Добірка наукової літератури з теми "Dynamic stiffne"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dynamic stiffne".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Dynamic stiffne"
Bakshi, S., A. Sarkar, and S. Chakraborty. "Dynamic Response Control of Stiffened Plate with Hole in Stiffener: A Novel Concept of Additional Open Branched Stiffeners." Proceedings of the 12th Structural Engineering Convention, SEC 2022: Themes 1-2 1, no. 1 (December 19, 2022): 1033–39. http://dx.doi.org/10.38208/acp.v1.617.
Повний текст джерелаYin, Xuewen, Wenwei Wu, Kuikui Zhong, and Hui Li. "Dynamic stiffness formulation for the vibrations of stiffened plate structures with consideration of in-plane deformation." Journal of Vibration and Control 24, no. 20 (October 19, 2017): 4825–38. http://dx.doi.org/10.1177/1077546317735969.
Повний текст джерелаSRIVASTAVA, A. K. L., P. K. DATTA, and A. H. SHEIKH. "VIBRATION AND DYNAMIC INSTABILITY OF STIFFENED PLATES SUBJECTED TO IN-PLANE HARMONIC EDGE LOADING." International Journal of Structural Stability and Dynamics 02, no. 02 (June 2002): 185–206. http://dx.doi.org/10.1142/s0219455402000518.
Повний текст джерелаLe, Nam Bich, Cuong Manh Nguyen, and Thinh Ich Tran. "CONTINUOUS ELEMENT FORMULATIONS FOR COMPOSITE RING-STIFFENED CYLINDRICAL SHELLS." Vietnam Journal of Science and Technology 56, no. 4 (August 6, 2018): 515. http://dx.doi.org/10.15625/2525-2518/56/4/10987.
Повний текст джерелаGupta, Mohit, and Massimo Ruzzene. "Dynamics of Quasiperiodic Beams." Crystals 10, no. 12 (December 16, 2020): 1144. http://dx.doi.org/10.3390/cryst10121144.
Повний текст джерелаLi, Xue-Qin, Guang-Chen Bai, Lu-Kai Song, and Wei Zhang. "Nonlinear Vibration Analysis for Stiffened Cylindrical Shells Subjected to Electromagnetic Environment." Shock and Vibration 2021 (July 19, 2021): 1–26. http://dx.doi.org/10.1155/2021/9983459.
Повний текст джерелаLi, Xue-Qin, Wei Zhang, Xiao-Dong Yang, and Lu-Kai Song. "A Unified Approach of Free Vibration Analysis for Stiffened Cylindrical Shell with General Boundary Conditions." Mathematical Problems in Engineering 2019 (July 10, 2019): 1–14. http://dx.doi.org/10.1155/2019/4157930.
Повний текст джерелаTounsi, D., J. B. Casimir, S. Abid, I. Tawfiq, and M. Haddar. "Dynamic stiffness formulation and response analysis of stiffened shells." Computers & Structures 132 (February 2014): 75–83. http://dx.doi.org/10.1016/j.compstruc.2013.11.003.
Повний текст джерелаZhang, Jing, and Xing Hua Shi. "Dynamic Response of Stiffened Plate under Underwater Contact Explosions." Advanced Materials Research 255-260 (May 2011): 1665–70. http://dx.doi.org/10.4028/www.scientific.net/amr.255-260.1665.
Повний текст джерелаHill, C. M., T. Kageyama, M. G. Conzemius, G. K. Smith, and F. M. Little. "Bending properties of stainless steel dynamic compression plates and limited contact dynamic compression plates." Veterinary and Comparative Orthopaedics and Traumatology 14, no. 02 (2001): 64–68. http://dx.doi.org/10.1055/s-0038-1632677.
Повний текст джерелаДисертації з теми "Dynamic stiffne"
RAGNI, DAVIDE. "Dynamic testing for the characterisation of bituminous interlayers." Doctoral thesis, Università Politecnica delle Marche, 2020. http://hdl.handle.net/11566/274616.
