Добірка наукової літератури з теми "Electrocardiographic data"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Electrocardiographic data".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Electrocardiographic data"
Brooks, Carol Ann, Nancy Kanyok, Colin O’Rourke, and Nancy M. Albert. "Retention of Baseline Electrocardiographic Knowledge After a Blended-Learning Course." American Journal of Critical Care 25, no. 1 (January 1, 2016): 61–67. http://dx.doi.org/10.4037/ajcc2016556.
Повний текст джерелаSelker, Harry P., Manlik Kwong, Robin Ruthazer, Sheeona Gorman, Giuliana Green, Elizabeth Patchen, James E. Udelson, et al. "An example of medical device-based projection of clinical trial enrollment: Use of electrocardiographic data to identify candidates for a trial in acute coronary syndromes." Journal of Clinical and Translational Science 2, no. 6 (December 2018): 377–83. http://dx.doi.org/10.1017/cts.2019.365.
Повний текст джерелаLoukrakpam, Bidyarani, Laishram Geetanjali, O. Puinabati Luikham, and Sanjoy K. Shylla. "Electrocardiographic changes in patients with pre-eclampsia." Annals of Medical Physiology 3, no. 1 (March 22, 2019): 10–13. http://dx.doi.org/10.23921/amp.2019v3i1.26774.
Повний текст джерелаPopadiuk, B., and S. Holopura. "Validation of a portable ECG monitor for the diagnosis of arrhythmias in horses compared to a standard electrocardiograph." Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies 22, no. 97 (May 7, 2020): 20–25. http://dx.doi.org/10.32718/nvlvet9704.
Повний текст джерелаKhayrutdinova, G. M. "Left ventricle remodeling electrocardiography criteria of survival assessment in Q-wave myocardial infarction patients." Kazan medical journal 94, no. 2 (April 15, 2013): 168–75. http://dx.doi.org/10.17816/kmj1582.
Повний текст джерелаVergassola, R., W. Zong, M. R. Berthold, and R. Silipo. "Knowledge-based and Data-driven Models in Arrhythmia Fuzzy Classification." Methods of Information in Medicine 40, no. 05 (2001): 397–402. http://dx.doi.org/10.1055/s-0038-1634199.
Повний текст джерелаMishra, Dheerendra Kumar, and Pradeep Kumar. "Electrocardiographic changes of antidepressant medication in depressive episode." International Journal of Advances in Medicine 5, no. 3 (May 22, 2018): 505. http://dx.doi.org/10.18203/2349-3933.ijam20181409.
Повний текст джерелаPereira, Fábio Benedito Filo Creão Garcia, Lizandra Lujan Delpupo Trivilin, and Marcia Rayssa Farias Torres. "Clinical, Epidemiological and Demographic Profile of Patients Undergoing Holter (24 h) at a Health Center in Belém do Pará: a Retrospective Study." Journal of Cardiac Arrhythmias 34, no. 1 (March 12, 2021): 1–11. http://dx.doi.org/10.24207/jca.v34i1.3419.
Повний текст джерелаArtsymovych, Agar, Olena Oshlianska, Olena Okhotnikova, Zoia Rossokha, Olena Popova, Nataliia Medvedeva, Victoriia Vershigora, Illya Chaikovsky та Olga Kryvova. "Possibilities of using determination of allelic polymorphism of interleukin-6 G174C and tumour necrosis factor-α G308A genes for the prediction of cardiovascular disorders in children with juvenile idiopathic arthritis". Pediatria i Medycyna Rodzinna 18, № 1 (31 травня 2022): 58–69. http://dx.doi.org/10.15557/pimr.2022.0008.
Повний текст джерелаTüre, Mehmet, Alper Akın, Edip Unal, Ahmet Kan, and Suat Savaş. "Electrocardiographic data of children with type 1 diabetes mellitus." Cardiology in the Young 32, no. 1 (November 2, 2021): 106–10. http://dx.doi.org/10.1017/s1047951121004376.
Повний текст джерелаДисертації з теми "Electrocardiographic data"
Finlay, Dewar Darren. "Data driven selection of optimal electrocardiographic recording sites from body surface potential maps." Thesis, University of Ulster, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.428809.
