Добірка наукової літератури з теми "Dynamics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Dynamics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

За допомогою хмари тегів ви можете побачити ще більше пов’язаних тем досліджень, а відповідні кнопки після кожного розділу сторінки дозволяють переглянути розширені списки книг, статей тощо на обрану тему.

Статті в журналах з теми "Dynamics":

1

Williams, Robley C., Michael Caplow, and J. Richard McIntosh. "Cytoskeleton: Dynamic microtubule dynamics." Nature 324, no. 6093 (November 1986): 106–7. http://dx.doi.org/10.1038/324106a0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Raza, Md Shamim, Nitesh Kumar, and Sourav Poddar. "Combustor Characteristics under Dynamic Condition during Fuel – Air Mixingusing Computational Fluid Dynamics." Journal of Advances in Mechanical Engineering and Science 1, no. 1 (August 2015): 20–33. http://dx.doi.org/10.18831/james.in/2015011003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

STRADTMANN, Hinnerk. "1D14 Examples for European assessment of vehicle's dynamic running behaviour(Vehicles-Dynamics)." Proceedings of International Symposium on Seed-up and Service Technology for Railway and Maglev Systems : STECH 2015 (2015): _1D14–1_—_1D14–12_. http://dx.doi.org/10.1299/jsmestech.2015._1d14-1_.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pham, Kien Huu, and Trang Thi Thuy Giap. "The liquid–amorphous phase transition, slow dynamics and dynamical heterogeneity for bulk iron: a molecular dynamics simulation." RSC Advances 11, no. 51 (2021): 32435–45. http://dx.doi.org/10.1039/d1ra06394d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Li, Jian Jia, and Xin Hua Zhao. "Dynamics Modeling and Simulation of Tracked Five DOF Mobile Manipulator." Advanced Materials Research 433-440 (January 2012): 4817–22. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.4817.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The dynamical analysis for the tracked moving platform and the manipulator are established based on by Newton-Euler method and Dynamics model is respectively obtained, Moreover, Dynamic simulation is conducted, and reveals the input-output relation for the motion system from dynamical simulation, and plays a solid basic for the further study of dynamic modeling and motion control.
6

Forrest, David V. "Elements of Dynamics VI: The Dynamic Unconscious and Unconscious Dynamics." Journal of the American Academy of Psychoanalysis and Dynamic Psychiatry 33, no. 3 (September 2005): 547–60. http://dx.doi.org/10.1521/jaap.2005.33.3.547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

SUN, KEHUI, and J. C. SPROTT. "DYNAMICS OF A SIMPLIFIED LORENZ SYSTEM." International Journal of Bifurcation and Chaos 19, no. 04 (April 2009): 1357–66. http://dx.doi.org/10.1142/s0218127409023688.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A simplified Lorenz system with one bifurcation parameter is investigated by a detailed theoretical analysis as well as dynamic simulation, including some basic dynamical properties, Lyapunov exponent spectra, fractal dimension, bifurcations and routes to chaos. The results show that this system has complex dynamics with interesting characteristics.
8

Agnew, Thelma. "Dynamic teams and team dynamics." Nursing Management 12, no. 1 (April 2005): 7. http://dx.doi.org/10.7748/nm.12.1.7.s10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Travers, Andrew. "Dynamic DNA Underpins Chromosome Dynamics." Biophysical Journal 105, no. 10 (November 2013): 2235–37. http://dx.doi.org/10.1016/j.bpj.2013.10.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mozur, Eve M., and James R. Neilson. "Cation Dynamics in Hybrid Halide Perovskites." Annual Review of Materials Research 51, no. 1 (July 2021): 269–91. http://dx.doi.org/10.1146/annurev-matsci-080819-012808.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Hybrid halide perovskite semiconductors exhibit complex, dynamical disorder while also harboring properties ideal for optoelectronic applications that include photovoltaics. However, these materials are structurally and compositionally distinct from traditional compound semiconductors composed of tetrahedrally coordinated elements with an average valence electron count of silicon. The additional dynamic degrees of freedom of hybrid halide perovskites underlie many of their potentially transformative physical properties. Neutron scattering and spectroscopy studies of the atomic dynamics of these materials have yielded significant insights into their functional properties. Specifically, inelastic neutron scattering has been used to elucidate the phonon band structure, and quasi-elastic neutron scattering has revealed the nature of the uncorrelated dynamics pertaining to molecular reorientations. Understanding the dynamics of these complex semiconductors has elucidated the temperature-dependent phase stability and origins of defect-tolerant electronic transport from the highly polarizable dielectric response. Furthermore, the dynamic degrees of freedom of the hybrid perovskites provide additional opportunities for application engineering and innovation.