Повний текст джерелаThe traffic loading on pavement structures includes both vertical and horizontal stresses (normal and tangent to the pavement surface). The latter become critical in regions that are prone to frequent braking, cornering or on steep grades. Since bituminous pavement is a multilayer structure, the existence of a poor interlayer bonding between bituminous layers could adversely affect the pavement performance and serviceability. Hence, a proper evaluation of the interlayer bonding has the utmost importance in pavement performance. The evaluation of interlayer bonding in bituminous pavements is typically carried out by measuring the interlayer shear strength (ISS) at failure using static laboratory tests. A significant improvement of the current testing approach is the development of dynamic testing devices, which could simulate the field conditions more realistically since the traffic loads applied to the pavement are dynamic. In this context, this PhD thesis describes the experimental activities carried out at Università Politecnica delle Marche, North Carolina State University and University of Limoges within the Task Group 3 “Pavement multilayer system” of the RILEM TC 272-PIM. The activities focused on the design and development of a new testing device for performing dynamic interlayer bond testing at Università Politecnica delle Marche along with carrying out dynamic bond testing using other existing devices. The interlayer behaviour has been investigated through both direct shear and torque tests on double-layered specimens extracted from laboratory compacted slabs prepared using a single bituminous mixture. The stimulating results presented in this thesis, reported both in terms of stiffness and cumulative damage, showed that dynamic bond testing can successfully be used to evaluate the bituminous interlayer performance and can provide a noticeable help for defining the service life of the pavement sections realistically compared to the static bond tests.
周婉娥 and Wan-E. Zhou. "The dynamic stiffness method." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1996. http://hub.hku.hk/bib/B31235487.
Повний текст джерелаLeung, A. Y. T. "Dynamic stiffness and substructures." Thesis, Aston University, 1993. http://publications.aston.ac.uk/21737/.
Повний текст джерелаZhou, Wan-E. "The dynamic stiffness method /." Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19668612.
Повний текст джерелаAlley, Ferryl. "Dynamic ankle stiffness during upright standing." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110417.
Повний текст джерелаLes études de la posture érigée sont couramment fondées sur le modèle biomécanique du pendule inversé définissant une raideur posturale générale produite par les articulations des chevilles et nécessaire pour compenser les effets déstabilisants de la gravité. Ce modèle est basé sur l'hypothèse d'une raideur symétrique des chevilles gauche et droite qui demeure fixe pendant la tenue de la posture érigée. Toutefois, les contributions relatives des composantes intrinsèques et réflexes de la raideur dynamique ainsi que l'interaction des membres inférieurs pendant la position érigée debout ne sont pas bien comprises. Ce mémoire fait état d'une estimation de la raideur dynamique des deux chevilles simultanément durant la position érigée debout, ainsi que d'une étude de la coordination entre les deux membres. Au cours de tests de perturbation bilatérale, pendant lesquels des perturbations de la position angulaire ont été appliquées aux deux chevilles simultanément, une nette réponse intrinsèque et réflexe a été observée. Chez tous les sujets, la raideur intrinsèque était inférieure à la raideur posturale nécessaire pour maintenir la station debout. La raideur dynamique des chevilles a également évolué en fonction de différents niveaux du couple du balancement postural, de telle sorte que la raideur intrinsèque et réflexe était plus élevée pendant l'inclinaison avant et moins élevée pendant l'inclinaison arrière. Des réponses controlatérales ont été observées entre la position de départ de la cheville et les couples générés depuis la cheville opposée. Ces résultats donnent à penser que le contrôle postural général ne consiste pas en la simple sommation de réponses indépendantes fixes de raideur intrinsèque des chevilles individuelles. La raideur élastique intrinsèque ne suffit pas pour maintenir l'équilibre, et les voies de raideur contributives sont modulées pendant le balancement de la position érigée debout. Les modèles de la position érigée debout doivent intégrer des mesures de la raideur dynamique des chevilles, des paramètres variables de la raideur et des interactions entre les membres d'appui.
郭騰川 and Tang-chuen Nick Kwok. "Dynamic stiffness method for curved structures." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1995. http://hub.hku.hk/bib/B31212359.
Повний текст джерелаKwok, Tang-chuen Nick. "Dynamic stiffness method for curved structures /." Hong Kong : University of Hong Kong, 1995. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19672421.
Повний текст джерелаVega, González Myraida Angélica. "Dynamic study of tunable stiffness scanning microscope probe." Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32967.
Повний текст джерелаIncludes bibliographical references (leaf 31).
This study examines the dynamic characteristics of the in-plane tunable stiffness scanning microscope probe for an atomic force microscope (AFM). The analysis was carried out using finite element analysis (FEA) methods for the micro scale device and its macro scale counterpart, which was designed specifically for this study. Experimental system identification testing using sound wave and high-speed camera recordings was clone on the macro scale version to identify trends that were then verified in the micro scale predictions. The results for the micro scale device followed the trends predicted by the macro scale experimental data. The natural frequencies of the device corresponded to the three normal directions of motion, in ascending order from the vertical direction, the out-of- plane direction, and the horizontal direction. The numerical values for these frequencies in the micro scale are 81.314 kHz, 51.438 kHz, and 54.899 kHz for the X, Y, and Z directions of vibration respectively. The error associated with these measurements is 6.6% and is attributed to the high tolerance necessary for measurements in the micro scale, which was not matched by the macro scale data acquisition methods that predict the natural frequency range.
