Добірка наукової літератури з теми "Effluent treatment plants"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Effluent treatment plants".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Effluent treatment plants"
Raj, Abhay, Sharad Kumar, Izharul Haq, and Mahadeo Kumar. "Detection of Tannery Effluents Induced DNA Damage in Mung Bean by Use of Random Amplified Polymorphic DNA Markers." ISRN Biotechnology 2014 (March 11, 2014): 1–8. http://dx.doi.org/10.1155/2014/727623.
Повний текст джерелаYotova, Galina, Tony Venelinov, and Stefan Tsakovski. "Chemometric Assessment of Bulgarian Wastewater Treatment Plants’ Effluents." Molecules 25, no. 19 (September 25, 2020): 4408. http://dx.doi.org/10.3390/molecules25194408.
Повний текст джерелаAlbuquerque Soares, Haroldo Sávio, Fabiana Rocha Pinto, David Barbosa de Alencar, and Manoel Henrique Reis Nascimento. "PH Analysis of an Wastewater Treatment Plants (WWTP) in a Paper Recycling Industry." International Journal for Innovation Education and Research 7, no. 11 (November 30, 2019): 1062–69. http://dx.doi.org/10.31686/ijier.vol7.iss11.1967.
Повний текст джерелаSingh Asiwal, Rakesh, Santosh Kumar Sar, Shweta Singh, and Megha Sahu. "Wastewater Treatment by Effluent Treatment Plants." International Journal of Civil Engineering 3, no. 12 (December 25, 2016): 19–24. http://dx.doi.org/10.14445/23488352/ijce-v3i12p105.
Повний текст джерелаMelcer, Henryk, Hugh Monteith, and Stephen G. Nutt. "Variability of Toxic Trace Contaminants in Municipal Sewage Treatment Plants." Water Science and Technology 20, no. 4-5 (April 1, 1988): 275–84. http://dx.doi.org/10.2166/wst.1988.0177.
Повний текст джерелаPagilla, K. R., M. Urgun-Demirtas, K. Czerwionka, and J. Makinia. "Nitrogen speciation in wastewater treatment plant influents and effluents—the US and Polish case studies." Water Science and Technology 57, no. 10 (May 1, 2008): 1511–17. http://dx.doi.org/10.2166/wst.2008.213.
Повний текст джерелаRahaman, AA Abdul, OM Olaniran, and FA Oladele. "Growth and leaf epidermal response of three Sesamum indicum varieties to industrial effluent irrigation." Bangladesh Journal of Scientific and Industrial Research 52, no. 1 (April 8, 2017): 1–6. http://dx.doi.org/10.3329/bjsir.v52i1.32025.
Повний текст джерелаSivard, Å., T. Ericsson, and B. Larsson. "Strategy for nutrient control in modern effluent treatment plants." Water Science and Technology 55, no. 6 (March 1, 2007): 157–63. http://dx.doi.org/10.2166/wst.2007.224.
Повний текст джерелаBrandelli, A., M. L. Baldasso, and E. P. Goettems. "Toxicity Identification and Reduction Evaluation in Petrochemical Effluents – SITEL Case." Water Science and Technology 25, no. 3 (February 1, 1992): 73–84. http://dx.doi.org/10.2166/wst.1992.0079.
Повний текст джерелаK, KANNAN, and OBLISAMI G. "EFFECT OF RAW AND TREATED PAPER MILL EFFLUENT IRRIGATION ON VIGOUR INDICES OF CERTAIN CROP PLANTS." Madras Agricultural Journal 79, January (1992): 18–21. http://dx.doi.org/10.29321/maj.10.a01725.
Повний текст джерелаДисертації з теми "Effluent treatment plants"
Skogsdal, Rickard. "Evaluation of treatment techniques of the effluent air at biogas upgrading plants." Thesis, Karlstads universitet, Fakulteten för teknik- och naturvetenskap, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-8066.
