Добірка наукової літератури з теми "Effort inertiel du fluide"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Effort inertiel du fluide".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Effort inertiel du fluide"
Zhao, Wu, Quan Bin Zhang, Wei Tao Jia, and Zhan Qi Hu. "Influence on BTA Boring Bar Transverse Vibration Considering Inner Cutting Fluid Velocity and Axial Force." Advanced Materials Research 887-888 (February 2014): 1215–18. http://dx.doi.org/10.4028/www.scientific.net/amr.887-888.1215.
Повний текст джерелаKim, Uihwan, Joo-Yong Kwon, Taehoon Kim, and Younghak Cho. "Particle Focusing in a Straight Microchannel with Non-Rectangular Cross-Section." Micromachines 13, no. 2 (January 20, 2022): 151. http://dx.doi.org/10.3390/mi13020151.
Повний текст джерелаKwon, Joo-Yong, Taehoon Kim, Jungwoo Kim, and Younghak Cho. "Particle Focusing under Newtonian and Viscoelastic Flow in a Straight Rhombic Microchannel." Micromachines 11, no. 11 (November 11, 2020): 998. http://dx.doi.org/10.3390/mi11110998.
Повний текст джерелаLi, Gaojin, Gareth H. McKinley, and Arezoo M. Ardekani. "Dynamics of particle migration in channel flow of viscoelastic fluids." Journal of Fluid Mechanics 785 (November 23, 2015): 486–505. http://dx.doi.org/10.1017/jfm.2015.619.
Повний текст джерелаMei, Renwei, and Ronald J. Adrian. "Effect of Reynolds Number on Isotropic Turbulent Dispersion." Journal of Fluids Engineering 117, no. 3 (September 1, 1995): 402–9. http://dx.doi.org/10.1115/1.2817276.
Повний текст джерелаJayaram, Rohith, Yucheng Jie, Lihao Zhao, and Helge I. Andersson. "Dynamics of inertial spheroids in a decaying Taylor–Green vortex flow." Physics of Fluids 35, no. 3 (March 2023): 033326. http://dx.doi.org/10.1063/5.0138125.
Повний текст джерелаSalazar, Juan P. L. C., and Lance R. Collins. "Inertial particle relative velocity statistics in homogeneous isotropic turbulence." Journal of Fluid Mechanics 696 (March 5, 2012): 45–66. http://dx.doi.org/10.1017/jfm.2012.2.
Повний текст джерелаMeng, Fan-Ming, Sheng Yang, Zhi-Tao Cheng, Yong Zheng, and Bin Wang. "Effect of fluid inertia force on thermal elastohydrodynamic lubrication of elliptic contact." Mechanics & Industry 22 (2021): 13. http://dx.doi.org/10.1051/meca/2021010.
Повний текст джерелаБлинков, Юрий Анатольевич, Лев Ильич Могилевич, Виктор Сергеевич Попов, and Елизавета Викторовна Попова. "Evolution of solitary hydroelastic strain waves in two coaxial cylindrical shells with the Schamel physical nonlinearity." Computational Continuum Mechanics 16, no. 4 (December 1, 2023): 430–44. http://dx.doi.org/10.7242/1999-6691/2023.16.4.36.
Повний текст джерелаBehera, Nalinikanta, Shubhadeep Mandal, and Suman Chakraborty. "Electrohydrodynamic settling of drop in uniform electric field: beyond Stokes flow regime." Journal of Fluid Mechanics 881 (October 24, 2019): 498–523. http://dx.doi.org/10.1017/jfm.2019.744.
Повний текст джерелаДисертації з теми "Effort inertiel du fluide"
Pérez, Tamarez Julio. "Etude numérique de voilures souples en milieu fluide : aide à la propulsion." Electronic Thesis or Diss., Normandie, 2025. http://www.theses.fr/2025NORMIR04.
