions. Nisopropyl- acrylamide (NIP AM) polymer gel was the latest to develop and can be prepared under a normal atmospheric environment and has lower toxicity compared with the highly toxic polymer gels used earlier. NIPAM polymer gel using X-ray computed tomography (CT) was experimentally investigated in terms of its X-ray CT dose response, sensitivity and dose resolution. The effect of radiation beam type, radiation beam energy and radiation beam dose rate on X-ray CT dose response have also been studied. The temporal stability of NIP AM polymer gel has been examined over several days post-irradiation. The change in the polymer gel dosimeter's physical and electron densities as a function of absorbed dose was also investigated. In ,this study two new prototype phantoms were designed and constructed for imaging and irradiation of polymer gel dosimeters to provide simplicity and practicality for clinical dosimetry. The dosimetric and water equivalence properties of four NIP AM based polymer gel dosimeter formulations have been studied by examining their physical properties, interaction probability, radiation transport parameters and performing Monte Carlo modelling of depth doses. NIP AM polymer gel dosimeter irradiated at different doses using 6 Me V photon beam and 400 MU min-1 dose rate were found to have higher CT dose response (up to 37.8% at 10 Gy dose point) than results reported in the literature for NIP AM gel using similar concentration. The CT dose sensitivity of NIPAM polymer gel was found to be 0.405±0.014 H Gi1 , which is 26.2% higher than the reported sensitivity of 0.32l±0.008 H Gy-l with similar NIPAM gel concentration. The maximum change in physical density as a function of absorbed dose for polymer gel dosimeters was found to be up to ~1.0% for an absorbed dose of 20 Gy. 111
10

Resende, Thiago Dias. "Um estudo para otimização da formulação do dosímetro gel MAGIC-f e avaliação da sua reutilização." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/59/59135/tde-07072017-123749/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A radioterapia é um procedimento que utiliza radiação ionizante de alta energia direcionado ao tumor, para destruir suas células. O objetivo é provocar o maior dano nas células tumorais enquanto se poupa o tecido sadio ao redor, para maximizar este resultado. Devido a alta complexidade dos feixes usados nestes tratamentos, um dosímetro tridimensional é desejado para garantir que a dose esteja sendo entregue da forma como foi planejada, sendo a dosimetria gel polimérica com leitura da dose em Imagens de Ressonância Magnética Nuclear (IRMN), uma opção para esta medida. Esse trabalho utiliza o dosímetro gel polimérico MAGIC-f como referência e tem como objetivo otimizar sua formulação, substituindo inicialmente os seus agentes antioxidantes (sulfato de cobre e ácido ascórbico) por um antioxidante mais potente, o cloreto de tetrakishidroximetilfosfônio (THPC), e, em seguida, variar as concentrações dos demais componentes do dosímetro a fim de obter a menor concentração de cada um deles que resulte em um dosímetro com sensibilidade adequada para uso em radioterapia.Foram feitas análises sobre a estabilidade térmica do dosímetro com THPC e estudos sobre as concentrações ideais de THPC (2mM, 5mM, 8mM, 10mM ou 20mM); Ácido Metacrílico (2%, 2,5%, 3%, 3,5% ou 4%); Gelatina (4%, 6%, 8% ou 10%). Após todas as modificações, a formulação otimizada contendo 88,96% Água MiliQ; 3% Ácido Metacrílico; 8% Gelatina; 0,04% THPC (5mM de concentração), apresentou uma sensibilidade próxima a 1,03 Gy-1s-1 e um ponto de fusão de aproximadamente 50C, utilizando as menores quantidades possíveis dos reagentes químicos e a sequência de leitura das IRMN implementada para esta dosimetria. O dosímetro otimizado obtido teve uma redução de 40% no seu custo, em comparação com o dosímetro MAGIC-f, e uma resolução de dose de 0,18 Gy. Obteve linearidade de resposta a dosede 0 a 10 Gy. Uma variação máxima na sensibilidade do dosímetro de 8,5% foi encontrada ao se variar a taxa de dose de 300 500 cGy/min.Também foi avaliada a integridade da distribuição de dose para esse dosímetro através da avaliação de uma irradiação com meio campo blindado. E, sua a maior variação em um teste de repetitividade foi de 15%. Um outro objetivo deste trabalho foi o desenvolvimento de uma metodologia para a reutilização do dosímetro gel, sendo que um dosímetro previamente irradiado com uma dose de 2Gy foi reutilizado após seu derretimento a 50C em um forno com controle digital de temperatura, seguido por uma nova gelificação.Para garantir sua resposta, foi necessária a readição de agentes antioxidantes à formulação reutilizada. Dessa forma, para o gel MAGAT com 1mM de THPC foi obtida uma sensibilidade 30% menor que a original para o dosímetro reutilizado e 15% para o mesmo dosímetro, com 2mM de THPC
Radiotherapy is a procedure that uses high energy ionizing radiation directed to the tumor to destroy its cells. The objective is to obtain tumoral cells more damaged avoiding the healthy cells around it and increase this result. Due to the high complexity of the energy beams used on these treatments, a three-dimensional dosimeter is demanded to assure that the dose is focused as planned, being the polymeric gel dosimetry using Nuclear Magnetic Resonance Images (NMRI) for dose scanning an option to this measurement. This work uses MAGIC-f gel as reference and its objective is to optimize the dosimeter formulation, by initiallyreplacing the antioxidants agents (Copper Sulfate and Ascorbic Acid) by a more power rating antioxidant, Tetrakis (hydroxymethyl) phosphonium chloride (THPC), and then, variatingthe others dosimeter´s components concentration in order to obtain the smallest concentration of each one that result in an adequate dosimeter´ssensitivity for radiotherapy application. Studies were made to check the thermal stability of the gel containing THPC and studies were carried out about the ideals concentrations of THPC (2mM, 5mM, 8mM, 10mM or 20mM); Methacrylic Acid (2%, 2.5%, 3%, 3.5% or 4%); Gelatin (4%, 6%, 8% or 10%). After the modifications, the optimized formulation containing 88.96% of mili-Q water; 3% of methacrylic acid; 8% of gelatine; 0.04% of THPC (5mM) showed a sensitivity of approximately 1.03 Gy-1s-1 and a melting point approximately of 50°C, using the smallest possible chemical compounds concentrations and the NMRI scanning sequence implemented for this dosimetry. The optimized dosimeter obtained presents a 40% cost reduction, comparing with the dosimeter MAGIC-f, and a dose resolution of 0.18 Gy. The dosimeter responds linearlywith doses from 0 to 10 Gy. A maximal sensitivity variation of 8.5% was found when varing the dose rate from 300 to 500 cGy/min. Its dose integrity was checked by a half beam blocked irradiation. And its largestsensitivity variation at a repeatability test was 15%. The second objective of this work was the development of a methodology for reusing the dosimeter.The dosimeter previously irradiated with 2Gy was reused after being melted in a digitaltemperature control oven at 50°C, followed by the re-addition of THPC and a new gelation. The reused MAGAT gel dosimeter with 1mM of THPC presented 30% sensitivity reductioin when compared to the the same dosimeter before the reusing process, while the MAGAT gel with 2mMof THPC presented a reduction of only 15%