Дисертації з теми "Dynamics":

1

Kulich, Martin. "Dynamic Template Adjustment in Continuous Keystroke Dynamics." MasterThesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2015. http://www.nusl.cz/ntk/nusl-234927.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dynamika úhozů kláves je jednou z behaviorálních biometrických charakteristik, kterou je možné použít pro průběžnou autentizaci uživatelů. Vzhledem k tomu, že styl psaní na klávesnici se v čase mění, je potřeba rovněž upravovat biometrickou šablonu. Tímto problémem se dosud, alespoň pokud je autorovi známo, žádná studie nezabývala. Tato diplomová práce se pokouší tuto mezeru zaplnit. S pomocí dat o časování úhozů od 22 dobrovolníků bylo otestováno několik technik klasifikace, zda je možné je upravit na online klasifikátory, zdokonalující se bez učitele. Výrazné zlepšení v rozpoznání útočníka bylo zaznamenáno u jednotřídového statistického klasifikátoru založeného na normované Euklidovské vzdálenosti, v průměru o 23,7 % proti původní verzi bez adaptace, zlepšení však bylo pozorováno u všech testovacích sad. Změna míry rozpoznání správného uživatele se oproti tomu různila, avšak stále zůstávala na přijatelných hodnotách.
2

Munz, Marton. "Computational studies of protein dynamics and dynamic similarity." Electronic Thesis or Diss., University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:2fb76765-3e43-409b-aad3-b5202f4668b3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
At the time of writing this thesis, the complete genomes of more than 180 organisms have been sequenced and more than 80000 biological macromolecular structures are available in the Protein Data Bank (PDB). While the number of sequenced genomes and solved three-dimensional structures are rapidly increasing, the functional annotation of protein sequences and structures is a much slower process, mostly because the experimental de-termination of protein function is expensive and time-consuming. A major class of in silico methods used for protein function prediction aim to transfer annotations between proteins based on sequence or structural similarities. These approaches rely on the assumption that homologous proteins of similar primary sequences and three-dimensional structures also have similar functions. While in most cases this assumption appears to be valid, an increasing number of examples show that proteins of highly similar sequences and/or structures can have different biochemical functions. Thus the relationship between the divergence of protein sequence, structure and function is more complex than previously anticipated. On the other hand, there is mounting evidence suggesting that minor changes of the sequences and structures of proteins can cause large differences in their conformational dynamics. As the intrinsic fluctuations of many proteins are key to their biochemical functions, the fact that very similar (almost identical) sequences or structures can have entirely different dynamics might be important for understanding the link between sequence, structure and function. In other words, the dynamic similarity of proteins could often serve as a better indicator of functional similarity than the similarity of their sequences or structures alone. Currently, little is known about how proteins are distributed in the 'dynamics space' and how protein motions depend on structure and sequence. These problems are relevant in the field of protein design, studying protein evolution and to better understand the functional differences of proteins. To address these questions, one needs a precise definition of dynamic similarity, which is not trivial given the complexity of protein motions. This thesis is intended to explore the possibilities of describing the similarity of proteins in the 'dynamics space'. To this end, novel methods of characterizing and comparing protein motions based on molecular dynamics simulation data were introduced. The generally applicable approach was tested on the family of PDZ domains; these small protein-protein interaction domains play key roles in many signalling pathways. The methodology was successfully used to characterize the dynamic dissimilarities of PDZ domains and helped to explain differences of their functional properties (e.g. binding promiscuity) also relevant for drug design studies. The software tools developed to implement the analysis are also introduced in the thesis. Finally, a network analysis study is presented to reveal dynamics-mediated intramolecular signalling pathways in an allosteric PDZ domain.
3