Повний текст джерелаThe behavior of a thicknessless membrane placed in a unidirectional and irrotational flow is analyzed using numerical simulation. The lift, thrust and inertial forces were calculated based on the pressure distribution over and under the membrane using the Vortex Method. The response of the solid was calculated based on the large displacement hypothesis using the Timoshenko beam theory and total Lagrangian formulation in ANSYS APDL, with time resolution based on HHT-α method, where the Newton-Raphson method was applied to resolve non-linear aspects.Fluid-solid interaction was achieved through explicit data exchange between the fluid simulation code and the structural model based on the kinetic and dynamic conditions at the interface boundary and paying special attention to the Nyquist–Shannon criteria and the Courant-Friedrich-Levy's conditions. A new matricial decomposition of hydrodynamic efforts was successfully applied, allowing us to quantify the influence of the inertial force component in the flow and demonstrate the instant value of the added inertia. A study of the thrust in relation to the beating frequencies, the mechanical properties of the deformable solid and the system's mechanical configurations was carried out to find the best propulsion conditions
Marouche, Mohamed. "Hydrodynamique d'un système d'agitation en fluide viscoplastique et en régime laminaire inertiel." Toulouse, INPT, 2002. http://www.theses.fr/2002INPT011H.
Повний текст джерелаBentata, Omar. "Étude expérimentale d'un anneau tourbillonnaire en fluide newtonien et non newtonien en régime faiblement inertiel." Phd thesis, Toulouse, INPT, 2013. http://oatao.univ-toulouse.fr/9703/1/bentata.pdf.
Повний текст джерелаLetessier, Dylan. "Chute en régime inertiel de cylindres isolés ou en groupes dans une cellule mince." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP030.
Повний текст джерелаIn order to improve our understanding of the behavior of anisotropic solid bodies in motion within a liquid under inertial conditions, we investigated the fall of a group of finite-sized cylinders in a confined environment. The use of a thin-gap cell, reducing the motion of the cylinders to three degrees of freedom, allowed us to track their behavior through high-speed imaging. To achieve this, an existing experimental setup was improved, by introducing in particular a counterflow and a system enabling the coordinated release of cylinders in a group. In addition to high-resolution cameras, seeding of the liquid was performed to enable the determination of the liquid velocity field, integrated across the thickness of the cell, using PIV shadowgraphy. By varying the lengths and densities of the cylinders, released in water, we analyzed the impact of the aspect ratios, the density ratio, and the Archimedes number of the cylinders on the observed kinematics. Initially, we examined the influence of these parameters on the behavior characteristics of a single cylinder, isolated in a confined medium. This led to a comprehensive modeling of the forces at play and their interaction with the surrounding fluid. The modeling relied on the Kelvin-Kirchhoff generalized equations, to which we added drag and lift forces, as well as a history force to close the model over a wide range of parameters. We demonstrated that the large amplitudes of fluctuations contribute to an average inertial force coupling the translation and rotation of the cylinder, affecting its mean fall velocity. This also allowed us to predict the oscillation frequency of the fluttering motion. The presence of an upward counterflow does not significantly affect the cylinder velocity relative to the fluid and the oscillation frequency. However, it may lead to trajectory restabilization under certain parameter ranges. In a second phase, we focus our attention to the collective behavior of a group of freely falling cylinders under inertial conditions. Release conditions were consistent across experiments, including release time and initial packing; only the number of cylinders, cylinder density, and aspect ratio varied. Observing these groups sufficiently far from the injection point, we demonstrated that the groups evolved with constant vertical falling velocities, occupied a constant surface, and featured complex internal structures highly dependent on control parameters. These structures consisted of objects grouping several cylinders, interacting, coalescing, or fragmenting. We also highlighted significant heterogeneities within the group, with the emergence of more concentrated areas containing a greater number of objects, plunging faster into the liquid, which we referred to as "streams". Detailed analysis of the velocities displayed by the different objects allowed us to show that they presented comparable statistical distributions. A simple model balancing drag and buoyancy, considering the group as a homogenized single object, allowed us to predict the group's fall velocity once its equivalent radius was known. The analysis of the standard deviations of velocity fluctuations of objects within the group allowed us to provide predictive scaling laws based on two different ingredients in the horizontal and vertical directions, respectively: the proper mobility of the isolated body, characterized by its frequency of oscillation and of vortex shedding, and the entrainment by the wakes and streams, driving the vertical fluctuations, accounted for by a characteristic concentration for the group
Yahiaoui, Samir. "Transport de petites particules par un écoulement de fluide visqueux." Paris 6, 2008. http://www.theses.fr/2008PA066384.