Повний текст джерелаI naturen bryts organiska ämnen ned med hjälp av mikroorganismer. Under nedbrytningen bildasbland annat metan, koldioxid, svavelväte samt flera andra gaser så som VOC. Detta har utnyttjats dåman med hjälp av anaeroba rötkammare skapat miljöer där dessa mikroorganismer trivs. I dessakammare samlas gaserna ihop till någonting som kallas för biogas.Biogas är en förnyelsebar energikälla där man utnyttjar metangasens naturliga förutsättningar till attförbrännas i syrehaltiga miljöer. Genom att separera metangasen från de övriga gaserna, kanenergivärden nära naturgas fås. Den uppgraderade gasen kan på så vis agera som ett substitut tillnaturgas och därmed användas som drivmedel till fordon, ett behov som ökat under de senaste åren.Detta är att föredra då naturgas är ett fossilt bränsle.En teknik som används för separeringen av gaserna är vattenskrubbrar. Genom att utnyttja gasernasolika benägenhet att lösa sig i vatten så kan koldioxiden och svavelvätet tas bort. Under dennaprocess absorberas även mindre mängder metan och VOC. Den uppgraderade biogasen får genomprocessen cirka 98 % metanhalt och kan därefter användas för att driva fordon. De borttagnagaserna frigörs samtidigt från vattnet och släpps istället ut från uppgraderingsanläggningen medhjälp av en luftström. Detta har bedömts vara olämpligt då svavelvätet är korrosivt och en mycketgiftig gas. Metanen och VOCn som följer med den utgående luften har negativa egenskaper förväxthuseffekten och den globala miljön.Denna studie har undersökt hur de gaser som normalt släpps ut med det utgående luftflödet skallbehandla. Med hjälp av mätningar av de procentuella gasmängderna i den utgående luften samt iden råa biogasen har kvantiteter på årliga emissionerna kunnat uppskattas. Utifrån dessa har olikareningsmetoder analyserats där slutsatsen är att reducera svavelvätet med hjälp av Järn i ett filter.Metangasen har istället föreslagits bli renad i ett kompost filter.
Santín, López Ignacio. "Application of control strategies in wastewater treatment plants for effluent quality improvement, costs reduction and effluent limits violations removal." Doctoral thesis, Universitat Autònoma de Barcelona, 2015. http://hdl.handle.net/10803/305238.
Повний текст джерелаIn this work different control strategies are applied in wastewater treatment plants. The first objective is the control performance improvement. Basically, this serves as a proof that the proposed control strategy has been applied properly. The final objective is the effect of the applied control strategy on the plant performance. Specifically, the effluent quality improvement, costs reduction and avoiding violations of the established effluent limits. The evaluation of the different control strategies is carried out first with Benchmark Simulation Model No. 1 (BSM1), and secondly with Benchmark Simulation Model No. 2 (BSM2). BSM1 is focused on the biological wastewater treatment by activated sludge reactors, and the evaluation is based on a week of simulation. BSM2 is extended adding the sludge treatment and provides a more elaborated and variable influent with an assessment of one year. The control approaches are based on Model Predictive Control, Fuzzy Control, functions that relate the input and manipulated variables and Artificial Neural Networks. Model Predictive Control is proposed for tracking improvement, Fuzzy Controllers and functions are implemented to improve the denitrification or nitrification processes based on the proposed objectives. Their tuning parameters are selected by trade-off analyses. Artificial Neural Networks are applied to detect risk of violations for an automatic selection of the suitable control strategy. The results are presented and compared with the default control strategy and with the literature. For the control performance, a satisfactory improvement is obtained. Regarding the plant performance, in most of the cases, violations of the established limits of total nitrogen and ammonium and ammonia nitrogen are avoided, as well as an effluent quality improvement and cost reduction are achieved.
Perusini, Heather Brittany. "Temporal Variation of Mercury in Effluent from Two Municipal Wastewater Treatment Plants in Southwest Ohio." Wright State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=wright1472248610.
Повний текст джерелаAl-Salhi, Raghad Adnan Ahmed. "Identification of the xenometabolome and novel contaminant markers in fish exposed to a wastewater treatment works effluent." Thesis, University of Sussex, 2012. http://sro.sussex.ac.uk/id/eprint/40340/.
Повний текст джерелаHendricks, Rahzia. "Assessment of the biological quality of raw and treated effluents from three sewage treatment plants in the Western Cape, South Africa." Thesis, University of the Western Cape, 2011. http://etd.uwc.ac.za/index.php?module=etd&action=viewtitle&id=gen8Srv25Nme4_6966_1331032010.