Повний текст джерелаPotyagaylo, Danila [Verfasser], and O. [Akademischer Betreuer] Dössel. "Non-Invasive Electrocardiographic Imaging of Ventricular Activities: Data-Driven and Model-Based Approaches / Danila Potyagaylo. Betreuer: O. Dössel." Karlsruhe : KIT-Bibliothek, 2016. http://d-nb.info/1113109254/34.
Повний текст джерелаLi, Yelei. "Heartbeat detection, classification and coupling analysis using Electrocardiography data." Case Western Reserve University School of Graduate Studies / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=case1405084050.
Повний текст джерелаFreeman, Leopold C. "A computerized system for the detection of ventricular late potentials in the electrocardiogram." Thesis, Queensland University of Technology, 1990. https://eprints.qut.edu.au/35943/1/35943_Freeman_1990.pdf.
Повний текст джерелаMolina, Marcos Sleiman. "Estudo comparativo entre a avaliação livre, dirigida e automatizada na assistência ao diagnóstico eletrocardiográfico em crianças e adolescentes." Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/5/5131/tde-04102007-131030/.
Повний текст джерелаDuring the cardiac development of children, changes in the vectorial dynamics of the myocardium influence upon normality standards, especially during the first days in life. These are age-dependent limits that make the analysis of EKG of children potentially harder than that of adults. Aiming to make this task easier, we designed a computerized interpretation system for segmental analysis of pediatric EKGs. In order to validate this tool, 15 pediatric cardiologists were randomly allocated to three different groups according to qualitative-quantitative evaluation methods herein defined as free (FE), guided (GE) and automatized (AE) evaluation, for the purpose of analyzing 20 pediatric EKG tracings distributed in a proportion of at least 35% abnormal examinations, with 16 segments being studied in each EKG tracing. In FE, cardiologists were asked to answer whether the segment was normal or not, with freedom to measure each segment before giving their answer. In GE, the same question was made, however they were requested to measure the segment before answering. In both situations they were allowed to refer to a table of normality standards. In AE, only the measurement was asked, and the result was then entered into the software for segmental interpretation of pediatric EKGs, whose database included the table of normality standards. Answers were all compared with those given by two control cardiologists. Discordant results were seen in 11.6%, 10.7% and 6.2% of FE, GE and AE, respectively. Interpretation bias was reduced by 45% (p<0.0001) with the use of AE. In the not automatized types of analyses, previous measurement of segments did not alter the segmental evaluation of EKGs . In conclusion, the automatized evaluation significantly reduced interpretation bias, previous measurement did not change the EKG interpretation with the other not automatized methods and the use of this software allowed to reduce the error of segmental analysis in 45%.
Montazeri, Ghahjaverestan Nasim. "Early detection of cardiac arrhythmia based on Bayesian methods from ECG data." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S061/document.
Повний текст джерелаApnea-bradycardia episodes (breathing pauses associated with a significant fall in heart rate) are the most common disease in preterm infants. Consequences associated with apnea-bradycardia episodes involve a compromise in oxygenation and tissue perfusion, a poor neuromotor prognosis at childhood and a predisposing factor to sudden-death syndrome in preterm newborns. It is therefore important that these episodes are recognized (early detected or predicted if possible), to start an appropriate treatment and to prevent the associated risks. In this thesis, we propose two Bayesian Network (BN) approaches (Markovian and Switching Kalman Filter) for the early detection of apnea bradycardia events on preterm infants, using different features extracted from electrocardiographic (ECG) recordings. Concerning the Markovian approach, we propose new frameworks for two generalizations of the classical Hidden Markov Model (HMM). The first framework, Coupled Hidden Markov Model (CHMM), is accomplished by assigning a Markov chain (channel) to each dimension of observation and establishing a coupling among channels. The second framework, Coupled Hidden semi Markov Model (CHMM), combines the characteristics of Hidden semi Markov Model (HSMM) with the above-mentioned coupling concept. For each framework, we present appropriate recursions in order to use modified Forward-Backward (FB) algorithms to solve the learning and inference problems. The proposed learning algorithm is based on Maximum Likelihood (ML) criteria. Moreover, we propose two new switching Kalman Filter (SKF) based algorithms, called wave-based and R-based, to present an index for bradycardia detection from ECG. The wave-based algorithm is established based on McSarry's dynamical model for ECG beat generation which is used in an Extended Kalman filter algorithm in order to detect subtle changes in ECG sample by sample. We also propose a new SKF algorithm to model normal beats and those with bradycardia by two different AR processes
Darrington, John Mark. "Real time extraction of ECG fiducial points using shape based detection." University of Western Australia. School of Computer Science and Software Engineering, 2009. http://theses.library.uwa.edu.au/adt-WU2009.0152.