Повний текст джерелаThis work contributes to the study of hydrodynamic interactions between particles and wall in low Reynolds number fluid flow. Various axisymetric Stokes flows are calculated for a sphere near a plane wall. Perturbation techniques are then used to determine hydrodynamic forces, namely the viscous inertial unsteady drag force for the motion of a sphere normal to a plane wall and the lift on a sphere moving parallel to a plane wall in various ambient flow fields; regardless of the sphere to wall distance. In the lubrication regime, corrections are also derived for the approximated fluid velocity and pressure around a sphere settling normal to a wall
Melot, Vincent. "Hydrodynamique instationnaire d'un cylindre sous choc." Phd thesis, Université de Nantes, 2006. http://tel.archives-ouvertes.fr/tel-00124063.
Повний текст джерелаChen, Xiaodong. "Fluid-Structure Interaction Modeling of Epithelial Cell Deformation during Microbubble Flows in Compliant Airways." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1332208862.
Повний текст джерелаSarkis, Bruno. "Étude numérique de la relaxation de capsules confinées par couplage des méthodes Volumes Finis - Éléments Finis via la méthode des frontières immergées IBM : influence de l'inertie et du degré de confinement." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS184/document.
Повний текст джерелаCapsules, made of a drop protected by an elastic membrane, are widly present in nature and in diverse industrial applications, but few studies have explored the transient phenomena governing their relaxation. The objective of the PhD is to study the influence of inertia and confinement on the relaxation of a spherical capsule (1) pre-deformed into an ellipsoid and released in a square channel where the fluid is quiescent, (2) flowing in a square channel with a sudden expansion (‘step’). The capsule is modeled as a Newtonian fluid in a hyperelastic membrane without thickness or viscosity and is simulated coupling the Finite Volume - Finite Element - Immersed Boundary Methods. Its relaxation in a quiescent fluid exhibits three phases: the initiation of the fluid motion, the rapid and then slow retraction phases of the membrane. Three regimes exist depending on the confinement ratio and the Reynolds to capillary number ratio: pure, critical or oscillating damping. A Kelvin-Voigt inertial model is proposed to predict the response time constants and also applied to a capsule flowing in the microfluidic channel with a step. The comparison to 3D simulations shows its relevance at short relaxation times. This work paves the way to the study of transient flows of capsules confined in microfluidic devices
Mossaz, Stephane. "Etudes expérimentales et numériques des écoulements inertiels de fluides à seuil autour d'un cylindre." Phd thesis, Université de Grenoble, 2011. http://tel.archives-ouvertes.fr/tel-00721804.
Повний текст джерелаOzogul, Hamdullah. "Écoulements de fluides à seuil autour d'un cylindre en milieu confiné : études expérimentale et numérique." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI005/document.
Повний текст джерелаThe flow of yield stress fluids around a circular cylinder in a confined geometry has been investigated with a Poiseuille flow configuration.Experimentally, a test set-up was built which provides a continuous flow in a closed loop. We studied creeping, recirculating and vortex shedding flow regimes. New results has been realised with a Newtonian fluid and Carbopol solutions, models for yield stress behaviour in laboratory experiments and in industry. A high speed camera and a laser sheet have been used to perform images which are treated by PIV. Kinematic fields, flow morphologies and critical transition parameters have been determined.Numerically, a viscoplastic model based on the regularised Herschel-Bulkley law has been used. Results as flow morphologies, rigid areas and local flow parameters fields have been performed. That allowed us to compare the intrinsic effects of Carbopol solutions and the viscoplastic numerical model. A specific study on the wall slip has also been considered with an elasto-hydrodynamic lubrication model
Частини книг з теми "Effort inertiel du fluide"
Mohapatra, Dhiren, Rahul Purwar, and Amit Agrawal. "Effect of Viscosity on the Margination of White Blood Cells in an Inertial Flow Microfluidic Channel." In Fluid Mechanics and Fluid Power, Volume 4, 543–51. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7177-0_44.
Повний текст джерелаXi, Heng-Dong, Sheng-Hong Peng, and Yi-Bao Zhang. "Turbulent/Non-turbulent Interface in Water Jet with Polymer Additives." In IUTAM Bookseries, 226–37. Cham: Springer Nature Switzerland, 2024. https://doi.org/10.1007/978-3-031-78151-3_18.
Повний текст джерелаFede, Pascal, and Olivier Simonin. "Effect of Particle-Particle Collisions on the Spatial Distribution of Inertial Particles Suspended in Homogeneous Isotropic Turbulent Flows." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 119–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14139-3_14.