Zivanovic, Sanja. "Attractors in Dynamics with Choice." Text, Scholarly Repository, 2009. http://scholarlyrepository.miami.edu/oa_dissertations/210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dynamics with choice is a generalization of discrete-time dynamics where instead of the same evolution operator at every time step there is a choice of operators to transform the current state of the system. Many real life processes studied in chemical physics, engineering, biology and medicine, from autocatalytic reaction systems to switched systems to cellular biochemical processes to malaria transmission in urban environments, exhibit the properties described by dynamics with choice. We study the long-term behavior in dynamics with choice. We prove very general results on the existence and properties of global compact attractors in dynamics with choice. In addition, we study the dynamics with restricted choice when the allowed sequences of operators correspond to subshifts of the full shift. One of practical consequences of our results is that when the parameters of a discrete-time system are not known exactly and/or are subject to change due to internal instability, or a strategy, or Nature's intervention, the long term behavior of the system may not be correctly described by a system with "averaged" values for the parameters. There may be a Gestalt effect.
4

Kovář, Jiří. "Využití „Open Dynamics Engine“ pro modelování mobilních robotů." MasterThesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2008. http://www.nusl.cz/ntk/nusl-227991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This diploma thesis deals with the problems of virtual physical modelling of mobile robots for the needs of their real-time control. To create a virtual physical world, an open-source project OPEN DYNAMICS ENGINE (ODE) was used, the results were displayed facilitating DirectX graphical interface. Simulated systems in ODE were written in C# on Microsoft.NET platform. The properites and qualities in ODE were verified by simulation in several types of simple systems and on a simplified robot model "Kracmera I.". Subsequently, the usability of ODE for its control was being verified.
5

Demiray, Turhan Hilmi. "Simulation of power system dynamics using dynamic phasor models /." Zürich : ETH, 2008. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17607.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mulder, William Alexander. "Dynamics of gas in a rotating galaxy." [Leiden] : Sterrewacht Leiden, 1985. http://catalog.hathitrust.org/api/volumes/oclc/12129828.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Marketing, Corporate Affairs and. "Dynamics." Text, Corporate Affairs and Marketing, 2004. http://encore.tut.ac.za/iii/cpro/DigitalItemViewPage.external?sp=1000612.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gotte, Anders. "Dynamics in Ceria and Related Materials from Molecular Dynamics and Lattice Dynamics." Doctoral thesis, comprehensive summary, Uppsala University, Department of Materials Chemistry, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7374.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

In discussions of heterogeneous catalysis and other surface-related phenomena, the dynamical properties of the catalytic material are often neglected, even at elevated temperatures. An example is the three-way catalyst (TWC), used for treatment of exhaust gases from combustion engines operating at several hundred degrees Celsius. In the TWC, reduced ceria (CeO2-x) is one of the key components, where it functions as an oxygen buffer, storing and releasing oxygen to provide optimal conditions for the catalytic conversion of the pollutants. In this process it is evident that dynamics plays a crucial role, not only ionic vibrations, but also oxygen diffusion.

In this thesis, the structure and dynamics of several ionic crystalline compounds and their surfaces have been studied by means of Molecular dynamics (MD) simulations and Lattice dynamics (LD) calculations. The main focus lies on CeO2-x, but also CeO2, MgO and CaF2 have been investigated.

The presence of oxygen vacancies in ceria is found to lead to significant distortions of the oxygen framework around the defect (but not of the cerium framework). As a consequence, a new O-O distance emerges, as well as a significantly broadened Ce-O distance distribution.

The presence of oxygen vacancies in ceria also leads to increased dynamics. The oxygen self-diffusion in reduced ceria was calculated from MD simulations in the temperature range 800-2000 K, and was found to follow an Arrhenius behaviour with a vacancy mechanism along the crystallographic <100> directions only.

The cation and anion vibrational surface dynamics were investigated for MgO (001) using DFT-LD and for CaF2 (111) in a combined LEED and MD study. Specific surface modes were found for MgO and increased surface dynamics was found both experimentally and theoretically for CaF2, which is isostructural with CeO2.