Частини книг з теми "Dosimetry gel":

1

De Deene, Yves. "Polymer Gel Dosimetry." In Clinical 3D Dosimetry in Modern Radiation Therapy, 99–136. Boca Raton : Taylor & Francis, 2017. | Series: Imaging in medical diagnosis and therapy ; 28: CRC Press, 2017. http://dx.doi.org/10.1201/9781315118826-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ravindran, Paul B. "Small Photon Field Dosimetry using Gel." In IFMBE Proceedings, 762–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03474-9_215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Scheib, S. G., and W. Vogelsanger. "MAGIC - Normoxic Polymer Gel Dosimetry in Radiosurgery." In Radiosurgery, 213–24. Basel: KARGER, 2004. http://dx.doi.org/10.1159/000078121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Titus, Deena, E. James Jebaseelan Samuel, and Selvaraj Mohana Roopan. "Radiation Dosimetry—A Different Perspective of Polymer Gel." In Polymer Gels, 309–41. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-6086-1_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kang, Young-nam, Jisun Jang, Byung-Ock Choi, Hong-Suk Jang, Ji-Young Jung, Hun-Joo Shin, Jae-Hyuk Seo, Ihl-Bohng Choi, Dong-Joon Lee, and Soo-Il Kwon. "BANG-3® polymer gel dosimetry in Cyberknife." In IFMBE Proceedings, 683–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03474-9_192.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Maeyama, T., N. Fukunishi, K. L. Ishikawa, K. Fukasaku, T. Furuta, S. Takagi, S. Noda, and R. Himeno. "Diffusion suppression in gel dosimetry by addition of nanoclay." In IFMBE Proceedings, 1183–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-29305-4_310.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Cosgrove, Vivian P., David J. Convery, Philip S. Murphy, Christopher M. Nutting, and Steve Webb. "Dynamic MLC delivered IMRT: verification using Polyacrylamide gel dosimetry." In The Use of Computers in Radiation Therapy, 311–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59758-9_118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

