Добірка наукової літератури з теми "Dynamics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dynamics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

За допомогою хмари тегів ви можете побачити ще більше пов’язаних тем досліджень, а відповідні кнопки після кожного розділу сторінки дозволяють переглянути розширені списки книг, статей тощо на обрану тему.

Пов'язані теми наукових робіт:

Статті в журналах з теми "Dynamics":

1
Alder, Berni J. "Slow dynamics by molecular dynamics." Physica A: Statistical Mechanics and its Applications 315, no. 1-2 (November 2002): 1–4. http://dx.doi.org/10.1016/s0378-4371(02)01220-7.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
ABRAMS, P. A. "‘Adaptive Dynamics’ vs. ‘adaptive dynamics’." Journal of Evolutionary Biology 18, no. 5 (August 2005): 1162–65. http://dx.doi.org/10.1111/j.1420-9101.2004.00843.x.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Toxvaerd, Søren. "Discrete dynamics versus analytic dynamics." Journal of Chemical Physics 140, no. 4 (January 2014): 044102. http://dx.doi.org/10.1063/1.4862173.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Telem, Dory, Alexander Laufer, and Aviad Shapira. "Only Dynamics Can Absorb Dynamics." Journal of Construction Engineering and Management 132, no. 11 (November 2006): 1167–77. http://dx.doi.org/10.1061/(asce)0733-9364(2006)132:11(1167).
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Gates, Ann Q., Steve Roach, Oscar Mondragon, and Nelly Delgado. "DynaMICs." Electronic Notes in Theoretical Computer Science 55, no. 2 (October 2001): 164–80. http://dx.doi.org/10.1016/s1571-0661(04)00251-8.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Rasband, S. Neil, and Martin Olsson. "Dynamics." American Journal of Physics 53, no. 7 (July 1985): 701. http://dx.doi.org/10.1119/1.14396.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Goldbarth, Albert. "Dynamics." Iowa Review 39, no. 1 (April 2009): 56. http://dx.doi.org/10.17077/0021-065x.6635.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Leonard, Sue, and Molly McCloskey. "Dynamics." Books Ireland, no. 248 (2002): 99. http://dx.doi.org/10.2307/20623983.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Wagner, Geri, Eirik Flekkøy, Jens Feder, and Torstein Jøssang. "Coupling molecular dynamics and continuum dynamics." Computer Physics Communications 147, no. 1-2 (August 2002): 670–73. http://dx.doi.org/10.1016/s0010-4655(02)00371-5.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Bartlett, Stephen D., and David J. Rowe. "Classical dynamics as constrained quantum dynamics." Journal of Physics A: Mathematical and General 36, no. 6 (January 2003): 1683–704. http://dx.doi.org/10.1088/0305-4470/36/6/312.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Dynamics":

1
Marketing, Corporate Affairs and. "Dynamics." Text, Corporate Affairs and Marketing, 2011. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1000612.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Gotte, Anders. "Dynamics in Ceria and Related Materials from Molecular Dynamics and Lattice Dynamics." Doctoral thesis, comprehensive summary, Uppsala University, Department of Materials Chemistry, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7374.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

In discussions of heterogeneous catalysis and other surface-related phenomena, the dynamical properties of the catalytic material are often neglected, even at elevated temperatures. An example is the three-way catalyst (TWC), used for treatment of exhaust gases from combustion engines operating at several hundred degrees Celsius. In the TWC, reduced ceria (CeO2-x) is one of the key components, where it functions as an oxygen buffer, storing and releasing oxygen to provide optimal conditions for the catalytic conversion of the pollutants. In this process it is evident that dynamics plays a crucial role, not only ionic vibrations, but also oxygen diffusion.

In this thesis, the structure and dynamics of several ionic crystalline compounds and their surfaces have been studied by means of Molecular dynamics (MD) simulations and Lattice dynamics (LD) calculations. The main focus lies on CeO2-x, but also CeO2, MgO and CaF2 have been investigated.

The presence of oxygen vacancies in ceria is found to lead to significant distortions of the oxygen framework around the defect (but not of the cerium framework). As a consequence, a new O-O distance emerges, as well as a significantly broadened Ce-O distance distribution.