Many methodological aspects of modeling dynamics in ionic solids are also covered in this thesis. In many cases, the representation of the model system (slab thickness, simulation box-size and the choice of ensemble) was found to have a significant influence on the results.

9

Van, Wychen Wesley. "The Dynamics and Dynamic Discharge of the Ice Masses and Tidewater Glaciers of the Canadian High Arctic." Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/33180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Speckle tracking of synthetic aperture RADAR imagery (Radarsat-1/2, ALOS PALSAR) and feature tracking of optical (Landsat-7 ETM+) imagery is used to determine the entire surface velocity structure of the major ice masses of the Canadian High Arctic in 2000, 2010-2015 and for select tidewater terminating glaciers from 1999-2010. At the termini of tidewater glaciers, surface ice velocities are combined with measured/modelled ice thicknesses to derive an estimate of mass loss via dynamic (iceberg) discharge. The total dynamic discharge for the ice masses of the southern Canadian Arctic Archipelago (SCAA: Baffin and Bylot Islands) is between ~17 and 180 Mt a-1 (0.017 to 0.180 Gt a-1) for the period 2007-2011, compared to a dynamic discharge of ~2.47  ± 0.88 Gt a-1 for the northern Canadian Arctic Archipelago (NCAA: Devon, Ellesmere, Axel Heiberg Islands) for the period 2011-2015. A comparison of these values with rates of mass loss via climatic mass balance (surface melt and runoff) indicates that dynamic discharge accounted for ~3.1% of total ablation for the NCAA in 2012 and ~0.11% of total ablation in the SCAA between 2007 and 2010. This reveals that total ablation in the Canadian Arctic is currently dominated by surface melt and runoff. The glacier velocity dataset provides the most comprehensive record of ice motion and dynamic discharge in the Canadian Arctic to date and reveals a large degree of variability in glacier motion within the region over the last ~15 years. Most of the major glaciers in the NCAA have decelerated and their resultant dynamic discharge has decreased over the observation period, which is largely attributed to cyclical phases attributed to surging and pulsing. On pulse-type glaciers, variation in ice motion is largely confined to regions where the bed is located below sea level. A notable departure from the overall trend of regional velocity slowdown is the widespread acceleration of the Trinity and Wykeham Glaciers of the Prince of Wales Icefield (the largest glacier complex in the Canadian Arctic), which cannot be explained by surge or pulse mechanisms. The increased discharge from these two glaciers nearly compensates (within error) for the decrease in iceberg discharge from other glaciers across the study region and indicates that total dynamic discharge from the Canadian Arctic can be sensitive to the variations of ice flow of just a few glaciers.
10