(cont.) The vertical vibrations are therefore the limiting factor in the scanning speed of the probe across a sample surface, thus requiring the AFM to scan at an effective frequency of less than 81.3 kHz to avoid resonance.
by Myraida Angélica Vega González.
S.B.
Black, Thomas Andrew. "Spectral Element Analysis of Bars, Beams, and Levy Plates." Thesis, Virginia Tech, 2003. http://hdl.handle.net/10919/33260.
Повний текст джерелаMaster of Science
Black, T. Andrew. "Spectral Element Analysis of Bars, Beams, and Levy Plates." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/33260.
Повний текст джерелаMaster of Science
Книги з теми "Dynamic stiffne"
Leung, Andrew Y. T. Dynamic Stiffness and Substructures. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1.
Повний текст джерелаLeung, Andrew Y. T. Dynamic Stiffness and Substructures. London: Springer London, 1993.
Знайти повний текст джерелаPedro, Arduino, University of Washington. Dept. of Civil Engineering., Washington State Transportation Center, Washington (State). Dept. of Transportation., United States. Federal Highway Administration., and Washington State Transportation Commission, eds. Dynamic stiffness of piles in liquefiable soils. Seattle, Wash: The Center, 2002.
Знайти повний текст джерелаHandbook on stiffness & damping in mechanical design. New York: ASME Press, 2010.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Experiments on dynamic stiffness and damping of tapered bore seals. [Washington, DC: National Aeronautics and Space Administration, 1987.
Знайти повний текст джерелаRivin, Eugene I. Stiffness and damping in mechanical design. New York: Marcel Dekker, 1999.
Знайти повний текст джерелаK, Ghosh A. Evaluation of dynamic stiffness and damping factor of a hydraulic damper. Mumbai: Bhabha Atomic Research Centre, 2000.
Знайти повний текст джерелаLawrence, Charles. A global approach for the identification of structural connection properties. [Washington, D.C.]: NASA, 1990.
Знайти повний текст джерелаA, Huckelbridge Arthur, and United States. National Aeronautics and Space Administration., eds. A global approach for the identification of structural connection properties. [Washington, D.C.]: NASA, 1990.
Знайти повний текст джерелаЧастини книг з теми "Dynamic stiffne"
Leung, Andrew Y. T. "Dynamic Substructures." In Dynamic Stiffness and Substructures, 53–132. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1_3.
Повний текст джерелаLeung, Andrew Y. T. "Dynamic Stiffness." In Dynamic Stiffness and Substructures, 133–88. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1_4.
Повний текст джерелаLeung, Andrew Y. T. "Harmonic Analysis." In Dynamic Stiffness and Substructures, 1–19. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1_1.
Повний текст джерелаLeung, Andrew Y. T. "Finite Elements and Continuum Elements." In Dynamic Stiffness and Substructures, 21–51. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1_2.
Повний текст джерелаLeung, Andrew Y. T. "General Formulation." In Dynamic Stiffness and Substructures, 189–240. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-2026-1_5.
Повний текст джерелаMukhopadhyay, Madhujit. "Dynamic Direct Stiffness Method." In Structural Dynamics, 395–423. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69674-0_10.
Повний текст джерелаBolton, M. D., and J. M. R.Wilson. "Soil stiffness and damping." In Structural Dynamics, 209–16. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203738085-32.
Повний текст джерелаHagedorn, Peter, Klaus Kelkel, and Jörg Wallaschek. "Dynamic stiffness of rectangular plates." In Lecture Notes in Engineering, 28–144. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82906-2_3.
Повний текст джерелаSchabauer, Martin, Andreas Hackl, Christoph Scherndl, Wolfgang Hirschberg, and Cornelia Lex. "Experimental Validation of a Semi-physical Modelling Approach of the Influence of Tyre Rotation on the Vertical Tyre Force Transmission and Tyre Kinematics." In Lecture Notes in Mechanical Engineering, 954–65. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07305-2_88.
Повний текст джерелаLepert, P., and J. L. Briaud. "Dynamic non destructive testing of footing stiffness." In Structural Dynamics, 237–43. London: Routledge, 2022. http://dx.doi.org/10.1201/9780203738085-35.
Повний текст джерелаТези доповідей конференцій з теми "Dynamic stiffne"
Bhatia, Manav, and Rakesh Kapania. "Stiffener Effectiveness Approach for Optimal Stiffener Placement on Curvilinear Stiffened Panel." In 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-2640.
Повний текст джерелаWatson, Andrew, Carol Featherston, and David Kennedy. "Optimization of Postbuckled Stiffened Panels with Multiple Stiffener Sizes." In 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-2207.