Повний текст джерелаT. Kajero, Olumayowa, Mukhtar Abdulkadir, Lokman Abdulkareem, and Barry James Azzopardi. "The Effect of Liquid Viscosity on the Rise Velocity of Taylor Bubbles in Small Diameter Bubble Column." In Vortex Dynamics Theories and Applications. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.92754.
Повний текст джерелаSingh, Sukhmander, Bhavna Vidhani, Sonia Yogi, Ashish Tyagi, Sanjeev Kumar, and Shravan Kumar Meena. "Plasma Waves and Rayleigh–Taylor Instability: Theory and Application." In Plasma Science - Recent Advances, New Perspectives and Applications [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.109965.
Повний текст джерелаDarrigol, Olivier. "Drag and Lift." In Worlds of Flow, 264–322. Oxford University PressOxford, 2005. http://dx.doi.org/10.1093/oso/9780198568438.003.0007.
Повний текст джерелаZhulay, Yuriy, and Olexiy Nikolayev. "Sonic Drilling with Use of a Cavitation Hydraulic Vibrator." In Mining Technology [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.100336.
Повний текст джерелаKhoddami Maraghi, Zahra. "Vibration and Instability of Smart-Composite Sandwich Structure: Flutter and Divergences." In Vibration Engineering - Analysis, Control, and Utilization [Working Title]. IntechOpen, 2025. https://doi.org/10.5772/intechopen.1009143.
Повний текст джерелаHarrison, Roger G., Paul W. Todd, Scott R. Rudge, and Demetri P. Petrides. "Sedimentation." In Bioseparations Science and Engineering. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780195391817.003.0008.
Повний текст джерелаТези доповідей конференцій з теми "Effort inertiel du fluide"
Berrouk, Abdallah Sofiane, and Dominique Laurence. "Stochastic Large Eddy Simulation of Bluff-Body Two-Way-Coupled Gas-Particle Turbulent Flow." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-12006.
Повний текст джерелаHamzehlouia, Sina, and Kamran Behdinan. "First Order Perturbation Technique for Squeeze Film Dampers Executing Small Amplitude Circular Centered Orbits With Aero-Engine Application." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65784.
Повний текст джерелаChen, Chien-Hsin, and Chang-Yi Ding. "Heat Transfer Characteristics and Cooling Performance of Microchannel Heat Sinks With Nanofluids." In ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2009. http://dx.doi.org/10.1115/icnmm2009-82079.
Повний текст джерелаXu, Kefan, Guanghui Zhang, Yiken Lu, Jiazhen Han, Zhongwen Huang, and Wenjie Gong. "Combined Effects of Fluid Inertia and Gas Rarefaction on The Performance of Textured Gas Bearings." In ASME Turbo Expo 2024: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2024. http://dx.doi.org/10.1115/gt2024-124993.
Повний текст джерелаTian, Weibing Tian, Keliu Wu, Zhangxin Chen, Yanling Gao, Yin Gao, and Jing Li. "Inertial Effect on Spontaneous Oil-Water Imbibition by Molecular Kinetic Theory." In SPE Europec featured at 82nd EAGE Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/205171-ms.
Повний текст джерелаMatsuoka, Taichi, Kazuhiko Hiramoto, Katsuaki Sunakoda, and Naoto Abe. "Variable Inertia Damper Using MR Fluid." In ASME 2016 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/pvp2016-63007.
Повний текст джерелаKhadrawi, A. F., and M. A. Al-Nimr. "The Effect of the Local Inertial Term on the Free Convection Fluid Flow in Vertical Channels Partially Filled With Porous Media." In ASME 2002 Joint U.S.-European Fluids Engineering Division Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/fedsm2002-31110.
Повний текст джерелаHussain, Md Yahia, and Roger E. Khayat. "Effect of Wall Movement on a Jet Depositing on a Moving Wall at Moderate Reynolds Number." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30731.
Повний текст джерелаMatsuoka, Taichi, Naoto Abe, Kazuhiko Hiramoto, and Katsuaki Sunakoda. "Variable Inertia Damper Using MR Fluid: Part II — Improvement of Inertia Effect." In ASME 2017 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/pvp2017-65922.
Повний текст джерелаSuara, Kabir, Mohammadreza Khanarmuei, and Richard Brown. "Quantification of inertial effect on the transport of macro-plastics in a tidal embayment." In 22nd Australasian Fluid Mechanics Conference AFMC2020. Brisbane, Australia: The University of Queensland, 2020. http://dx.doi.org/10.14264/8c3ee36.
Повний текст джерела