Добірка наукової літератури з теми "Energy efficient materials"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Energy efficient materials".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Energy efficient materials":

1

Gupta, Abhinandan R., and S. K. Deshmukh. "Energy Efficient Construction Materials." Key Engineering Materials 678 (February 2016): 35–49. http://dx.doi.org/10.4028/www.scientific.net/kem.678.35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
History itself is the evident that from the years together the people moves to the region where they can satisfy their needs and wants with fewer efforts and more opportunities. This thought lead to accumulation of people in some areas resulting in urbanization. As this urban area contributes highly in nation’s economy even the government announce a far reaching program of investments in urban development. However, these urban agglomerations manifest generally unsustainable ecologies. The depletion of material resources, the accumulation of waste, and the over-expenditure of non-renewable energy are direct consequences of the predatory expansion of urbanization. Out of this the major contribution goes to construction industry as the data reveals that Construction is responsible for 40% of the total world flows of raw materials such as sand, gravel& clay. It takes one quarter of all virgin wood, 40% of energy use,16% of water withdrawals,& produces 17% of all waste generated. This problems can be tackle efficiently it the waste generated by industries can be reuse for the purpose of making construction material. With little logic and application of basic science the new material that can be made by mixing waste may prove energy efficient if its thermal resistivity is enhanced and utilized. The research over here is a paradigm of such two waste mix building component with high thermal resistive property. The paper is about the making and testing of waste mix tiles and filler blocks so as to find its efficiency in construction practices. The results obtained shows that by adopting such materials for construction purpose will reduce amount of operations energy consumption as well as reduce consumption of non – renewable resources and would help to utilize waste in fruitful way. The effort in this research are thus to find energy efficient construction material.
2

hadapad, Rahul basappa, Dr H. Ghanashyam Shenoy, Pruthvi H. M, and Sagar S. "DESIGN AND DEVELOPMENT OF ENERGY EFFICIENT DOMESTIC WATER HEATER USING SMART MATERIALS." International Journal of Current Engineering and Scientific Research 6, no. 6 (June 2019): 26–28. http://dx.doi.org/10.21276/ijcesr.2019.6.6.5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ishkov, Alexander D., Dmitri A. Semernin, Svjatoslav V. Miloradov, and Irina V. Voronina. "Energy-Efficient Technology Supply Bulk Materials." Applied Mechanics and Materials 741 (March 2015): 500–503. http://dx.doi.org/10.4028/www.scientific.net/amm.741.500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Submission materials are the main manufacturing operation in the industry. It largely determines the quality parameters of products. Mechanization and automation of bulk material supply operation in the process eliminates human error and improves the product quality. This work was aimed at finding technical solutions that the reduction of specific energy consumption and enhance the reliability of the vibrating and pneumatic feeders. The article describes the developed the authors vibratory and pneumatic feeders.
4

Chowdhury, Sugata, Houlong Zhuang, Shawn Coleman, Srikanth Patala, and Jacob Bair. "Quantum Materials for Energy-Efficient Computing." JOM 72, no. 9 (August 9, 2020): 3147–48. http://dx.doi.org/10.1007/s11837-020-04293-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lyubina, Julia. "Magnetocaloric materials for energy efficient cooling." Journal of Physics D: Applied Physics 50, no. 5 (January 5, 2017): 053002. http://dx.doi.org/10.1088/1361-6463/50/5/053002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ebert, H. P. "Functional materials for energy-efficient buildings." EPJ Web of Conferences 98 (2015): 08001. http://dx.doi.org/10.1051/epjconf/20159808001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mahdavinejad, Mohammadjavad, Setareh Ghanavati, Narjes Elmi, Airya Norouzi Larki, and Arash Zia. "Recombinant Materials and Contemporary Energy Efficient Architecture." Advanced Materials Research 936 (June 2014): 1423–27. http://dx.doi.org/10.4028/www.scientific.net/amr.936.1423.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nowadays, reducing energy consumption, using clean resources and the aim of creating net-zero building are going to be more and more important. It seems that use of recombinant materials may be a way to reach a more energy efficient architecture. There are considerable advances in development of new material, while the use of these materials is limited in architecture. Regarding to hypothesis of the research, identification of new materials, their performance and their properties, which cause decrease in energy consumption may be helpful for development a more energy efficient architecture. The results of the paper show that architects may incorporate recombinant material to reach energy efficient buildings, however they can play a crucial role in saving natural energy resources through adoption of recombinant materials in architecture and planning
8