Повний текст джерелаAMBUR, DAMODAR, and LAWRENCE REHFIELD. "Effect of stiffness characteristics on the response of composite grid-stiffened structures." In 32nd Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1991. http://dx.doi.org/10.2514/6.1991-1087.
Повний текст джерелаCoburn, Broderick H., Zhangming Wu, and Paul Weaver. "Buckling analysis and optimization of blade stiffened variable stiffness panels." In 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-1438.
Повний текст джерелаKASSAPOGLOU, CHRISTOS. "STRESS DETERMINATION AT SKIN-STIFFENER INTERFACES OF COMPOSITE STIFFENED PANELS UNDER GENERALIZED LOADING." In 34th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1509.
Повний текст джерелаCOLLIER, CRAIG. "STIFFNESS, THERMAL EXPANSION, AND THERMAL BENDING FORMULATION OF STIFFENED, FIBER-REINFORCED COMPOSITE PANELS." In 34th Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1569.
Повний текст джерелаAmbur, Damodar, James Starnes, Jr., Carlos Davila, Erik Phillips, Damodar Ambur, James Starnes, Jr., Carlos Davila, and Erik Phillips. "Response of composite panels with stiffness gradients due to stiffener terminations and cutouts." In 38th Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1997. http://dx.doi.org/10.2514/6.1997-1368.
Повний текст джерелаFlegel, C., K. Singal, and R. Rajamani. "A Handheld Noninvasive Sensing Method for the Measurement of Compartment Pressures." In ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-3847.
Повний текст джерелаNarayanan Nampy, Sreenivas, and Edward Smith. "Stiffness Analysis of Closed Cross-Section Composite Grid-Stiffened Cylinders." In 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
18th AIAA/ASME/AHS Adaptive Structures Conference
12th. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-2786.
Sanz-Douglass, Gabriela J., and Satchi Venkataraman. "Parametric Study of Stiffener Variables on Post-Buckling Response of Frame-Stiffened Composite Panels." In 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2016. http://dx.doi.org/10.2514/6.2016-1976.
Повний текст джерелаЗвіти організацій з теми "Dynamic stiffne"
Goodwin, M. J., and M. P. Roach. Vibration Control in Rotating Machinery Using Variable Dynamic Stiffness Squeeze-Films. Fort Belvoir, VA: Defense Technical Information Center, June 1988. http://dx.doi.org/10.21236/ada202902.
Повний текст джерелаRoach M. J. /Goodwin, M. P. Vibration Control in Rotating Machinery Using Variable Dynamic Stiffness Squeeze-Films. Volume 1. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada174417.
Повний текст джерелаGoodwin, M. J., and M. P. Roach. Vibration Control in Rotating Machinery Using Variable Dynamic Stiffness Squeeze Films. Volume 2. Fort Belvoir, VA: Defense Technical Information Center, March 1986. http://dx.doi.org/10.21236/ada174433.
Повний текст джерелаSong, Chang-Yong, Jae-Yoon Jung, Yong-Sung Kim, Jung-Hwan Lim, and Jong-Chan Park. The Topology and Size Optimization of Bus Roof Structure Considering the Dynamic Stiffness Characteristics. Warrendale, PA: SAE International, May 2005. http://dx.doi.org/10.4271/2005-08-0015.
Повний текст джерелаBennett, J. G., P. Goldman, D. C. Williams, and C. R. Farrar. A comparison of the dynamic stiffness of the Goldcrown GC-500 grinding machine for three slide designs. Office of Scientific and Technical Information (OSTI), January 1994. http://dx.doi.org/10.2172/10121869.
Повний текст джерелаPaden, Brad, and Thomas A. Trautt. Characterization of Joint Nonlinear Stiffness and Damping Behavior for Inverse Dynamics of Flexible Articulated Structures. Fort Belvoir, VA: Defense Technical Information Center, August 1996. http://dx.doi.org/10.21236/ada330608.
Повний текст джерелаQamhia, Issam, Erol Tutumluer, and Han Wang. Aggregate Subgrade Improvements Using Quarry By-products: A Field Investigation. Illinois Center for Transportation, June 2021. http://dx.doi.org/10.36501/0197-9191/21-017.
Повний текст джерелаTan, Peng, and Nicholas Sitar. Parallel Level-Set DEM (LS-DEM) Development and Application to the Study of Deformation and Flow of Granular Media. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, March 2023. http://dx.doi.org/10.55461/kmiz5819.
Повний текст джерелаZareian, Farzin, and Joel Lanning. Development of Testing Protocol for Cripple Wall Components (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/olpv6741.
Повний текст джерелаPullammanappallil, Pratap, Haim Kalman, and Jennifer Curtis. Investigation of particulate flow behavior in a continuous, high solids, leach-bed biogasification system. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600038.bard.
Повний текст джерела