The presence of oxygen vacancies in ceria also leads to increased dynamics. The oxygen self-diffusion in reduced ceria was calculated from MD simulations in the temperature range 800-2000 K, and was found to follow an Arrhenius behaviour with a vacancy mechanism along the crystallographic <100> directions only.

The cation and anion vibrational surface dynamics were investigated for MgO (001) using DFT-LD and for CaF2 (111) in a combined LEED and MD study. Specific surface modes were found for MgO and increased surface dynamics was found both experimentally and theoretically for CaF2, which is isostructural with CeO2.

Many methodological aspects of modeling dynamics in ionic solids are also covered in this thesis. In many cases, the representation of the model system (slab thickness, simulation box-size and the choice of ensemble) was found to have a significant influence on the results.

3
Gotte, Anders. "Dynamics in Ceria and Related Materials from Molecular Dynamics and Lattice Dynamics." Doctoral thesis, comprehensive summary, Uppsala universitet, Institutionen för materialkemi, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7374.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In discussions of heterogeneous catalysis and other surface-related phenomena, the dynamical properties of the catalytic material are often neglected, even at elevated temperatures. An example is the three-way catalyst (TWC), used for treatment of exhaust gases from combustion engines operating at several hundred degrees Celsius. In the TWC, reduced ceria (CeO2-x) is one of the key components, where it functions as an oxygen buffer, storing and releasing oxygen to provide optimal conditions for the catalytic conversion of the pollutants. In this process it is evident that dynamics plays a crucial role, not only ionic vibrations, but also oxygen diffusion. In this thesis, the structure and dynamics of several ionic crystalline compounds and their surfaces have been studied by means of Molecular dynamics (MD) simulations and Lattice dynamics (LD) calculations. The main focus lies on CeO2-x, but also CeO2, MgO and CaF2 have been investigated. The presence of oxygen vacancies in ceria is found to lead to significant distortions of the oxygen framework around the defect (but not of the cerium framework). As a consequence, a new O-O distance emerges, as well as a significantly broadened Ce-O distance distribution. The presence of oxygen vacancies in ceria also leads to increased dynamics. The oxygen self-diffusion in reduced ceria was calculated from MD simulations in the temperature range 800-2000 K, and was found to follow an Arrhenius behaviour with a vacancy mechanism along the crystallographic <100> directions only. The cation and anion vibrational surface dynamics were investigated for MgO (001) using DFT-LD and for CaF2 (111) in a combined LEED and MD study. Specific surface modes were found for MgO and increased surface dynamics was found both experimentally and theoretically for CaF2, which is isostructural with CeO2. Many methodological aspects of modeling dynamics in ionic solids are also covered in this thesis. In many cases, the representation of the model system (slab thickness, simulation box-size and the choice of ensemble) was found to have a significant influence on the results.
4
Currie, Martin, and Ingrid Kubin. "Fixed price dynamics versus flexible price dynamics." Paper, Inst. für Volkswirtschaftstheorie und -politik, WU Vienna University of Economics and Business, 2005. http://epub.wu.ac.at/114/1/document.pdf.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper contrasts the dynamical behaviors of fixed and flexible price regimes for a monopolistically competitive manufacturing sector in which firms base decisions on expectations about product demands. (author's abstract)
Series: Department of Economics Working Paper Series
5
Yamashita, Hiroki. "Flexible multibody dynamics approach for tire dynamics simulation." Dissertation, University of Iowa, 2012. https://ir.uiowa.edu/etd/2297.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The objective of this study is to develop a high-fidelity physics-based flexible tire model that can be fully integrated into multibody dynamics computer algorithms for use in on-road and off-road vehicle dynamics simulation without ad-hoc co-simulation techniques. Despite the fact detailed finite element tire models using explicit finite element software have been widely utilized for structural design of tires by tire manufactures, it is recognized in the tire industry that existing state-of-the-art explicit finite element tire models are not capable of predicting the transient tire force characteristics accurately under severe vehicle maneuvering conditions due to the numerical instability that is essentially inevitable for explicit finite element procedures for severe loading scenarios and the lack of transient (dynamic) tire friction model suited for FE tire models. Furthermore, to integrate the deformable tire models into multibody full vehicle simulation, co-simulation technique could be an option for commercial software. However, there exist various challenges in co-simulation for the transient vehicle maneuvering simulation in terms of numerical stability and computational efficiency. The transient tire dynamics involves rapid changes in contact forces due to the abrupt braking and steering input, thus use of co-simulation requires very small step size to ensure the numerical stability and energy balance between two separate simulation using different solvers. In order to address these essential and challenging issues on the high-fidelity flexible tire model suited for multibody vehicle dynamics simulation, a physics-based tire model using the flexible multibody dynamics approach is proposed in this study. To this end, a continuum mechanics based shear deformable laminated composite shell element is developed based on the finite element absolute nodal coordinate formulation for modeling the complex fiber reinforced rubber tire structure. The assumed natural strain (ANS) and enhanced assumed strain (EAS) approaches are introduced for alleviating element lockings exhibited in the element. Use of the concept of the absolute nodal coordinate formulation leads to various advantages for tire dynamics simulation in that (1) constant mass matrix can be obtained for fully nonlinear dynamics simulation; (2) exact modeling of rigid body motion is ensured when strains are zero; and (3) non-incremental solution procedure utilized in the general multibody dynamics computer algorithm can be directly applied without specialized updating schemes for finite rotations. Using the proposed shear deformable laminated composite shell element, a physics-based flexible tire model is developed. To account for