Повний текст джерелаThe aim of this study was to compare the water quality of raw wastewater and treated sewage effluents from three different sewage treatment plants in the Western Cape, South Africa. The treatment plants investigated are on the same river system. Sewage treatment plant 1 and 2 use older technologies, while sewage treatment plant 3 has been upgraded and new technologies (membrane bioreactor) were incorporated in the treatment processes. The first objective was to determine the occurrence of total coliforms, Escherichia coli (E. coli) and fluoroquinolone and sulfamethoxazole antibiotic residues in raw wastewater and treated sewage effluents. Bacteria in treated sewage effluents can result in diseases such as dysentery, gastroenteritis, and typhoid upon exposure. A chromogenic test was used to screen for coliforms and E. coli. Enzyme linked Immunosorbent Assays (ELISA) were used to quantitate antibiotic residues (fluoroquinolones and sulfamethoxazole) in raw wastewater and treated sewage effluents. This study showed that bacteria are present in raw wastewater and residual bacteria are released with treated sewage effluents from sewage treatment plants.
Kasongo, Wa Kasongo Godwill. "Enhancement of membrane surface characteristics to improve membrane performance and durability in the treatment of municipal MBR effluent." Thesis, Cape Peninsula University of Technology, 2018. http://hdl.handle.net/20.500.11838/2695.
Повний текст джерелаFresh, clean water has always been critical for the world's social development. Supply of water can be reinforced through recycling and reuse; and secondary treatment of municipal wastewater effluent with a membrane bioreactor (MBR) followed by a reverse osmosis (RO) process, has emerged as a crucial treatment process for water reuse. However, fouling of RO membranes in such process is unavoidable. This leads to poor performance, increase in operational cost and degradation of the membrane material, which reduces the membrane life span. Various researches have been conducted to provide an understanding of the mechanism of fouling, and methods have been developed to minimize it. In this research, the effect of surface modification to minimise fouling on a thin film composite polyamide RO membrane was investigated. This study was divided into three parts, namely: membrane modification, biofouling and filtration using RO. Two modifying agents, PVA and DMAEMA, were used as grafting solutions. Escherichia coli (E. coli) were used as the biofoulant to study the ant-biofouling properties of the membranes. A make-up synthetic MBR secondary effluent feed was used in a bench scale RO process. During the membrane modification process, the membrane was treated using two different approaches. Firstly, the covalent attachment of polyvinyl alcohol (PVA) through Glutaraldehyde (GA) onto the surface and secondly the redox initiated grafting of dimethyl amino ethyl methacrylate (DMAEMA PVA and DMAEMA grafting solutions were applied at four different concentrations). The PVA and DMAEMA modifying agents were successfully grafted onto the membrane top layers and were confirmed by the functional groups, present, using the Attenuated Total Reflectance–Fourier Transform Infrared spectroscopy (ATR-FTIR) spectra. The morphology of the membrane surfaces was investigated using Scanning Electron Microscopy (SEM), before and after treatment. SEM analysis showed better membrane structures with PVA grafting compared to DMAEMA.
Osode, Augustina Nwabuje. "Assessment of the prevalence of virulent Eschericia coli strains in the final effluents of wastewater treatment plants in the Eastern Cape Province of South Africa." Thesis, University of Fort Hare, 2010. http://hdl.handle.net/10353/d1001062.
Повний текст джерелаGoudreau, Stephanie E. "Effects of sewage treatment plant effluents on mollusks and fish of the Clinch River in Tazewell County, Virginia." Thesis, Virginia Tech, 1988. http://hdl.handle.net/10919/43404.
Повний текст джерелаThe Clinch River is renown for its rich mollusk and fish assemblages, including many endemic species. New sewage treatment plants (STP's) have recently been constructed along the Clinch River in Virginia, raising concern because of the disappearance of mollusks below existing STP's. Field and laboratory studies were conducted to determine mollusk and fish distribution in proximity to two STP's in Tazewell County, and the tolerance of two mollusk species to mono chloramine and unionized ammonia, the major toxicants in domestic STP effiuent.
River reaches up to 3.75 km downstream of the STP outfalls at Tazewell and Richlands were depauperate of mussels. Tolerance to effluent seemed to vary among snails, sphaeriid clams, and the Asiatic clam Corbicula flumineaK. After an initial toxic zone below the Tazewell outfall, abundance of fish appeared to increase by 0.45 km below the outfall. The effluent at Richlands eliminated intolerant species, and more tolerant species were present as far as 0.45 km below the outfall.
Laboratory bioassays with glochidia of Villosa nebulosa resulted in 24-h EC50 and LC50 values of 0.042 and 0.084 mg/L monochloramine, respectively, and 24-h EC50 and LC50values of 0.237 and 0.284 mg/L unionized ammonia, respectively. Glochidia rank among the most sensitive invertebrates in their tolerance to these toxicants. The snail Pleurocera unciale unciale was moderately sensitive, with 96-h LC50 values of 0.252 mg/L mono chloramine and 0.742 mg/L unionized ammonia. Comparison of monochloramine and unionized ammonia concentrations monitored at 0.10 km below the outfalls indicated that mono chloramine was the major toxicant likely affecting fauna.
Master of Science
Kromrey, Natalie A., and University of Lethbridge Faculty of Arts and Science. "The effects of wastewater treatment plant effluent and agricultural runoff on the reproductive systems of fathead minnow, Pimephales promelas." Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Biological Sciences, c2009, 2009. http://hdl.handle.net/10133/2519.
Повний текст джерелаxi, 104 leaves : ill. (some col.), maps ; 29 cm
Ajibade, Adefisoye Martins. "Assessment of the prevalence of faecal coliforms and Escherichia coli o157:h7 in the final effluents of two wastewater treatment plants in Amahlathi Local Municipality of Eastern Cape Province, South Africa." Thesis, University of Fort Hare, 2014. http://hdl.handle.net/10353/d1016166.
Повний текст джерелаКниги з теми "Effluent treatment plants"
Srinivas, C. TBP production plant effluent treatment process. Mumbai: Bhabha Atomic Research Centre, 2004.
Знайти повний текст джерелаIndia. Central Board for the Prevention and Control of Water Pollution., ed. Brochure on effluent treatment plants in Karnataka State. New Delhi: Central Board for the Prevention and Control of Water Pollution, 1985.
Знайти повний текст джерелаCleasby, Thomas E. Effluent mixing characteristics below four wastewater-treatment facilities in southwestern Montana, 1997. Helena, Mont: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.
Знайти повний текст джерелаCleasby, Thomas E. Effluent mixing characteristics below four wastewater-treatment facilities in southwestern Montana, 1997. Helena, Mont: U.S. Dept. of the Interior, U.S. Geological Survey, 1999.
Знайти повний текст джерела(India), Institution of Engineers, India. Central Board for the Prevention and Control of Water Pollution., and World Congress on Engineering and Environment (2nd : 1985 : New Delhi, India), eds. National inventory of water polluting industry and status of effluent treatment plants. [New Delhi]: Institution of Engineers (India), 1985.
Знайти повний текст джерелаBrown, Donald S. Evaluation of a pulsed bed filter for filtration of municipal primary effluent. [Washington, D.C.?: Environmental Protection Agency], 1987.
Знайти повний текст джерелаHoyle-Dodson, Guy. City of Colville sewage treatment plant Class II inspection. Olympia, Wash: Washington State Dept. of Ecology, Environmental Investigations and Laboratory Services Program, 1995.
Знайти повний текст джерелаHoyle-Dodson, Guy. City of Blaine wastewater treatment plant class II inspection. Olympia, Wash: Environmental Investigations and Laboratory Services Program, 1997.
Знайти повний текст джерелаTarmohamed, Yasmin. Ontario municipal sewage treatment plants mass balance project: Report-- metals. [S.l.]: MISA Advisory Committee, 1990.
Знайти повний текст джерелаHoyle-Dodson, Guy. Clark County Salmon Creek Wastewater Treatment Plant class II inspection. Olympia, Wash: Environmental Investigations and Laboratory Services Program, 1997.
Знайти повний текст джерелаЧастини книг з теми "Effluent treatment plants"
Golwalkar, Kiran. "Effluent Treatment Plants." In Process Equipment Procurement in the Chemical and Related Industries, 199–209. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12078-2_14.
Повний текст джерелаTaher, Heba Saad, Sara Fareed Mohamed Wahdan, Rania Sayed, Amira Ouda, and Hesham Abdulla. "The Microbial Nexus in Effluent Treatment Plants." In Microbial Nexus for Sustainable Wastewater Treatment, 177–203. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003441069-9.
Повний текст джерелаGaekwad, Aakanksharaje, M. A. Shabiimam, and Dhruvin Sojitra. "Sustainable Technological Options for Industrial Effluent Treatment in Common Effluent Treatment Plants: A Review." In Lecture Notes in Civil Engineering, 233–47. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4186-5_19.