Hussain, Anwar, and Mohammad Arif Kamal. "Energy Efficient Sustainable Building Materials: An Overview." Key Engineering Materials 650 (July 2015): 38–50. http://dx.doi.org/10.4028/www.scientific.net/kem.650.38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
With the rapid development and modernisation, cities are growing at a very fast pace and the buildings are the main component of cities. Building construction in the world annually consumes around 25% of the global wood harvest, 40% of stone, sand and gravel and 16% of water. It generates 50% of global output of GHG and agents of acid rains. The manufacturing process of building material contributes to Green House Gases such as CO2 to the atmosphere to a great extent. The natural disasters like global warming, ozone layer depletion, unexpected seasonal variations and decreasing land surface have now moved the centre of attraction from development to sustainable development. Since we have limited resources and energy, our development should focus on conserving the energy. Due to the continuous exploitation of natural resources, there is an urge to produce environmentally responsive building material for the construction of new buildings to meet the rapid urban growth. Sustainable buildings are designed, constructed, maintained, rehabilitated, and demolished with an emphasis throughout their life cycle on using natural resources efficiently while also protecting global ecosystems. Selection of appropriate building material helps to use the energy efficiently. In the rapidly changing scenario of building sector, planners, architects, engineers and builders are looking for new materials and technologies to adopt in future constructions that benefits like energy efficiency, resources and water conservation, improved indoor air quality, life cycle cost reduction and durability. This paper presents a brief study of sustainable aspects of building materials and a tool for Life Cycle Assessment criteria that helps in selecting proper building materials.
9

Ralegaonkar, Rahul V., Hindavi R. Gavali, Vishakha V. Sakhare, Anand J. Puppala, and Pranesh B. Aswath. "Energy-efficient slum house using alternative materials." Proceedings of the Institution of Civil Engineers - Energy 170, no. 3 (August 2017): 93–102. http://dx.doi.org/10.1680/jener.16.00027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Atynian, Armen, Kateryna Bukhanova, Roman Tkachenko, Volodymyr Manuilenko, and Dmytro Borodin. "Energy Efficient Building Materials with Vermiculite Filler." International Journal of Engineering Research in Africa 43 (June 2019): 20–24. http://dx.doi.org/10.4028/www.scientific.net/jera.43.20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The possibility of obtaining the vermiculite fire treatment at low temperature (burnt vermiculite) is considered in the article. The vermiculite structure features are investigated to reduce the subsequent burn temperature. By X-ray diffraction analysis it is established that the pre-treatment by a salt solution causes a change in the elementary cell of the vermiculite crystalline grid. It allows to receive the extended vermiculite under the lower burn temperature than in case of the ordinary non-treated vermiculite. To show the creation possibility of the building materials with burnt vermiculite the concrete unit weight and strength with gypsum and cement binder are studied. It is determined that the mentioned concrete strength is higher compared to concrete with ordinary vermiculite at the same density of these concretes. The thermal insulation properties are also significantly higher. The light concrete with vermiculite aggregate is used as the thermal-shield enclosing structures in building and structure constructions. The decrease of the vermiculite burn temperature will contribute to reducing the energy intensity of construction as a whole.

Дисертації з теми "Energy efficient materials":

1

Incorvia, Jean Anne Currivan. "Nanoscale Magnetic Materials for Energy-Efficient Spin Based Transistors." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467318.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this dissertation, I study the physical behavior of nanoscale magnetic materials and build spin-based transistors that encode information in magnetic domain walls. It can be argued that energy dissipation is the most serious problem in modern electronics, and one that has been resistant to a breakthrough. Wasted heat during computing both wastes energy and hinders further technology scaling. This is an opportunity for physicists and engineers to come up with creative solutions for more energy-efficient computing. I present the device we have designed, called domain wall logic (DW-Logic). Information is stored in the position of a magnetic domain wall in a ferromagnetic wire and read out using a magnetic tunnel junction. This hybrid design uses electrical current as the input and output, keeping the device compatible with charge- based transistors. I build an iterative model to predict both the micromagnetic and circuit behavior of DW- Logic, showing a single device can operate as a universal gate. The model shows we can build complex circuits including an 18-gate Full Adder, and allows us to predict the device switching energy compared to complementary metal-oxide semiconductor (CMOS) transistors. Comparing 15 nm feature nodes, I find DW-Logic made with perpendicular magnetic anisotropy materials, and utilizing both spin torque transfer and the Spin Hall effect, could operate with 1000× reduced switching energy compared to CMOS. I fabricate DW-Logic device prototypes and show in experiment they can act as AND and NAND gates. I demonstrate that one device can drive two subsequent devices, showing gain, which is a necessary requirement for fanout. I also build a clocked ring oscillator circuit to demonstrate successful bit propagation in a DW-Logic circuit and show that properly scaled devices can have improved operation. Through building the devices, I develop a novel fabrication method for patterning sub-25 nm magnetic wires with very low (~ 2 nm) average edge roughness. I apply the fabrication method to measuring the Spin Hall angle in epitaxially grown thin films and to studying the repeatability of domain wall motion in narrow wires. I also present a number of modeling results, including the effect of edge roughness on both magnetic tunnel junctions and domain walls.
Physics
2

Feaver, Aaron. "Carbon cryogel based nanomaterials for efficient energy storage /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/10575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nisar, Jawad. "Atomic Scale Design of Clean Energy Materials : Efficient Solar Energy Conversion and Gas Sensing." Doctoral thesis, Uppsala universitet, Materialteori, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-179372.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The focus of this doctoral thesis is the atomic level design of photocatalysts and gas sensing materials. The band gap narrowing in the metal oxides for the visible-light driven photocatalyst as well as the interaction of water and gas molecules on the reactive surfaces of metal oxides and the electronic structure of kaolinite has been studied by the state-of-art calculations. Present thesis is organized into three sections. The first section discusses the possibility of converting UV active photocatalysts (such as Sr2Nb2O7, NaTaO3, SrTiO3, BiTaO4 and BiNbO4) into a visible active photocatalysts by their band gap engineering. Foreign elements doping in wide band gap semiconductors is an important strategy to reduce their band gap. Therefore, we have investigated the importance of mono- and co-anionic/cationic doping on UV active photocatalysts. The semiconductor's band edge position is calculated with respect to the water oxidation/reduction potential for various doping. Moreover, the tuning of valence and conduction band edge position is discussed on the basis of dopant's p/d orbital energy. In the second section of thesis the energetic, electronic and optical properties of TiO2, NiO and β-Si3N4 have been discussed to describe the adsorption mechanism of gas molecules at the surfaces. The dissociation of water into H+ or OH- occurs on the O-vacancy site of the (001)-surface of rutile TiO2 nanowire, which is due to the charge transfer from Ti atom to water molecule. The dissociation of water into OH- and imino (NH) groups is also observed on the β-Si3N4 (0001)-surface due to the dangling bonds of the lower coordinated N and Si surface atoms. Fixation of the SO2 molecules on the anatase TiO2 surfaces with O-deficiency have been investigated by Density Functional Theory (DFT) simulation and Fourier Transform Infrared (FTIR) spectroscopy. DFT calculations have been employed to explore the gas-sensing mechanism of NiO (100)-surface on the basis of energetic and electronic properties. In the final section the focus is to describe the optical band gap of pristine kaolinite using the hybrid functional method and GW approach. Different possible intrinsic defects in the kaolinite (001) basal surface have been studied and their effect on the electronic structure has been explained. The detailed electronic structure of natural kaolinite has been determined by the combined efforts of first principles calculations and Near Edge X-ray Absorption Fine Structure (NEXAFS).
4

Zhao, Yuan. "Thin-Film Photothermal Materials and Their Potentials on Energy Applications." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin156387491987997.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cheng, Yukun. "Study on efficient piezoelectric energy harvesting with frequency self-tuning." ASME 2015 International Mechanical Engineering Congress and Exposition, 2015. http://hdl.handle.net/1993/31645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A frequency self-tuning energy harvesting methodology is proposed to achieve efficient energy harvesting. To simulate the self-tuning process, a theoretical model of the harvester made of an aluminum beam bonded with piezoelectric patches is developed for numerical simulation. The energy harvesting is realized by converting ambient vibration to electric charge through piezoelectric patches on the host beam. To accomplish the frequency self-tuning process, a control voltage is applied on a piezoelectric stack actuator to tune the natural frequency of the beam harvester matching the major excitation frequency of the ambient vibration with large power generation. Two tuning methods with different electric circuits are developed to find the efficient and feasible self-tuning process, which is then further verified by the finite element method. Research findings show that the optimal frequency self-tuning method significantly increases the power output from the harvester by more than 26 times compared with the one without tuning.
October 2016
6

Dislaki, Evangelia. "From macro- to nanoscale electrodeposited iron-copper (Fe–Cu) for energy-efficient and sustainable applications." Doctoral thesis, Universitat Autònoma de Barcelona, 2018. http://hdl.handle.net/10803/665449.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Aquest treball se centra en l'electrodeposició i l'estudi del sistema Fe-Cu, tant sobre substrats llisos per a l’obtenció de pel·lícules continues com en substrats proveïts amb un reticle o màscara, així com la fabricació i caracterització de motius de mida submicromètrica, nanobarres, microbarres i tubs, destinats a ésser utilitzats en una gran varietat d’aplicacions mediambientals i d’eficiència energètica. En primer lloc, s’han dissenyat diferents electròlits per al dipòsit electroquímic de recobriments FexCu1-x de diversos micròmetres de gruix en un ampli rang de composició (0≤x≤86). S’ha investigat l'efecte de diversos agents complexants i condicions d’electrodeposició com el pH, la temperatura i l'agitació magnètica del bany sobre la morfologia, estructura, composició elemental i comportament magnètic dels dipòsits obtinguts. S’ha vist que el Fe i el Cu es troben parcialment aliats, malgrat la baixa solubilitat mútua entre ells, i que la magnetització de saturació es pot modular fàcilment a través del contingut de Fe. A continuació, s’han extrapolat els protocols sintètics establerts per al creixement dels recobriments continus a la fabricació de pel·lícules primes amb una porositat jeràrquica aconseguida mitjançant electrodeposició sobre substrats decorats amb cristalls col·loïdals (colloidal crystal templating). S’ha avaluat la humectabilitat d'aquestes pel·lícules i la seva habilitat per extreure l’oli en mescles i emulsions aigua-oli. S’ha vist que l'elevada relació superfície-volum de les pel·lícules, juntament amb l'elevada rugositat derivada de la seva estructura macroporosa i el relleu nanomètric al llarg de les parets de porus, genera un marcat caràcter hidrofòbic / oleofílic dels dipòsits i una notòria capacitat d'absorció d’oli. A diferències de les capes contínues, que són més gruixudes, el grau d’aliatge entre el Fe i el Cu és total en les pel·lícules primes macroporoses de Fe75Cu25 i Fe85Cu15. A més, s’ha demostrat que l'elevada relació superfície-volum i la nanoporositat inherent de les estretes parets de porus de les pel·lícules macroporoses les han convertit en excel·lents candidates per al control de la magnetització mitjançant voltatge. De fet, s'aconsegueix una reducció de la coercitivitat fins a un 25% en ser polaritzades negativament. Aquesta és una metodologia prometedora per reduir el consum d'energia, ja que la inversió de magnetització s’aconsegueix aplicant camps magnètics més baixos (és a dir, els corrents elèctrics involucrats són més baixos i, per tant, la dissipació de potència per efecte Joule es minimitza). A continuació, tenint en compte la tendència actual cap a la miniaturització, s’han crescut estructures submicromètriques de tres geometries i mides diferents mitjançant electrodeposició sobre substrats prelitografiats. Aquests substrats es van preparar per litografia per feixos d'electrons per tal d’assegurar una elevada resolució dels motius. Tot i que la literatura existent sobre motius submicromètrics litografiats es basa principalment en estructures amb una alçada inferior a 50 nm, les estructures que s’han preparat en aquesta Tesi fan aproximadament 200-300 nm d'alçada en funció de les condicions d’electrodeposició. Això dóna lloc a fenòmens interessants com ara un gradient de composició i, per tant, diferents propietats estructurals al llarg del gruix. S’han investigat les propietats magnètiques mitjançant microscòpia de forces magnètiques, indicant l’existència d’efectes tipus magnetic curling. Finalment, s’han fabricat nano i microbarres i tubs de diferent diàmetre magnètics i amb gradient de composició en membranes de policarbonat a través de mètodes d'electrodeposició convencionals i també a partir de banys amb surfactants amfifílics (micelle-assisted electrodeposition). El caràcter ferromagnètic de les estructures obtingudes ha permès la seva manipulació magnètica remota, mentre que s’ha confirmat la propulsió direccional fotocatalítica dels microtubs.
This work is focused on the electrodeposition and study of Fe-Cu in the form of continuous and patterned thin films and coatings as well as the fabrication and characterization of submicron motifs, nano- and microrods and tubes targeted at a variety of environmental and energy-efficient applications. Firstly, different electrolytes are developed for the electrochemical deposition of FexCu1−x coatings of several micrometers in thickness over a wide composition range (0≤x≤86). The effect of various complexing agents and plating conditions such as pH, temperature and magnetic stirring on the morphology, structure, elemental composition and magnetic behavior is investigated. It is shown that the coatings are partially alloyed, despite the low mutual solubility of Fe and Cu, and saturation magnetization can be easily tuned by an adjustment of the Fe content. Next, the synthetic protocols for the continuous coatings are extrapolated to the fabrication of patterned thin films with a hierarchical porosity achieved by coupling electrodeposition with colloidal lithography. The wetting properties of these films and their potential towards water-oil separation in mixtures and emulsions is assessed as a proof of concept. The high surface-to-volume ratio of the films in conjunction with the high roughness achieved by the macroporous network and the nanosized features along the pore walls lead to a strong hydrophobic/oleophilic nature of the deposits and an impressive absorption capacity. Notably, contrary to the thick coatings, the continuous and patterned Fe75Cu25 and Fe85Cu15 thin films are demonstrated to be fully alloyed. Furthermore, the high surface-to-volume ratio and the inherent nanoporosity of the narrow pore walls of the patterned films unveil their excellent potential towards voltage control of magnetization. Indeed, a coercivity reduction of up to 25% under application of a negative bias is achieved. This constitutes a promising way to curtail power consumption since magnetization reversal can then occur with lower applied magnetic fields (i.e., lower electric currents and minimized Joule heating power dissipation). Next, given the current trend towards miniaturization, submicron structures of three geometries and sizes are produced through electrodeposition onto pre-lithographed substrates. These substrates were previously prepared using electron-beam lithography which ensured a high feature quality. While existing literature on lithographed submicron motifs is largely based on structures below 50 nm in height, the structures prepared here are approximately 200-300 nm in height depending on plating conditions. This gives rise to interesting phenomena such as a compositional gradient, and thus different structural properties along the thickness. The magnetic properties are also thoroughly investigated with magnetic force microscopy suggesting magnetic curling effects. Finally, compositionally graded magnetic nano- and microrods and tubes of various diameters are fabricated in polycarbonate track-etched membranes through conventional as well as micelle-assisted electrodeposition methods. The ferromagnetic character of the material enables wireless magnetic steering while photocatalytically-driven directional propulsion of the microtubes is also confirmed.
7

Liu, Jheng-Sin. "Advanced Energy-Efficient Devices for Ultra-Low Voltage System: Materials-to-Circuits." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/81858.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The overall energy consumption of portable devices has been projected to triple over the next decade, growing to match the total power generated by the European Union and Canada by 2025. The rise of the internet-of-things (IoT) and ubiquitous and embedded computing has resulted in an exponential increase in such devices, wherein projections estimate that 50 billion smart devices will be connected and online by 2020. In order to alleviate the associated stresses placed on power generation and distribution networks, a holistic approach must be taken to conserve energy usage in electronic devices from the component to the circuit level. An effective approach to reduce power dissipation has been a continual reduction in operating voltage, thereby quadratically down-scaling active power dissipation. However, as state-of-the-art silicon (Si) complimentary metal-oxide-semiconductor (CMOS) field-effect transistors (FETs) enter sub-threshold operation in the ultra-low supply voltage regime, their drive current is noticeable degraded. Therefore, new energy-efficient MOSFETs and circuit architectures must be introduced. In this work, tunnel FETs (TFETs), which operate leveraging quantum mechanical tunneling, are investigated. A comprehensive investigation detailing electronic materials, to novel TFET device designs, to memory and logic digital circuits based upon those TFETs is provided in this work. Combined, these advances offer a computing platform that could save considerable energy and reduce power consumption in next-generation, ultra-low voltage applications.
Ph. D.
8

Nwakwuo, Christopher Chinedu. "Reactive hydride composites for efficient hydrogen energy storage." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:8a3e1081-8655-41db-b1c0-8986658371a1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Solid state chemical storage of hydrogen in metals offers promising advantages over compressed hydrogen gas and condensed liquid hydrogen, especially for mobile applications with respect to safety and energy efficiency. However, no single metal hydride simultaneously satisfies the essential performance criteria for onboard hydrogen storage namely, high gravimetric and/or volumetric energy density, fast kinetics and favorable thermodynamics. Recently, a breakthrough achievement was made by the development of reactive hydride composites in which two metal hydride systems (e.g. NaBH4 and MgH2) are mixed together resulting in better sorption properties than the individual pure systems. In this approach, the formation of MgB2 by exothermic reaction destabilizes the composite and consequently reduces the overall enthalpy and sorption temperature of the endothermic desorption reaction. In this work the thermodynamic and kinetic properties of reactions in 2NaH + MgB2 + 4H2 ↔ 2NaBH4 + MgH2 and 3NaH + MgB2 + 4H2 ↔ 2NaBH4 + NaMgH3 were established using multiple experimental techniques like volumetric measurements, ex-situ and in-situ X-ray diffraction, calorimetry, and especially electron microscopy. Under the applied experimental conditions of 50 bar hydrogen and 400 °C during the hydrogenation of 2NaH + MgB2 and 0.1 bar hydrogen and 450 °C during the dehydrogenation of 2NaBH4 + MgH2, both reactions were kinetically limited and proceeded in multisteps. The absorption reaction was partial, being restricted by the unexpected formation of NaMgH3 which limits the formation of NaBH4 while the desorption reaction was complete and limited by the growth of MgB2 through some intermediate complexes at the Mg/NaBH4 interface where the intermediate phase forms a barrier to diffusion. Conversely, in the 3NaH + MgB2 system, absorption in 100 bar hydrogen and 300 °C was complete but slow, while in the 2NaBH4 + NaMgH3 system, complete desorption was achieved in multisteps under 0.1 bar hydrogen and 450 °C. The formation of intermediate and stable complexes during these reactions poses a significant restraint to hydrogen sorption reactions. However, lower onset sorption temperatures have been established in these systems than in the pure compounds due to their simultaneous destabilization in the composite state. This study have demonstrated the complexity of desorption and absorption mechanisms in these composite systems and the difficulty of obtaining such reactions at low temperatures required for mobile applications. This understanding of the rate limiting reaction steps in reactive hydride composites provides the basis for further optimization of these materials for efficient hydrogen storage applications.
9