Повний текст джерелаHooshidar, Daniel, and Yobart Amino. "Implementation av portabla REM-identifierande sensorer : Undersökning kring lämpliga, icke-påträngande metoder för REM-igenkänning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-232117.
Повний текст джерелаTiredness in traffic is a major problem in society. It is especially dangerous to drive heavy trucks when tired because these vehicles are large and often have vital roles when involved in traffic accidents. To address the problem, this degree project has studied which sleep stage is most appropriate to wake up during, in order to wake up sharp and alert, and what types of techniques and methods are suitable for portable detection of Rapid-Eye-Movement. Previous work and studies have been done which indicates that awakening during REM sleep is optimal for feeling alert. The chosen methods are based on variants of well-established techniques that are used to identify sleep stages. Electrooculography is used to measure eye movements using four electrodes placed on the head. Body movements are detected by an accelerometer attached to the arm. Pulse measurements are made and used to calculate the pulse variation during sleep. The goal is to create a prototype which will know when the user is in REM sleep and then wake the user up. This work is divided into two embedded systems that are made between two different degree projects. The result was three sensors that worked individually. Due to lack of time and a longer troubleshooting, the prototype was not completed. Before the sensors can be used in a product, additional tests are required under the supervision of a sleep specialist.
He, Jinyuan. "Automated Heart Arrhythmia Detection from Electrocardiographic Data." Thesis, 2020. https://vuir.vu.edu.au/41284/.
Повний текст джерелаDendamrongvit, Thidarat. "An ontology-based system for representation and diagnosis of electrocardiogram (ECG) data." Thesis, 2006. http://hdl.handle.net/1957/28946.
Повний текст джерелаGraduation date: 2006
Книги з теми "Electrocardiographic data"
L, Willems Jos, Bemmel Jan H. van, Zywietz Christoph, International Federation for Information Processing., International Medical Informatics Association, and Commission of the European Communities., eds. Computer ECG analysis--towards standardization: Proceedings of the IFIP-IMIA Working Conference on Computer ECG Analysis, Towards Standardization, Leuven, Belgium, 2-5 June 1985. Amsterdam: North-Holland, 1986.
Знайти повний текст джерелаIEEE Computer Society. Computers in cardiology: October 7-10, 1986, Boston, Massachusetts USA. Washington, D.C: IEEE Computer Society Press, 1987.
Знайти повний текст джерелаInglis, Roland. Einsatz der elektronischen Datenverarbeitung in der Intensivmedizin vorwiegend am Beispiel des Elektrokardiogramms. Frankfurt am Main: Lang, 1986.
Знайти повний текст джерелаDe Los Santos, Marco, and Max Hirshkowitz. Scoring of sleep stages, breathing, and arousals. Edited by Sudhansu Chokroverty, Luigi Ferini-Strambi, and Christopher Kennard. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199682003.003.0008.
Повний текст джерелаW, Mortara David, Ideker Raymond E, Bailey James J, Engineering Foundation (U.S.), and Engineering Foundation Conference on Computerized Interpretation of the Electrocardiogram. (9th : 1984 : Easton, Md.), eds. Computerized interpretation of the electrocardiogram: Proceedings of the 1984 Engineering Foundation Conference: June 14-18, 1984, Tidewater Inn, Easton Maryland. New York: Engineering Foundation, 1985.
Знайти повний текст джерелаA Practical Guide to the Use of the High-Resolution Electrocardiogram. Futura Publishing Company, 2000.
Знайти повний текст джерелаBailey, James J. Computerized Interpretation of the Electrocardiogram (Computerized Interpretation of the Electrocardiogram). Engineering Foundation, 1985.
Знайти повний текст джерелаAdvanced Methods And Tools for ECG Data Analysis. Artech House Publishers, 2006.