Mokhtarian, Farzad. "Fluid dynamics of airfoils with moving surface boundary-layer control." Thesis/Dissertation, University of British Columbia, 1988. http://hdl.handle.net/2429/29026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The concept of moving surface boundary-layer control, as applied to the Joukowsky and NACA airfoils, is investigated through a planned experimental program complemented by theoretical and flow visualization studies. The moving surface was provided by one or two rotating cylinders located at the leading edge, the trailing edge, or the top surface of the airfoil. Three carefully designed two-dimensional models, which provided a wide range of single and twin cylinder configurations, were tested at a subcritical Reynolds number (Re = 4.62 x 10⁴ or Re — 2.31 x 10⁵) in a laminar-flow tunnel over a range of angles of attack and cylinder rotational speeds. The test results suggest that the concept is indeed quite promising and can provide a substantial increase in lift and a delay in stall. The leading-edge rotating cylinder effectively extends the lift curve without substantially affecting its slope. When used in conjunction with a second cylinder on the upper surface, further improvements in the maximum lift and stall angle are possible. The maximum coefficient of lift realized was around 2.22, approximately 2.6 times that of the base airfoil. The maximum delay in stall was to around 45°. In general, the performance improves with an increase in the ratio of cylinder surface speed (Uc) to the free stream speed (U). However, the additional benefit derived progressively diminishes with an increase in Uc/U and becomes virtually negligible for Uc/U > 5. There appears to be an optimum location for the leading-edge-cylinder. Tests with the cylinder at the upper side of the leading edge gave quite promising results. Although the CLmax obtained was a little lower than the two-cylinder configuration (1.95 against 2.22), it offers a major advantage in terms of mechanical simplicity. Performance of the leading-edge-cylinder also depends on its geometry. A scooped configuration appears to improve performance at lower values of Uc/U (Uc/U ≤ 1). However, at higher rates of rotation the free stream is insensitive to the cylinder geometry and there is no particular advantage in using the scooped geometry. A rotating trailing-edge-cylinder affects the airfoil characteristics in a fundamentally different manner. In contrast to the leading-edge-cylinder, it acts as a flap by shifting the CL vs. α plots to the left thus increasing the lift coefficient at smaller angles of attack before stall. For example, at α = 4°, it changed the lift coefficient from 0.35 to 1.5, an increase of 330%. Thus in conjunction with the leading-edge- cylinder, it can provide significant improvements in lift over the entire range of small to moderately high angles of incidence (α ≤ 18°). On the theoretical side, to start with, the simple conformal transformation approach is used to obtain a closed form potential-flow solution for the leading-edge-cylinder configuration. Though highly approximate, the solution does predict correct trends and can be used at a relatively small angle of attack. This is followed by an extensive numerical study of the problem using: • the surface singularity approach including wall confinement and separated flow effects; • a finite-difference boundary-layer scheme to account for viscous corrections; and • an iteration procedure to construct an equivalent airfoil, in accordance with the local displacement thickness of the boundary layer, and to arrive at an estimate for the pressure distribution. Effect of the cylinder is considered either through the concept of slip velocity or a pair of counter-rotating vortices located below the leading edge. This significantly improves the correlation. However, discrepancies between experimental and numerical results do remain. Although the numerical model generally predicts CLmax with a reasonable accuracy, the stall estimate is often off because of an error in the slope of the lift curve. This is partly attributed to the spanwise flow at the model during the wind tunnel tests due to gaps in the tunnel floor and ceiling required for the connections to the externally located model support and cylinder drive motor. However, the main reason is the complex character of the unsteady flow with separation and reattachment, resulting in a bubble, which the present numerical procedure does not model adequately. It is expected that better modelling of the cylinder rotation with the slip velocity depending on a dissipation function, rotation, and angle of attack should considerably improve the situation. Finally, a flow visualization study substantiates, rather spectacularly, effectiveness of the moving surface boundary-layer control and qualitatively confirms complex character of the flow as predicted by the experimental data.
Applied Science, Faculty of
Mechanical Engineering, Department of
Graduate

Книги з теми "Dynamics":

1

Jones, C. K. R. T. Dynamics Reported: Expositions in Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cong, Nguyen Dinh. Topological dynamics of random dynamical systems. Oxford: Clarendon Press, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jones, C. K. R. T. Dynamics Reported: Expositions in Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jones, C. K. R. T. Dynamics Reported: Expositions in Dynamical Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Forman, Bruce. Dynamics. Concord, CA: Concord Jazz, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lamb, Horace. Dynamics. 2nd ed. Cambridge: Cambridge University Press, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ginsberg, Jerry H. Dynamics. 2nd ed. Minneapolis/St. Paul: West Pub. Co., 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Drabble, George E. Dynamics. London: Macmillan, 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Drabble, George E. Dynamics. Basingstoke: Macmillan Education, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Goodman, Lawrence E. Dynamics. 3rd ed. Mineola, N.Y: Dover Publications, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Dynamics":