Li, Shuyi. "VO2-based Thermochromic and Nanothermochromic Materials for Energy-Efficient Windows : Computational and Experimental Studies." Doctoral thesis, Uppsala universitet, Fasta tillståndets fysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-210016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
VO2-based films are thermochromic and exhibit high or low infrared transmittance when the temperature is below or above a critical temperature. The thermochromic switching is passive and reversible, and therefore VO2 based films are promising for energy-efficient window appli­cations. However the practicaluse of VO2 for energy-efficient windows has long been hampered by low luminous transmittance and low solar energy transmittance modulation. The main goal of this dissertation work is to address these issues. The first half of the work proposes the concept of nanothermochromics for simultaneous improvement of luminous transmittance and modulation of solar energy throughput. nanoth­ermochromics considers VO2 nanoparticle composite layers, whose optical properties were modeled by effective medium theories. Calculations on VO2 spheroids have shown that VO2 nanoparticles, especially nanospheres, can offer dramatically improved luminous transmittance and solar transmittance modulation that are not possible for films. Calculations done on coreshell nanoparticles showed comparable improvements and offer an opportunity to reduce the material costs. It was also found that the composite of In2O3:Sn (ITO) and VO2 can yield moderately high luminous transmittance, solar transmittance modulation and low-emittance properties. In the second half of the dissertation work, Mg-doped VO2 films were sputter deposited. Their band gaps and Mg-content were investigated by means of optical absorption measurement and Rutherford backscattering spectrometry, respectively. The band gaps of VO2 were found to increase by ∼3.9±0.5 eV per unit of atom ratio Mg/(Mg+V) for 0<Mg/(Mg+V)<0.21. Computations based on effective medium theory were done to estimate the performance of Mg­-doped VO2 films and nanoparticle composite layers. The results suggest that moderately doped VO2 films with 0<Mg/(Mg+V)<0.06 perform better than un-doped films and that the perfor­mance can be further enhanced with one layer of antireflection coating. The best results were achieved by un-doped VO2 nanospheres, closely followed by the VO2 nanospheres with low Mg-content. Furthermore, the an experimental study on sputter deposited VO2 nanorods has identified the geometry of the oxygen gas inlet, the type of substrate, the substrate temperature and the layer thickness as important factors that influence the growth morphology. Taken as a whole, nanothermochromics offered by VO2 nanoparticles was shown to be the best solution for VO2 based thermochromic energy-efficient window coatings.
10

Kim, Yun Sang. "Ferroelectric nanocomposite and polar hybrid sol-gel materials for efficient, high energy density capacitors." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51816.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The development of efficient, high-performance materials for electrical energy storage and conversion applications has become a must to meet an ever-increasing need for electrical energy. Among devices developed for this purpose, capacitors have been used for pulsed power applications that require large power density with millisecond-scale charge and discharge. However, conventional polymeric films, which possess high breakdown strength, are limited due to low permittivity and hence compromise the energy storage capability of capacitors. In order to develop high energy density dielectric materials for pulsed power applications, two hurdles must be overcome: 1) the appropriate selection of materials that possess not only large permittivity but also high breakdown strength, 2) the optimization of material processing to improve morphology of dielectric films to minimize loss during energy extraction process. This thesis will present the development of novel dielectric material, with emphasis on the optimization of material and thin film processing toward improved morphology as ways to achieve high energy density at the material level. After first two chapters of introduction and experimental details, Chapter 3 will demonstrate the improvement of nanocomposite morphology via processing optimization and study its effect on the energy storage characteristics of nanocomposites thereof. Chapter 4 will investigate dielectric sol-gel materials containing dipolar cyano side groups, which are relatively a new class of material for pulsed power applications. Finally, Chapter 5 will discuss the effect of tunneling barrier layer on sol-gel films to mitigate charge carrier injection and associated conduction and breakdown phenomena, which would be significantly detrimental to the energy storage performance of dielectric sol-gel films.