the transient tire friction characteristics including the friction-induced hysteresis that appears in severe maneuvering conditions, the distributed parameter LuGre tire friction model is integrated into the flexible tire model. To this end, the contact patch predicted by the structural tire model is discretized into small strips across the tire width, and then each strip is further discretized into small elements to convert the partial differential equations of the LuGre tire friction model to the set of first-order ordinary differential equations. By doing so, the structural deformation of the flexible tire model and the LuGre tire friction force model are dynamically coupled in the final form of the equations, and these equations are integrated simultaneously forward in time at every time step. Furthermore, a systematic and automated procedure for parameter identification of LuGre tire friction model is developed. Since several fitting parameters are introduced to account for the nonlinear friction characteristics, the correlation of the model parameters with physical quantities are not clear, making the parameter identification of the LuGre tire friction model difficult. In the procedure developed in this study, friction parameters in terms of slip-dependent friction characteristics and adhesion parameter are estimated separately, and then all the parameters are identified using the nonlinear least squares fitting. Furthermore, the modified friction characteristic curve function is proposed for wet road conditions, in which the linear decay in friction is exhibited in the large slip velocity range. It is shown that use of the proposed numerical procedure leads to an accurate prediction of the LuGre model parameters for measured tire force characteristics under various loading and speed conditions. Furthermore, the fundamental tire properties including the load-deflection curve, the contact patch lengths, contact pressure distributions, and natural frequencies are validated against the test data. Several numerical examples for hard braking and cornering simulation are presented to demonstrate capabilities of the physics-based flexible tire model developed in this study. Finally, the physics-based flexible tire model is further extended for application to off-road mobility simulation. To this end, a locking-free 9-node brick element with the curvature coordinates at the center node is developed and justified for use in modeling a continuum soil with the capped Drucker-Prager failure criterion. Multiplicative finite strain plasticity theory is utilized to consider the large soil deformation exhibited in the tire/soil interaction simulation. In order to identify soil parameters including cohesion and friction angle, the triaxial soil test is conducted. Using the soil parameters identified including the plastic hardening parameters by the compression soil test, the continuum soil model developed is validated against the test data. Use of the high-fidelity physics-based tire/soil simulation model in off-road mobility simulation, however, leads to a very large computational model to consider a wide area of terrains. Thus, the computational cost dramatically increases as the size of the soil model increases. To address this issue, the component soil model is proposed such that soil elements far behind the tire can be removed from the equations of motion sequentially, and then new soil elements are added to the portion that the tire is heading to. That is, the soil behavior only in the vicinity of the rolling tire is solved in order to reduce the overall model dimensionality associated with the finite element soil model. It is shown that use of the component soil model leads to a significant reduction in computational time while ensuring the accuracy, making the use of the physics-based deformable tire/soil simulation capability feasible in off-road mobility simulation.
6
Feng, Chih-Liang. "Heavy truck dynamics modeling using multi-body dynamics." Text, The Ohio State University / OhioLINK, 1996. http://rave.ohiolink.edu/etdc/view?acc_num=osu1295551522.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Striebel, Maren. "PLANKTON DYNAMICS." Dissertation, lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-92597.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Still, G. Keith. "Crowd dynamics." Electronic Thesis or Dissertation, University of Warwick, 2000. http://wrap.warwick.ac.uk/36364/.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Crowd dynamics are complex. This thesis examines the nature of the crowd and its dynamics with specific reference to the issues of crowd safety. A model (Legion) was developed that simulates the crowd as an emergent phenomenon using simulated annealing and mobile cellular automata. We outline the elements of that model based on the interaction of four parameters: Objective, Motility, Constraint and Assimilation. The model treats every entity as an individual and it can simulate how people read and react to their environment in a variety of conditions. Which allows the user to study a wide range of crowd dynamics in different geometries and highlights the interactions of the crowd with their environment. We demonstrate that the model runs in polynomial time and can be used to assess the limits of crowd safety during normal and emergency egress. Over the last 10 years there have been many incidents of crowd related disasters. We highlight deficiencies in the existing guidelines relating to crowds. We compare and contrast the model with the safety guidelines and highlight specific areas where the guides may be improved. We demonstrate that the model is capable of reproducing these dynamics without additional parameters, satisfying Occam's Razor. The model is tested against known crowd dynamics from field studies, including Wembley Stadium, Balham Station and the Hong Kong Jockey club. We propose an alternative approach to assessing the dynamics of the crowd through the use of the simulation and analysis of least effort behaviour. Finally we test the model in a variety of applications where crowd related incidents warrant structural alterations at client sites. We demonstrate that the model explains the variance in a variety of field measurements, that it is robust and that it can be applied to future designs where safety and crowd comfort are criteria for design and cost savings.
9
Richardson, Derek C. "Planetesimal dynamics." Electronic Thesis or Dissertation, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.309052.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Dean, David Stanley. "Stochastic dynamics." Electronic Thesis or Dissertation, University of Cambridge, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318048.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Dynamics":

1
Lamb, Horace. Dynamics. 2nd ed. Cambridge: Cambridge University Press, 2009.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Hasselbrink, E., and B. I. Lundqvist. Dynamics. Amsterdam, Netherlands: North Holland, 2008.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Ginsberg, Jerry H., and Joseph Genin. Dynamics. Boston: PWS Publisching Company, 1995.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Forman, Bruce. Dynamics. Concord, CA: Concord Jazz, 1985.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Rasband, S. Neil. Dynamics. Malabar, Fla: R.E. Krieger Pub. Co., 1991.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Ginsberg, Jerry H. Dynamics. 2nd ed. Minneapolis/St. Paul: West Pub. Co., 1995.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Drabble, George E. Dynamics. London: Macmillan, 1990.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Drabble, George E. Dynamics. Basingstoke: Macmillan Education, 1987.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Goodman, Lawrence E. Dynamics. 3rd ed. Mineola, N.Y: Dover Publications, 2001.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Drabble, G. E. Dynamics. London: Macmillan Education UK, 1990. http://dx.doi.org/10.1007/978-1-349-10448-2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Dynamics":

1
Poulos, Thomas L. "Cytochrome P450 Dynamics Dynamics." In Fifty Years of Cytochrome P450 Research, 75–94. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54992-5_4.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Abraham, Ralph H., and Christopher D. Shaw. "Dynamics." In Self-Organizing Systems, 543–97. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-0883-6_30.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Stepan, Gabor. "Dynamics." In CIRP Encyclopedia of Production Engineering, 422–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-20617-7_6528.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Ermentrout, G. Bard, and David H. Terman. "Dynamics." In Interdisciplinary Applied Mathematics, 49–75. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-0-387-87708-2_3.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Huang, L. "Dynamics." In A Concise Introduction to Mechanics of Rigid Bodies, 61–129. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0472-9_3.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Mould, Richard A. "Dynamics." In Basic Relativity, 113–47. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-4326-7_5.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Weik, Martin H. "dynamics." In Computer Science and Communications Dictionary, 473. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_5749.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Gustafson, Stephen J., and Israel Michael Sigal. "Dynamics." In Mathematical Concepts of Quantum Mechanics, 13–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-55729-3_2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Merlet, Jean-Pierre. "Dynamics." In Solid Mechanics and Its Applications, 269–81. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-010-9587-7_9.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Huang, L. "Dynamics." In A Concise Introduction to Mechanics of Rigid Bodies, 93–165. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45041-4_4.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Dynamics":

1
Imaizumi, Hirohide, and Takehiko Fujioka. "Motorcycle Dynamics by Multibody Dynamics Analysis." In Small Engine Technology Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951806.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Fujita, Masahiro. "Intelligence dynamics." In the 2006 international symposium. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1232425.1232427.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Antoniou, N. G., A. P. Contogouris, F. K. Diakonos, C. N. Ktorides, M. Stassinaki, and M. Vassiliou. "Multiparticle Dynamics." In XXVIII International Symposium on Multiparticle Dynamics. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814527231.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
de Deus, J. Dias, P. Sá, M. Pimenta, S. Ramos, and J. Seixas. "Multiparticle Dynamics." In XXVI International Symposium. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814529716.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
GODEFROY, GILLES. "LINEAR DYNAMICS." In Proceedings of the Second International School. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708441_0004.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
POLLAROLO, G. "NUCLEAR DYNAMICS." In Proceedings of the 10th Conference on Problems in Theoretical Nuclear Physics. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701985_0025.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Nakariakov, V. M. "Coronal dynamics." In KODAI SCHOOL ON SOLAR PHYSICS. AIP, 2007. http://dx.doi.org/10.1063/1.2756788.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Guignard, G. "Nonlinear dynamics." In PHYSICS OF PARTICLE ACCELERATORS. AIP, 1989. http://dx.doi.org/10.1063/1.38051.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Calikli, Gul, Mark Law, Arosha K. Bandara, Alessandra Russo, Luke Dickens, Blaine A. Price, Avelie Stuart, Mark Levine, and Bashar Nuseibeh. "Privacy dynamics." In ICSE '16: 38th International Conference on Software Engineering. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2897053.2897063.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Rossi, Ryan, Brian Gallagher, Jennifer Neville, and Keith Henderson. "Role-dynamics." In the 21st international conference companion. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2187980.2188234.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Dynamics":

1
Leibovich, Sidney. Vortex Dynamics. Fort Belvoir, VA: Defense Technical Information Center, August 1989. http://dx.doi.org/10.21236/ada212119.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Pinkel, Robert. Ocean Dynamics. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada542616.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Baraff, David, and Andrew Witkin. Partitioned Dynamics. Fort Belvoir, VA: Defense Technical Information Center, March 1997. http://dx.doi.org/10.21236/ada594838.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Teter, David Fredrick, Tanja Pietrass, and Karen Elizabeth Kippen. Materials Dynamics. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1423991.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Pinkel, Robert, and Jody M. Klymak. Ocean Dynamics. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada612143.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Pinkel, Robert. Ocean Dynamics. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada634182.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Pinkel, R., and M. Merrifield. Ocean Dynamics. Fort Belvoir, VA: Defense Technical Information Center, March 1997. http://dx.doi.org/10.21236/ada333268.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Newhouse, Sheldon E. Nonlinear Dynamics. Fort Belvoir, VA: Defense Technical Information Center, July 1991. http://dx.doi.org/10.21236/ada251271.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Chamberlin, Ralph V. Fracton Dynamics. Fort Belvoir, VA: Defense Technical Information Center, June 1990. http://dx.doi.org/10.21236/ada254624.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Mishkin, Frederic. Inflation Dynamics. Cambridge, MA: National Bureau of Economic Research, June 2007. http://dx.doi.org/10.3386/w13147.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії

Будь ласка, вимкніть ваш блокувальник реклами

Adblock logo Adblock logo Adblock logo

"Grafiati" – це незалежний сервіс, що забезпечує унікальну якість оформлення бібліографічних посилань. Ви можете користуватися нашим сайтом безоплатно, дозволивши показ реклами, або оформити передплату.

Передплатити