1

Donner, Karl Johan, Axel Brandenburg, and Magnus Thomasson. "Galactic Dynamos and Dynamics." In The Cosmic Dynamo, 333–37. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-0772-3_60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Poulos, Thomas L. "Cytochrome P450 Dynamics Dynamics." In Fifty Years of Cytochrome P450 Research, 75–94. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54992-5_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kwatny, Harry G., and Gilmer L. Blankenship. "Dynamics." In Nonlinear Control and Analytical Mechanics, 117–64. Boston, MA: Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-2136-4_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Minati, Gianfranco, and Eliano Pessa. "Dynamics." In From Collective Beings to Quasi-Systems, 63–144. Boston, MA: Springer US, 2018. http://dx.doi.org/10.1007/978-1-4939-7581-5_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ghafil, Hazim Nasir, and Károly Jármai. "Dynamics." In Optimization for Robot Modelling with MATLAB, 157–73. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40410-9_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Young, J. D. "Dynamics." In Home Studio Mastering, 129–42. New York, NY : Routledge, 2018.: Routledge, 2018. http://dx.doi.org/10.4324/9781315180328-13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shekhar, Shashi, and Hui Xiong. "Dynamics." In Encyclopedia of GIS, 260. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-35973-1_328.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Stepan, Gabor. "Dynamics." In CIRP Encyclopedia of Production Engineering, 1–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35950-7_6528-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Spohn, Herbert. "Dynamics." In Large Scale Dynamics of Interacting Particles, 7–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84371-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liehr, Andreas W. "Dynamics." In Springer Series in Synergetics, 91–117. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31251-9_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Dynamics":

1

"Dynamics 2018 TOC." In 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2018. http://dx.doi.org/10.1109/dynamics.2018.8601466.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

"[Front cover]." In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

"Table of content." In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005631.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Anfilofiev, A. E., I. A. Hodashinsky, and O. O. Evsutin. "Algorithm for tuning fuzzy network attack classifiers based on invasive weed optimization." In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005632.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Averchenko, A. P., and B. D. Zhenatov. "Hartley transform as alternative to fourier transform in digital data processing systems." In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005633.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Baranova, Vitalia E., and Pavel F. Baranov. "The Helmholtz coils simulating and improved in COMSOL." In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005634.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shtripling, Lev O., and Vladislav V. Bazhenov. "Oil refining emission automated monitoring system." In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Belyaev, P. V., and A. A. Kashevkin. "The mathematical model of induction heating of railway car axis unit." In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005636.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Belyaev, P. V., and D. S. Sadayev. "Comparing indices characterizing nonsinusoidality of supply voltage." In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bespalov, Alexander V., Gennady V. Malgin, and Anton V. Weinblat. "Possibility of adjusting submersible motors at borehole fluid production." In 2014 Dynamics of Systems, Mechanisms and Machines (Dynamics). IEEE, 2014. http://dx.doi.org/10.1109/dynamics.2014.7005638.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Dynamics":

1

Teter, David Fredrick, Tanja Pietrass, and Karen Elizabeth Kippen. Materials Dynamics. Office of Scientific and Technical Information (OSTI), March 2018. http://dx.doi.org/10.2172/1423991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pinkel, Robert, and Jody M. Klymak. Ocean Dynamics. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada612143.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pinkel, Robert. Ocean Dynamics. Fort Belvoir, VA: Defense Technical Information Center, September 2010. http://dx.doi.org/10.21236/ada542616.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chamberlin, Ralph V. Fracton Dynamics. Fort Belvoir, VA: Defense Technical Information Center, June 1990. http://dx.doi.org/10.21236/ada254624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pinkel, R., and M. Merrifield. Ocean Dynamics. Fort Belvoir, VA: Defense Technical Information Center, March 1997. http://dx.doi.org/10.21236/ada333268.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pinkel, Robert. Ocean Dynamics. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada634182.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Baraff, David, and Andrew Witkin. Partitioned Dynamics. Fort Belvoir, VA: Defense Technical Information Center, March 1997. http://dx.doi.org/10.21236/ada594838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cutler, David, James Poterba, and Lawrence Summers. Speculative Dynamics. Cambridge, MA: National Bureau of Economic Research, January 1990. http://dx.doi.org/10.3386/w3242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Glaeser, Edward, and Joseph Gyourko. Housing Dynamics. Cambridge, MA: National Bureau of Economic Research, December 2006. http://dx.doi.org/10.3386/w12787.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mishkin, Frederic. Inflation Dynamics. Cambridge, MA: National Bureau of Economic Research, June 2007. http://dx.doi.org/10.3386/w13147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії
Current page language: Ukrainian.
You might want to see the page in this language: English.
Change language