Книги з теми "Energy efficient materials":

1

India) International Conference on Advanced Materials for Energy Efficient Buildings (2013 New Delhi. International Conference on Advanced Materials for Energy Efficient Buildings. Edited by Singh L. P. (Scientist) and Central Building Research Institute (India). Roorkee, Uttarakhand, India: CSIR, Central Building Research Institute, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Glasser, David Evan. Smarterachitecture: Energy-efficient communities, building designs, construction techniques and materials in Arkansas. Little Rock, AR: Arkansas Energy Office, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gonzalo, Roberto. Energy-efficient architecture: Basics for planning and construction. Basel: Birkhäuser-Publishers for Architecture, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Feher, Lambert E. Energy Efficient Microwave Systems: Materials Processing Technologies for Avionic, Mobility and Environmental Applications. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Expert, Group Meeting on Energy-Efficient Building Materials for Low-Cost Housing (1987 Amman Jordan). Proceedings of the Expert Group Meeting on Energy-Efficient Building Materials for Low-Cost Housing, Amman, November, 1987. Baghdad: United Nations, 1988.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hobbs, G. Demo nstration of reuse and recycling of materials: BRE energy efficient office of the future. Watford: Building Research Establishment, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhukov, Aleksey, Ekaterina Bobrova, Igor' Bessonov, and Elizaveta Mednikova. Energy efficiency of building systems. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1856852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The monograph summarizes and systematizes the results of experimental and theoretical studies of thermal insulation systems of building structures, technological facilities, transport facilities, and cold preservation. The criterion for the effectiveness of system insulation solutions is energy efficiency as a criterion for a comprehensive assessment, including both taking into account the direct reduction of energy costs during the operation of insulation shells, and the costs of installation, maintenance of structures in working condition, evaluation of the operational resistance of materials and durability of system solutions as a whole. Modern types of thermal insulation materials based on gas-filled plastics, foamed glass, foamed rubber and products based on mineral fibers are considered: stone wool, glass wool and glass fiber, basalt fiber. It is intended for researchers, specialists in the field of materials science, technologists — developers of new types of thermal insulation materials and constructors, designing products from them, as well as for teachers and university students. It can be useful for a wide range of people interested in construction and energy saving problems.
8

Oral, Ahmet Yavuz, Zehra Banu Bahsi, and Mehmet Ozer, eds. International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013). Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05521-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Oral, A. Y., Z. B. Bahsi Oral, and M. Ozer, eds. 2nd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2014). Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16901-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Oral, Ahmet Yavuz, and Zehra Banu Bahsi Oral, eds. 3rd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2015). Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-45677-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Energy efficient materials":

1

Haapala, Karl R., Sundar V. Atre, Sundar V. Atre, Ravi Enneti, Ian C. Garretson, Ian C. Garretson, Hao Zhang, and Hao Zhang. "Materials Processing." In Energy Efficient Manufacturing, 33–64. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119519904.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Feher, Lambert E. "Processing Technology for Composite Materials." In Energy Efficient Microwave Systems, 59–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92122-6_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Torgal, Fernando Pacheco, and Said Jalali. "Energy." In Eco-efficient Construction and Building Materials, 35–50. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-892-8_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Shinde, K. N., and Roshani Singh. "Vanadate Phosphors for Energy Efficient Lighting." In Advanced Energy Materials, 465–98. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118904923.ch12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pagone, Emanuele, Konstantinos Salonitis, and Mark Jolly. "Energy-Efficient Casting Processes." In Materials Forming, Machining and Tribology, 77–98. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03276-0_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Apelian, Diran, and Brajendra Mishra. "Energy Efficient Materials Manufacturing from Secondary Resources." In Energy Materials 2014, 13–22. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-48765-6_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Apelian, Diran, and Brajendra Mishra. "Energy Efficient Materials Manufacturing from Secondary Resources." In Energy Materials 2014, 13–22. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119027973.ch2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Francese, Dora. "Using Agricultural By-products for Creating Innovative Technologies and Materials." In Energy Efficient Building Design, 131–41. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-40671-4_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Casini, Marco. "Nanoinsulation Materials for Energy Efficient Buildings." In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 1–28. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-11155-7_49-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Casini, Marco. "Nanoinsulation Materials for Energy Efficient Buildings." In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, 2559–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-36268-3_49.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Energy efficient materials":