De Deene, Y. "Chapter 9. Gel-based Radiation Dosimetry Using Quantitative MRI." In New Developments in NMR, 275–357. Cambridge: Royal Society of Chemistry, 2020. http://dx.doi.org/10.1039/9781788013178-00275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Alexander, K. M., C. Pinter, J. Andrea, G. Fichtinger, and L. J. Schreiner. "3D Slicer Gel Dosimetry Analysis: Validation of the Calibration Process." In IFMBE Proceedings, 521–24. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19387-8_128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Natanasabapathi, Gopishankar, Subbiah Vivekanandhan, Shashank Sharad Kale, Raj Kishor Bisht, Goura kishor Rath, Priyanka Agarwal, Palanivel Sathiaraj, and Bhawani Shankar Sharma. "Verifying dynamic planning in gamma knife radiosurgery using gel dosimetry." In IFMBE Proceedings, 712–15. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19387-8_175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Dosimetry gel":

1

Alam, N. Riyahi, A. Takavar, M. Moghadam, S. Haghgoo, K. Firooznia, P. Hadad, T. A. Pourfallah, E. Mohammadi, and A. Nedaei. "MR Based Polymer Gel Dosimetry (MRPD) versus Film Dosimetry using Dose Modulation Transfer Function (DMTF)." In 4th IEEE-EMBS International Summer School and Symposium on Medical Devices and Biosensors (ISSS-MDBS 2007). IEEE, 2007. http://dx.doi.org/10.1109/issmdbs.2007.4338293.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Flores-Mancera, M. A., and G. Massillon-JL. "Characterization of a high-resolution optical CT scanner for 3D gel dosimetry." In PROCEEDINGS OF THE XVI MEXICAN SYMPOSIUM ON MEDICAL PHYSICS. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0051248.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ibbott, Geoffrey S., Yvonne Roed, Hannah Lee, Mamdooh Alqathami, Jihong Wang, Lawrence Pinsky, and Anton Blencowe. "Gel dosimetry enables volumetric evaluation of dose distributions from an MR-guided linac." In MEDICAL PHYSICS: Fourteenth Mexican Symposium on Medical Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4954102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Crescenti, R. A., J. C. Bamber, A. A. Oberai, P. E. Barbone, J. P. Richter, N. L. Bush, and S. Webb. "P4F-2 Ultrasonic Elastography and Plane Strain Inverse Algorithms for Polymer Gel Dosimetry." In 2007 IEEE Ultrasonics Symposium Proceedings. IEEE, 2007. http://dx.doi.org/10.1109/ultsym.2007.509.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cuevas, Diana, Juliana Pavoni, and Oswaldo Baffa. "A phantom to study the effects of metallic prostheses in radiotherapy by gel dosimetry." In MEDICAL PHYSICS: Fourteenth Mexican Symposium on Medical Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4954115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mattea, F., Miriam Strumia, and Mauro Valente. "Characterization of a polymer gel dosimetry system based on N-isopropylacrylamide and N-N* methylenebisacrylamide." In 10th Latin American Symposium on Nuclear Physics and Applications. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.194.0080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tseng, Y. J., Sung-Cheng Huang, and W. C. Chu. "An Image-Based Approach to Measure the Ferric Ion Diffusion Coefficient in Fricke Gel Dosimetry." In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE, 2005. http://dx.doi.org/10.1109/iembs.2005.1616220.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yao, Chun-Hsu, Tung-Hao Chang, Chia-Chi Lin, Yuan-Chun Lai, Chin-Hsing Chen, and Yuan-Jen Chang. "Three-Dimensional Dose Verification of High-Dose-Rate (HDR) Flattening Filter Free (FFF) Radiation Therapy by Using NIPAM Gel Dosimetry." In Proceedings of the Second International Symposium on Radiation Detectors and Their Uses (ISRD2018). Journal of the Physical Society of Japan, 2019. http://dx.doi.org/10.7566/jpscp.24.011025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Janzen, Ryan, and Steve Mann. "Veillance dosimeter, inspired by body-worn radiation dosimeters, to measure exposure to inverse light." In 2014 IEEE Games, Media, Entertainment (GEM) Conference. IEEE, 2014. http://dx.doi.org/10.1109/gem.2014.7048122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Inoue, Shota, Hidemitsu Furukawa, Ajit Khosla, Masaru Kawakami, and Kazuyuki Sakai. "Development of high-strength gel dosimeter made by 3D gel printer." In Nano-, Bio-, Info-Tech Sensors and 3D Systems, edited by Vijay K. Varadan. SPIE, 2018. http://dx.doi.org/10.1117/12.2296499.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії