Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Elliptic Curve Discrete Logarithm (ECDL).

Дисертації з теми "Elliptic Curve Discrete Logarithm (ECDL)"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-15 дисертацій для дослідження на тему "Elliptic Curve Discrete Logarithm (ECDL)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Taufer, Daniele. "Elliptic Loops." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/265846.

Повний текст джерела
Анотація:
Given an elliptic curve E over Fp and an integer e ≥ 1, we define a new object, called “elliptic loop”, as the set of plane projective points over Z/p^e Z lying over E, endowed with an operation inherited by the curve addition. This object is proved to be a power-associative abelian algebraic loop. Its substructures are investigated by means of other algebraic cubics defined over the same ring, which we named “shadow curve” and “layers”. When E has trace 1, a distinctive behavior is detected and employed for producing an isomorphism attack to the discrete logarithm on this family of curves. St
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Taufer, Daniele. "Elliptic Loops." Doctoral thesis, Università degli studi di Trento, 2020. http://hdl.handle.net/11572/265846.

Повний текст джерела
Анотація:
Given an elliptic curve E over Fp and an integer e ≥ 1, we define a new object, called “elliptic loop”, as the set of plane projective points over Z/p^e Z lying over E, endowed with an operation inherited by the curve addition. This object is proved to be a power-associative abelian algebraic loop. Its substructures are investigated by means of other algebraic cubics defined over the same ring, which we named “shadow curve” and “layers”. When E has trace 1, a distinctive behavior is detected and employed for producing an isomorphism attack to the discrete logarithm on this family of curves. St
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kouchaki, Barzi Behnaz. "Points of High Order on Elliptic Curves : ECDSA." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-58449.

Повний текст джерела
Анотація:
This master thesis is about Elliptic Curve Digital Signature Algorithm or ECDSA and two of the known attacks on this security system. The purpose of this thesis is to find points that are likely to be points of high order on an elliptic curve. If we have a point P of high order and if Q = mP, then we have a large set of possible values of m. Therefore it is hard to solve the Elliptic Curve Discrete Logarithm Problem or ECDLP. We have investigated on the time of finding the solution of ECDLP for a certain amount of elliptic curves based on the order of the point which is used to create the digi
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hitchcock, Yvonne Roslyn. "Elliptic curve cryptography for lightweight applications." Thesis, Queensland University of Technology, 2003. https://eprints.qut.edu.au/15838/1/Yvonne_Hitchcock_Thesis.pdf.

Повний текст джерела
Анотація:
Elliptic curves were first proposed as a basis for public key cryptography in the mid 1980's. They provide public key cryptosystems based on the difficulty of the elliptic curve discrete logarithm problem (ECDLP) , which is so called because of its similarity to the discrete logarithm problem (DLP) over the integers modulo a large prime. One benefit of elliptic curve cryptosystems (ECCs) is that they can use a much shorter key length than other public key cryptosystems to provide an equivalent level of security. For example, 160 bit ECCs are believed to provide about the same level of security
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hitchcock, Yvonne Roslyn. "Elliptic Curve Cryptography for Lightweight Applications." Queensland University of Technology, 2003. http://eprints.qut.edu.au/15838/.

Повний текст джерела
Анотація:
Elliptic curves were first proposed as a basis for public key cryptography in the mid 1980's. They provide public key cryptosystems based on the difficulty of the elliptic curve discrete logarithm problem (ECDLP) , which is so called because of its similarity to the discrete logarithm problem (DLP) over the integers modulo a large prime. One benefit of elliptic curve cryptosystems (ECCs) is that they can use a much shorter key length than other public key cryptosystems to provide an equivalent level of security. For example, 160 bit ECCs are believed to provide about the same level of security
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Abu-Mahfouz, Adnan Mohammed. "Elliptic curve cryptosystem over optimal extension fields for computationally constrained devices." Diss., University of Pretoria, 2004. http://hdl.handle.net/2263/25330.

Повний текст джерела
Анотація:
Data security will play a central role in the design of future IT systems. The PC has been a major driver of the digital economy. Recently, there has been a shift towards IT applications realized as embedded systems, because they have proved to be good solutions for many applications, especially those which require data processing in real time. Examples include security for wireless phones, wireless computing, pay-TV, and copy protection schemes for audio/video consumer products and digital cinemas. Most of these embedded applications will be wireless, which makes the communication channel vul
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Falk, Jenny. "On Pollard's rho method for solving the elliptic curve discrete logarithm problem." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-85516.