Повний текст джерелаde Groot, W. Herman. "Exhaust gas and Effluent Treatment SO3/Air Sulphonation Plants." In Sulphonation Technology in the Detergent Industry, 207–11. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-015-7918-6_7.
Повний текст джерелаSantín, Ignacio, Carles Pedret, and Ramón Vilanova. "Effluent Predictions for Violations Risk Detection." In Control and Decision Strategies in Wastewater Treatment Plants for Operation Improvement, 89–95. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46367-4_7.
Повний текст джерелаMunjanja, Basil K., Nilesh S. Wagh, Philiswa N. Nomngongo, Jaya Lakkakula, and Nomvano Mketo. "Biofiltration-Based Methods for the Removal of Volatile Organic Compounds and Heavy Metals in Industrial Effluent Treatment Plants." In Bio-Nano Filtration in Industrial Effluent Treatment, 1–15. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003165149-1.
Повний текст джерелаKumar, Ramesh, Alak Kumar Ghosh, and Parimal Pal. "Sustainable Management of Toxic Industrial Effluent of Coal-Based Power Plants." In Emerging Eco-friendly Green Technologies for Wastewater Treatment, 193–219. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1390-9_9.
Повний текст джерелаArivoli, A., T. Sathiamoorthi, and M. Satheeshkumar. "Treatment of Textile Effluent by Phytoremediation with the Aquatic Plants: Alternanthera sessilis." In Bioremediation and Sustainable Technologies for Cleaner Environment, 185–97. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48439-6_15.
Повний текст джерелаSantín, Ignacio, Carles Pedret, and Ramón Vilanova. "Denitrification and Nitrification Processes Improvement for Avoiding Pollutants Limits Violations in the Effluent." In Control and Decision Strategies in Wastewater Treatment Plants for Operation Improvement, 67–87. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46367-4_6.
Повний текст джерелаQasim, Syed R. "Effluent Disposal." In Wastewater Treatment Plants, 621–44. Routledge, 2017. http://dx.doi.org/10.1201/9780203734209-15.
Повний текст джерелаТези доповідей конференцій з теми "Effluent treatment plants"
Al-Mithin, Abdul Wahab, Amer Jarragh, Sandip Kuthe, and Sharad Londhe. "Chemical Inhibitor Field Trial in Effluent Water Treatment Facilities." In CORROSION 2013, 1–8. NACE International, 2013. https://doi.org/10.5006/c2013-02221.
Повний текст джерелаPeeters, J. G., and S. L. Theodoulou. "Membrane Technology Treating Oily Wastewater for Reuse." In CORROSION 2005, 1–15. NACE International, 2005. https://doi.org/10.5006/c2005-05534.
Повний текст джерелаAl-Sulaiman, Saleh, Yousef Khuraibut, Sandip Kuthe, and Sharad Londhe. "Comparison of the Fluid Corrosivity and Bacterial Activity in Effluent and Seawater Treatment Systems." In CORROSION 2019, 1–8. NACE International, 2019. https://doi.org/10.5006/c2019-13295.
Повний текст джерелаAl-Shamari, AbdulRazzaq, Santhosh Kumar, Amer Jarragh, Surya Prakash, Basanta Lenka, and Abdul Rahman Emam. "Internal Corrosion Investigation on a Corroded Oily Water Drain Piping at Oil Separation Unit - Typical under Deposit Corrosion – a Case Study." In CORROSION 2015, 1–15. NACE International, 2015. https://doi.org/10.5006/c2015-05598.
Повний текст джерелаHöwing, Jonas, Oscar Öhlin, and Karen Picker. "Corrosion Resistance of Three High-Ni Alloys in Renewable Feedstock Pretreatment Conditions." In CONFERENCE 2025, 1–8. AMPP, 2025. https://doi.org/10.5006/c2025-00183.
Повний текст джерелаJarragh, Amer, Saleh Al-Sulaiman, Srinivasan Balasundaram, and Moavin Islam. "The Value of Internal Corrosion Monitoring Activities in Asset Integrity Management." In CORROSION 2013, 1–13. NACE International, 2013. https://doi.org/10.5006/c2013-02223.
Повний текст джерелаMcGinley, H. R., M. V. Enzien, G. Hancock, S. Gonsior, and M. Miksztal. "Glutaraldehyde: An Understanding of its Ecotoxicity Profile and Environmental Chemistry." In CORROSION 2009, 1–8. NACE International, 2009. https://doi.org/10.5006/c2009-09405.