Знайти повний текст джерелаHajhosseiny, Reza, Kaivan Khavandi, and David J. Goldsmith. Sudden cardiac death in chronic kidney disease. Edited by David J. Goldsmith. Oxford University Press, 2015. http://dx.doi.org/10.1093/med/9780199592548.003.0108.
Повний текст джерелаMitra, Madhuchhanda, Rajarshi Gupta, and Jitendranath Bera. ECG Acquisition and Automated Remote Processing. Springer, 2016.
Знайти повний текст джерелаЧастини книг з теми "Electrocardiographic data"
Becerra, M. A., C. Duque-Mejía, C. Zapata-Hernández, D. H. Peluffo-Ordóñez, L. Serna-Guarín, Edilson Delgado-Trejos, E. J. Revelo-Fuelagán, and X. P. Blanco Valencia. "Exploratory Study of the Effects of Cardiac Murmurs on Electrocardiographic-Signal-Based Biometric Systems." In Intelligent Data Engineering and Automated Learning – IDEAL 2018, 410–18. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03493-1_43.
Повний текст джерелаChen, Lili, Changyue Song, and Xi Zhang. "Statistical Modeling of Electrocardiography Signal for Subject Monitoring and Diagnosis." In Healthcare Analytics: From Data to Knowledge to Healthcare Improvement, 95–126. Hoboken, New Jersey: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118919408.ch4.
Повний текст джерелаHu, Jiayuan, and Yong Li. "Electrocardiograph Based Emotion Recognition via WGAN-GP Data Enhancement and Improved CNN." In Intelligent Robotics and Applications, 155–64. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13844-7_16.
Повний текст джерела"ECG Data Acquisition Procedures and Maintenance of Recording Quality Including Technician Training." In The Minnesota Code Manual of Electrocardiographic Findings, 206–25. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84882-778-3_14.
Повний текст джерелаSvorc Jr, Pavol, and Pavol Svorc. "Rat Electrocardiography and General Anesthesia." In Cardiovascular Diseases [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.104928.
Повний текст джерелаIvan Gonzalez-Fernandez, Rene, Margarita Mulet-Cartaya, Gisela Montes de Oca-Colina, Jorge Aguilera-Perez, Juan Dayron Lopez-Cardona, and Jose Luis Hernandez-Caceres. "Low-cost Approaches to Follow-up Cardiac Patients in Low-Income Countries using Public Data Networks." In Biomedical Engineering. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.108222.
Повний текст джерелаGeorgieva-Tsaneva, Galya Nikolova. "Mathematical Processing of Cardiological Signals and Organization of Access to Holter Databases." In Advances in Systems Analysis, Software Engineering, and High Performance Computing, 266–90. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7879-6.ch012.
Повний текст джерелаKern, Morton J. "Hemodynamic Data and Basic Electrocardiography." In The Cardiac Catheterization Handbook, 91–144. Elsevier, 2011. http://dx.doi.org/10.1016/b978-0-323-07902-0.10003-0.
Повний текст джерелаLyon, Alexander, Mark Sweeney, and Elmir Omerovic. "Takotsubo syndrome." In The ESC Handbook on Cardiovascular Pharmacotherapy, edited by Alexander Niessner, Sven Wassmann, and Udo Sechtem, 123–40. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780198759935.003.0008.
Повний текст джерелаLanghan, Melissa, and Seth Wolf. "Noninvasive Blood Pressure Monitoring and Electrocardiography." In The Pediatric Procedural Sedation Handbook, edited by Cheryl K. Gooden, Lia H. Lowrie, and Benjamin F. Jackson, 92–97. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190659110.003.0014.
Повний текст джерелаТези доповідей конференцій з теми "Electrocardiographic data"
Bucolo, M., R. Caponetto, G. Dongola, A. Gallo, and F. Sapuppo. "An FPGA based approach for nonlinear characterization of Electrocardiographic data." In 2010 IEEE International Symposium on Industrial Electronics (ISIE 2010). IEEE, 2010. http://dx.doi.org/10.1109/isie.2010.5636316.
Повний текст джерелаCastillo, Oscar Daniel Diaz, Luz Janneth Parra Ayala, Airan Leonardo Carreno Perez, Jose Misael Cubillos Jimenez, Yohana Lyceth Corba Castano, and Diana Marcela Munoz-Sarmiento. "Supervised learning system for detection of cardiac arrhythmias based on electrocardiographic data." In 2019 IEEE International Conference on E-health Networking, Application & Services (HealthCom). IEEE, 2019. http://dx.doi.org/10.1109/healthcom46333.2019.9009601.
Повний текст джерелаErenler, Taha, and Yesim Serinagaoglu Dogrusoz. "Effects of Prior Data on the Inference and Filtering Based Electrocardiographic Imaging." In 2019 Computing in Cardiology Conference. Computing in Cardiology, 2019. http://dx.doi.org/10.22489/cinc.2019.292.
Повний текст джерелаLedezma, Carlos A., Erika Severeyn, Gilberto Perpinan, Miguel Altuve, and Sara Wong. "A new on-line electrocardiographic records database and computer routines for data analysis." In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2014. http://dx.doi.org/10.1109/embc.2014.6944189.
Повний текст джерелаDeng, Yunziwei, Xiaohui Duan, Bingli Jiao, Tiangang Zhu, and Zhilong Wang. "Electrocardiographic criteria for the diagnosis of left ventricular hypertrophy based on data mining." In 2017 10th Biomedical Engineering International Conference (BMEiCON). IEEE, 2017. http://dx.doi.org/10.1109/bmeicon.2017.8229108.
Повний текст джерелаChia, Chih-Chun, and Zeeshan Syed. "Scalable noise mining in long-term electrocardiographic time-series to predict death following heart attacks." In KDD '14: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2623330.2623702.
Повний текст джерелаSerinagaoglu Dogrusoz, Yesim, and Taha Erenler. "Use of Simulated Data for the Estimation of Prior Models in Kalman Filter-Based Electrocardiographic Imaging." In 2020 Computing in Cardiology Conference. Computing in Cardiology, 2020. http://dx.doi.org/10.22489/cinc.2020.329.
Повний текст джерелаBertocchi, S., E. Pedretti, R. Rovelli, L. Serafini, A. Drera, M. Riccardi, F. Ravasio, E. Vizzardi, F. Franceschini, and M. Fredi. "PO.3.56 Anti- Ro/SSA antibodies and electrocardiographic abnormalities in SLE patients: preliminary data of a multidisciplinary study in a monocentric cohort." In 13th European Lupus Meeting, Stockholm (October 5–8, 2022). Lupus Foundation of America, 2022. http://dx.doi.org/10.1136/lupus-2022-elm2022.86.
Повний текст джерелаMesihović-Dinarević, Senka. "UPDATE IN DIAGNOSTICS CARDIOLOGY." In International Scientific Symposium “Diagnostics in Cardiology and Grown-Up Congenital Heart Disease (GUCH)”. Academy of Sciences and Arts of Bosnia and Herzegovina, 2021. http://dx.doi.org/10.5644/pi2021.199.02.
Повний текст джерелаAcker, Alexander, Florian Schmidt, Anton Gulenko, Reinhard Kietzmann, and Odej Kao. "Patient-individual morphological anomaly detection in multi-lead electrocardiography data streams." In 2017 IEEE International Conference on Big Data (Big Data). IEEE, 2017. http://dx.doi.org/10.1109/bigdata.2017.8258387.
Повний текст джерелаЗвіти організацій з теми "Electrocardiographic data"
Hamlin, Alexandra, Erik Kobylarz, James Lever, Susan Taylor, and Laura Ray. Assessing the feasibility of detecting epileptic seizures using non-cerebral sensor. Engineer Research and Development Center (U.S.), December 2021. http://dx.doi.org/10.21079/11681/42562.
Повний текст джерелаWideman, Jr., Robert F., Nicholas B. Anthony, Avigdor Cahaner, Alan Shlosberg, Michel Bellaiche, and William B. Roush. Integrated Approach to Evaluating Inherited Predictors of Resistance to Pulmonary Hypertension Syndrome (Ascites) in Fast Growing Broiler Chickens. United States Department of Agriculture, December 2000. http://dx.doi.org/10.32747/2000.7575287.bard.
Повний текст джерела