Повний текст джерела
Анотація:
Cryptosystems based on elliptic curves are in wide-spread use, they are considered secure because of the difficulty to solve the elliptic curve discrete logarithm problem. Pollard's rho method is regarded as the best method for attacking the logarithm problem to date, yet it is still not efficient enough to break an elliptic curve cryptosystem. This is because its time complexity is O(√n) and for uses in cryptography the value of n will be very large. The objective of this thesis is to see if there are ways to improve Pollard's rho method. To do this, we study some modifications of the origina
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bradley, Tatiana. "A Cryptographic Attack: Finding the Discrete Logarithm on Elliptic Curves of Trace One." Scholarship @ Claremont, 2015. http://scholarship.claremont.edu/scripps_theses/716.

Повний текст джерела
Анотація:
The crux of elliptic curve cryptography, a popular mechanism for securing data, is an asymmetric problem. The elliptic curve discrete logarithm problem, as it is called, is hoped to be generally hard in one direction but not the other, and it is this asymmetry that makes it secure. This paper describes the mathematics (and some of the computer science) necessary to understand and compute an attack on the elliptic curve discrete logarithm problem that works in a special case. The algorithm, proposed by Nigel Smart, renders the elliptic curve discrete logarithm problem easy in both directions fo
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wilcox, Nicholas. "A Computational Introduction to Elliptic and Hyperelliptic Curve Cryptography." Oberlin College Honors Theses / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=oberlin1528649455201473.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pönisch, Jens. "Kryptoggraphie mit elliptischen Kurven." Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-156488.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Bouvier, Cyril. "Algorithmes pour la factorisation d'entiers et le calcul de logarithme discret." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0053/document.

Повний текст джерела
Анотація:
Dans cette thèse, nous étudions les problèmes de la factorisation d'entier et de calcul de logarithme discret dans les corps finis. Dans un premier temps, nous nous intéressons à l'algorithme de factorisation d'entier ECM et présentons une méthode pour analyser les courbes elliptiques utilisées dans cet algorithme en étudiant les propriétés galoisiennes des polynômes de division. Ensuite, nous présentons en détail l'algorithme de factorisation d'entier NFS, et nous nous intéressons en particulier à l'étape de sélection polynomiale pour laquelle des améliorations d'algorithmes existants sont pr
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Bouvier, Cyril. "Algorithmes pour la factorisation d'entiers et le calcul de logarithme discret." Electronic Thesis or Diss., Université de Lorraine, 2015. http://www.theses.fr/2015LORR0053.

Повний текст джерела
Анотація:
Dans cette thèse, nous étudions les problèmes de la factorisation d'entier et de calcul de logarithme discret dans les corps finis. Dans un premier temps, nous nous intéressons à l'algorithme de factorisation d'entier ECM et présentons une méthode pour analyser les courbes elliptiques utilisées dans cet algorithme en étudiant les propriétés galoisiennes des polynômes de division. Ensuite, nous présentons en détail l'algorithme de factorisation d'entier NFS, et nous nous intéressons en particulier à l'étape de sélection polynomiale pour laquelle des améliorations d'algorithmes existants sont pr
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Lin, Kuei-Nuan. "The discrete logarithm problem on an elliptic curve." 1999. http://www.cetd.com.tw/ec/thesisdetail.aspx?etdun=U0021-1804200714504002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Kuei-Nuan, Lin, and 林桂暖. "The discrete logarithm problem on an elliptic curve." Thesis, 2000. http://ndltd.ncl.edu.tw/handle/72594273947630879727.

Повний текст джерела
Анотація:
碩士<br>國立臺灣師範大學<br>數學研究所<br>88<br>In this master thesis, we talk about the discrete logarithm on an elliptic curve, and this is a reorganization of M-O-V's, Semaev's, and Voloch's papers. Let E be an elliptic curve over a finite field F and char(F)=p, the discrete logarithm problem on an elliptic curve is to compute an integer m such that Q=[m]P, where P and Q are rational points on E. If P has order n, we consider two cases: (1)gcd(n,p)=1 (2)gcd(n,p) is not 1 Finally, we can use the Chinese remainder theorem to compute m
Стилі APA, Harvard, Vancouver, ISO та ін.
15

TebbieTung, Iu-Chui, and 董蕘翠. "Finding the secret key in Bitcoin: A review on mathematical approaches to Elliptic Curve Discrete Logarithm Problem." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/bkwnf4.

Повний текст джерела
Анотація:
碩士<br>國立成功大學<br>數學系應用數學碩博士班<br>107<br>With the popular usage of Bitcoin, safety in making payments or transactions becomes a topic of concern. In brief, the security chiefly relies on the easiness of finding the secret key/ private key in Bitcoin. To a large extent, this depends on how easy it is to resolve an Elliptic Curve Discrete Logarithm Problem (ECDLP). With that in mind, the main focus of this paper is to review any mathematical approaches and their variants that can theoretically tackle an ECDLP in Bitcoin. The objective is to discuss the security of Bitcoin by studying methods of unc
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!