Повний текст джерелаOlabisi, Olagoke, Amer Jarragh, Yousef Khuraibut, and Ashok Mathew. "Identifying Key Performance Indicators for Corrosion in Oilfield Water Handling Systems." In CORROSION 2014, 1–14. NACE International, 2014. https://doi.org/10.5006/c2014-4348.
Повний текст джерелаRollins, B. C., K. J. Evans, J. Esteban, and N. Sutton. "Chemical Treatment to Mitigate Polythionic Acid SCC without a Soda-Ash Wash: Laboratory and Plant Experience." In CONFERENCE 2022, 1–15. AMPP, 2022. https://doi.org/10.5006/c2022-17993.
Повний текст джерелаChawla, S., K. Evans, B. Rollins, K. Sherer, J. Beavers, N. Sridhar, S. Arm, J. Reynolds, and K. Boomer. "Laboratory Investigation of Corrosion of Type 304L Stainless Steel in Hanford Direct-Feed Low-Activity Waste Effluents." In CORROSION 2018, 1–15. NACE International, 2018. https://doi.org/10.5006/c2018-11325.
Повний текст джерелаЗвіти організацій з теми "Effluent treatment plants"
Vriezekolk, Erik, Hetty van der Wal, Ruben Massop, Esther Busscher, Aart van Amerongen, Addie van der Sluis, Rien van der Maas, et al. EffluentFit4Food : towards safe, sustainable irrigation using effluent from wastewater treatment plants(WWTPs). Wageningen: Wageningen Food & Biobased Research, 2025. https://doi.org/10.18174/688337.
Повний текст джерелаvon Sperling, Marcos. Urban Wastewater Treatment in Brazil. Inter-American Development Bank, August 2016. http://dx.doi.org/10.18235/0009301.
Повний текст джерелаMacDonald, James D., Aharon Abeliovich, Manuel C. Lagunas-Solar, David Faiman, and John Kabshima. Treatment of Irrigation Effluent Water to Reduce Nitrogenous Contaminants and Plant Pathogens. United States Department of Agriculture, July 1993. http://dx.doi.org/10.32747/1993.7568092.bard.
Повний текст джерелаBanin, Amos, Joseph Stucki, and Joel Kostka. Redox Processes in Soils Irrigated with Reclaimed Sewage Effluents: Field Cycles and Basic Mechanism. United States Department of Agriculture, July 2004. http://dx.doi.org/10.32747/2004.7695870.bard.
Повний текст джерелаLUECK, K. J. Waste Treatment Plant Liquid Effluent Treatability Evaluation. Office of Scientific and Technical Information (OSTI), June 2001. http://dx.doi.org/10.2172/807138.
Повний текст джерелаLUECK, K. J. WASTE TREATMENT PLANT (WTP) LIQUID EFFLUENT TREATABILITY EVALUATION. Office of Scientific and Technical Information (OSTI), October 2004. http://dx.doi.org/10.2172/834437.
Повний текст джерелаFlaherty, Julia, and Ernest Antonio. Hanford Waste Treatment Plant LAB Facility Stack Effluent Monitoring. Office of Scientific and Technical Information (OSTI), December 2023. http://dx.doi.org/10.2172/2369461.
Повний текст джерелаFlaherty, Julia, Ernest Antonio, Carolyn AM Burns, Richard Daniel, and Jennifer Yao. Hanford Waste Treatment Plant Effluent Management Facility Stack Effluent Monitoring Sampling Probe Location Qualification Evaluation. Office of Scientific and Technical Information (OSTI), April 2022. http://dx.doi.org/10.2172/1880068.
Повний текст джерелаFlaherty, Julia, Ernest Antonio, Carolyn AM Burns, Richard Daniel, and Jennifer Yao. Hanford Waste Treatment Plant Effluent Management Facility Stack Effluent Monitoring - Sampling Probe Location Qualification Evaluation. Office of Scientific and Technical Information (OSTI), August 2023. https://doi.org/10.2172/2565699.
Повний текст джерелаWempner, P. J., and J. K. Prazniak. Evaluation of iron in the steam plant wastewater treatment facility effluent. Office of Scientific and Technical Information (OSTI), December 1994. http://dx.doi.org/10.2172/137444.
Повний текст джерела