1

C., Akin. "Energy Efficient Materials for Sustainable Building." In 1st International Electronic Conference on Materials. Basel, Switzerland: MDPI, 2014. http://dx.doi.org/10.3390/ecm-1-b014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pilon, Laurent. "Innovative Materials for Energy Efficient Buildings." In The 4th International Conference on Energy Harvesting, Storage, and Transfer. Avestia Publishing, 2020. http://dx.doi.org/10.11159/ehst20.01.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Goiti, E., M. Ocejo, and M. Cano. "Energy Efficient Cement-Based Building Materials." In 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479346.106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hou, Jianhui. "Molecular Design of Highly Efficient Organic Photovoltaic Materials." In Photonics for Energy. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/pfe.2018.pt3b.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Imahori, Hiroshi, Hiroaki Iijima, Seigo Ito, Taichi Shimada, and Takashi Kato. "Nanostructured materials for efficient solar energy conversion." In 2010 IEEE 10th Conference on Nanotechnology (IEEE-NANO). IEEE, 2010. http://dx.doi.org/10.1109/nano.2010.5697739.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rahaman, Md Mojibur, and K. S. Sandhu. "Energy Efficient magnetic materials for Electrical Machines." In 2019 5th International Conference on Advanced Computing & Communication Systems (ICACCS). IEEE, 2019. http://dx.doi.org/10.1109/icaccs.2019.8728342.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

HAGER, IZABELA. "Towards Energy Efficient and Sustainable Insulation Materials." In Sixth International Conference on Advances in Civil, Structural and Environmental Engineering - ACSEE 2017. Institute of Research Engineers and Doctors, 2017. http://dx.doi.org/10.15224/978-1-63248-139-9-19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yang, Shihe. "Tailoring Sustainable Optoelectronic Materials for Efficient Solar Energy Conversion." In Photonics for Energy. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/pfe.2019.ptu3e.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Walter, Thomas J., R. Klenk, M. Ruckh, K. O. Velthaus, and Hans W. Schock. "Chalcopyrite semiconductors for highly efficient thin-film solar cells." In Optical Materials Technology for Energy Efficiency and Solar Energy, edited by Anne Hugot-Le Goff, Claes-Goeran Granqvist, and Carl M. Lampert. SPIE, 1992. http://dx.doi.org/10.1117/12.130571.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Javey, Ali. "Quantum membranes: A new materials platform for future electronics." In 2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S). IEEE, 2013. http://dx.doi.org/10.1109/e3s.2013.6705869.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Energy efficient materials":

1

Fujimoto, Cy H., Gary Stephen Grest, Michael A. Hickner, Christopher James Cornelius, Chad Lynn Staiger, and Michael R. Hibbs. Advanced proton-exchange materials for energy efficient fuel cells. Office of Scientific and Technical Information (OSTI), December 2005. http://dx.doi.org/10.2172/883478.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bowers, John. Center for Energy Efficient Materials (CEEM) (Final Technical Report). Office of Scientific and Technical Information (OSTI), November 2014. http://dx.doi.org/10.2172/1169473.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Goldner, R., and T. Haas. Optics and materials research for controlled radiant energy transfer in energy efficient buildings. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5313133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dahotre, Narentra B., Vinod K. Sikka, and Craig A. Blue. High-Energy-Density Coating of High Temperature Advanced Materials for Energy-Efficient Performance. Office of Scientific and Technical Information (OSTI), March 2005. http://dx.doi.org/10.2172/838863.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Goldner, R. B., and T. E. Haas. Optics and materials research for controlled radiant energy transfer in energy efficient buildings. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/6200670.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sadoway, D. R. Advanced materials for the energy efficient production of aluminum. Final report. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10147562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Xingbo Liu, Ever Barbero, Bruce Kang, Bhaskaran Gopalakrishnan, James Headrick, and Carl Irwin. Multifunctional Metallic and Refractory Materials for Energy Efficient Handling of Molten Metals. Office of Scientific and Technical Information (OSTI), February 2009. http://dx.doi.org/10.2172/947111.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hunt, Warren H., Ross Brindle, Mallory James, Mauricio Justiniano, Ridah Sabouni, Melanie Seader, Jennifer Ruch, Howard Andres, and Muhammad Zafar. Linking Transformational Materials and Processing for an Energy-Efficient and Low-Carbon Economy, 2010. Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/1219340.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ostowari, Ken, and Ali Nosson. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction. Office of Scientific and Technical Information (OSTI), September 2000. http://dx.doi.org/10.2172/771319.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mackiewicz-Ludtka, G., G. M. Ludtka, P. Ray, and J. Magee. Magnetic Processing – A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/990443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії