Добірка наукової літератури з теми "Escherichia coli Inclusions"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Escherichia coli Inclusions".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

За допомогою хмари тегів ви можете побачити ще більше пов’язаних тем досліджень, а відповідні кнопки після кожного розділу сторінки дозволяють переглянути розширені списки книг, статей тощо на обрану тему.

Пов'язані теми наукових робіт:

Статті в журналах з теми "Escherichia coli Inclusions":

1
Goodsell, David S. "Escherichia coli." Biochemistry and Molecular Biology Education 37, no. 6 (November 2009): 325–32. http://dx.doi.org/10.1002/bmb.20345.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Lorenz, E., M. D. Plamann, and G. V. Stauffer. "Escherichia coli." MGG Molecular & General Genetics 250, no. 1 (1996): 81. http://dx.doi.org/10.1007/s004380050053.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Morosini, M. I. "Escherichia coli." International Journal of Infectious Diseases 14 (March 2010): e23-e24. http://dx.doi.org/10.1016/j.ijid.2010.02.1539.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Goldman, R., and H. M. Adam. "Escherichia coli." Pediatrics in Review 27, no. 3 (March 2006): 114–15. http://dx.doi.org/10.1542/pir.27-3-114.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Gomes, Tânia A. T., Waldir P. Elias, Isabel C. A. Scaletsky, Beatriz E. C. Guth, Juliana F. Rodrigues, Roxane M. F. Piazza, Luís C. S. Ferreira, and Marina B. Martinez. "Diarrheagenic Escherichia coli." Brazilian Journal of Microbiology 47 (December 2016): 3–30. http://dx.doi.org/10.1016/j.bjm.2016.10.015.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Schwarzer, M., D. Ohlendorf, and D. A. Groneberg. "Enterohämorrhagische Escherichia coli." Zentralblatt für Arbeitsmedizin, Arbeitsschutz und Ergonomie 64, no. 4 (June 2014): 276–78. http://dx.doi.org/10.1007/s40664-014-0040-6.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Kaper, James B. "Pathogenic Escherichia coli." International Journal of Medical Microbiology 295, no. 6-7 (October 2005): 355–56. http://dx.doi.org/10.1016/j.ijmm.2005.06.008.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Noguera-Obenza, Marita, and Thomas G. Cleary. "Diarrheogenic Escherichia coli." Current Problems in Pediatrics 29, no. 7 (August 1999): 208–16. http://dx.doi.org/10.1016/s0045-9380(99)80027-9.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
O'Neill, M. C. "Escherichia coli Promoters." Journal of Biological Chemistry 264, no. 10 (April 1989): 5522–30. http://dx.doi.org/10.1016/s0021-9258(18)83576-1.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
O'Neill, M. C., and F. Chiafari. "Escherichia coli Promoters." Journal of Biological Chemistry 264, no. 10 (April 1989): 5531–34. http://dx.doi.org/10.1016/s0021-9258(18)83577-3.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Escherichia coli Inclusions":

1
RODRIGUES, DANIELLA. "Utilização de altas pressões hidrostáticas para o estudo e renaturação de proteínas com estrutura quaternária." PublishedVersion, reponame:Repositório Institucional do IPEN, 2010. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10161.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Made available in DSpace on 2014-10-09T12:35:27Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:06:25Z (GMT). No. of bitstreams: 0
A produção de proteínas recombinantes é uma ferramenta essencial para a indústria biotecnológica e suporta a expansão da pesquisa biológica moderna. Uma variedade de hospedeiros pode ser utilizada para produzir estas proteínas e dentre eles, as bactérias E. coli são as hospedeiras mais utilizadas. No entanto, a expressão heteróloga de genes em E. coli frequentemente resulta em um processo de enovelamento incompleto que leva ao acúmulo de agregados insolúveis, conhecidos como corpos de inclusão (CI). Altas pressões hidrostáticas são capazes de desfavorecer interações intermoleculares hidrofóbicas e eletrostáticas, levando à dissociação dos agregados e por isso são úteis para solubilizar e renaturar proteínas agregadas em CI. O presente trabalho teve como objetivo o estudo do processo de desagregação dos CI e de renaturação das proteínas oligoméricas subunidade B da toxina colérica (CTB) e região globular da fibra adenoviral (RGFA) utilizando altas pressões hidrostáticas. A toxina colérica (CT) é composta por uma subunidade A e cinco subunidades B combinadas em uma holotoxina AB5. A CTB é a porção pentamérica não tóxica da CT, responsável pela ligação da holotoxina ao receptor gangliosídeo GM1. A fibra do adenovírus é uma proteína homotrimérica que forma parte do capsídeo viral, organizada em três regiões: a cauda N-terminal, a haste central e a região C-terminal (região globular). A RGFA se liga à proteína de membrana CAR nas células hospedeiras e promove a internalização do vírus. Os estudos apresentados neste trabalho demonstraram que a alta pressão hidrostática foi eficaz na desagregação dos CI da CTB e da RGFA. As condições de renaturação foram otimizadas utilizando-se diferentes proporções do par redox glutationa oxidada e reduzida, concentrações de agentes caotrópicos, presença de aditivos e esquemas diferenciados de compressão/descompressão daqueles previamente descritos na literatura. CTB solúvel e pentamérica foi obtida pela compressão da suspensão de CI a 2,4 kbar por 16 horas em tampão TrisHCl 50 mM pH 8,5, 1 mM de tween 20 e descompressão direta seguida de incubação em pressão atmosférica. O rendimento de renaturação da CTB solúvel e pentamérica foi de até 45 % e 288 mg de CTB/litro de cultura bacteriana. Esta proteína apresentou estrutura regular e atividade biológica. RGFA trimérica foi obtida pela compressão da suspensão de CI em tampão TrisHCl 50 mM pH 8,0 e 0,5 M de L-arginina a 2,4 kbar por 1,5 horas e 0,4 kbar por 16 horas antes da completa descompressão. O rendimento de proteína solúvel trimérica da RGFA foi de 4 %, porém não foi possível obter a atividade biológica desta proteína.
Dissertação (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
2
BALDUINO, KELI N. "Renaturacao em altas pressoes hidrostaticas de proteinas recombinantes agregadas em corpos de inclusao produzidos em Eschirichia coli." PublishedVersion, reponame:Repositório Institucional do IPEN, 2009. http://repositorio.ipen.br:8080/xmlui/handle/123456789/9457.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Made available in DSpace on 2014-10-09T12:26:58Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:03:47Z (GMT). No. of bitstreams: 0
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
3
BALDUINO, KELI N. "Renaturacao em altas pressoes hidrostaticas de proteinas recombinantes agregadas em corpos de inclusao produzidos em Eschirichia coli." PublishedVersion, reponame:Repositório Institucional do IPEN, 2009. http://repositorio.ipen.br:8080/xmlui/handle/123456789/9457.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Made available in DSpace on 2014-10-09T12:26:58Z (GMT). No. of bitstreams: 0
Made available in DSpace on 2014-10-09T14:03:47Z (GMT). No. of bitstreams: 0
A expressão de proteínas na forma de corpos de inclusão em bactérias é uma alternativa muito interessante para obtenção de proteínas recombinantes. No entanto, a agregação é uma dificuldade frequentemente encontrada durante a renaturação dessas proteínas. Altas pressões hidrostáticas são capazes de solubilizar os corpos de inclusão na presença de baixas concentrações de reagentes desnaturantes, favorecendo a renaturação protéica com alto rendimento e redução de custos. O presente trabalho tem como objetivo a renaturação de proteínas recombinantes expressas em Escherichia coli sob a forma de corpos de inclusão usando altas pressões hidrostáticas. Três toxinas, todas apresentando cinco ou mais pontes dissulfídicas foram estudadas: NXH8, Naterina 2 e Bothropstoxina 1. Suspensões dos corpos de inclusão das três proteínas foram pressurizadas em 2000 bares de pressão durante 16 horas. Os tampões de renaturação foram otimizados para as três proteínas. O tampão utilizado no processo de renaturação da NXH8 foi Tris HCl 50 mM, pH 9,0 com proporção de 1GSH:4GSSG em concentração de 6 mM e 2 M GdnHCl. Foram utilizados corpos de inclusão em D.O.(A600nm) de 0,5. Após o processo de renaturação foi realizada diálise em pH 7,0. O rendimento final de recuperação de NXH8 solúvel foi de 40%, sendo obtidos 28,6 mg/L de meio de cultura. A renaturação de Bothropstoxina 1 foi obtida em tampão de renaturação Tris HCl 50 mM pH 7,5 na proporção de 2 GSH:3 GSSG em concentração de 3 mM e 1 M GdnHCl. Utilizamos uma suspensão com D.O.(A600nm) de 0,5. O rendimento final de recuperação de Bothropstoxina 1 renaturada foi de 32 %, obtendo-se 9,2 mg/L de meio de cultura. A renaturação de Naterina 2 foi obtida em tampão de renaturação com 20 mM de Tris HCl pH 9,0 na proporção de 2 GSH:3 GSSG e concentração de 10 mM e 1 M GdnHCl e corpos de inclusão na D.O. (A600nm) de 6,0. Foram obtidas 3,7 mg de Nateria 2 renaturada /L de meio de cultura (20% de recuperação a partir dos corpos de inclusão). O rendimento da Naterina 2 renaturada foi de 20 %. Para a análise e a comprovação da eficácia do processo de renaturação sob pressão foram utilizadas as técnicas de SDS-PAGE, western blot, microscopia eletrônica de varredura, ensaios biológicos in vivo e in vitro e estruturais. As análises físicoquímicas realizadas em NXH8 não mostraram nenhuma comprovação da sua renaturação. O ensaio in vivo realizado com a Naterina 2 mostrou uma leve atividade de contração de vênulas, indicando que ela esteja em sua conformação correta. Os ensaios in vitro com a Bothropstoxina 1 mostraram uma atividade citotóxica dose-dependente em células musculares.
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
4
Rosko, Jerko. "Osmotaxis in Escherichia coli." Electronic Thesis or Dissertation, University of Edinburgh, 2017. http://hdl.handle.net/1842/28947.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Bacterial motility, and in particular repulsion or attraction towards specific chemicals, has been a subject of investigation for over 100 years, resulting in detailed understanding of bacterial chemotaxis and the corresponding sensory network in many bacterial species including Escherichia coli. E. Coli swims by rotating a bundle of flagellar filaments, each powered by an individual rotary motor located in the cell membrane. When all motors rotate counter-clockwise (CCW), a stable bundle forms and propels the cell forward. When one or more motors switch to clock-wise (CW) rotation, their respective filaments fall out of the bundle, leading to the cell changing orientation. Upon switching back to CCW, the bundle reforms and propels the cell in a new direction. Chemotaxis is performed by the bacterium through prolonging runs by suppressing CW rotation when moving towards nutrients and facilitating reorientation by increasing CW bias when close to a source of a harmful substance. Chemicals are sensed through interaction with membrane bound chemosensors. These proteins can interact with a very specific set of chemicals and the concentrations they are able to sense are in the range between 10-⁶ and 10-² M. However, experiments have shown that the osmotic pressure exerted by large (> 10-¹ M) concentrations of solutes, which have no specificity for binding to chemosensors (e.g. sucrose), is able to send a signal down the chemotactic network. Additionally, clearing of bacterial density away from sources of high osmolarity has been previously observed in experiments with agar plates. This behaviour has been termed osmotaxis. The aim of this doctoral thesis work is to understand how different environmental cues influence the tactic response and ultimately, combine at the network output to direct bacterial swimming. As tactic responses to chemical stimuli have been extensively studied, I focus purely on the response to non-specific osmotic stimuli, using sucrose to elevate osmolarity. I monitor the chemotactic network output, the rotation of a single bacterial flagellar motor, using Back Focal Plane Interferometry over a variety of osmotic conditions. Additionally, in collaboration with Vincent Martinez, I studied the effect of elevated osmolality on swimming speed of large (104) bacterial populations, using differential dynamic microscopy (DDM). I have found that sudden increases in media osmolarity lead to changes of both motor speed and motor clockwise bias, which is the fraction of time it spends rotating clockwise. Changes in CW Bias proceed in two phases. Initially, after elevating the osmolarity, CW Bias drops to zero, indicating that the motor is exclusively in the ‘cell run’ mode. This phase lasts from 2-5 minutes depending on the magnitude of the change in solute concentration. What follows then is a distinct second phase where the CW Bias is elevated with respect to the initial levels and this phase lasts longer than 15-20 minutes. In comparison, for defined chemical stimuli, the motor output resets after several seconds, a behaviour termed perfect adaptation. For changes of 100 mOsm/kg and 200 mOsm/kg in magnitude the motors speed up, often by as much as a factor of two, before experiencing a gradual slow down. Despite the slow down, motors still rotate faster 15-20 minutes after the change in osmolarity, than they did before. For changes of 400 mOsm/Kg in magnitude the motors decrease sharply in speed, coming to a near halt, recovering after 5 minutes and eventually, on average, speeding up. DDM studies of free swimming bacteria have shown that elevated osmolality leads to higher swimming speeds, in agreement with single motor data. Using theoretical models of bacterial swimming from the literature, it is discussed how this motor output, although different to what is expected for chemotaxis, is able to drive bacteria away from regions of space with high osmolalities. Additionally, I have started extending the work done with sucrose, to another solute often used to elevate osmolality, sodium chloride. While sucrose is outer membrane impermeable, NaCl can cross the outer membrane into the periplasmic space. Another layer of complexity is that NaCl has some specificty for the chemoreceptors. The preliminary results are shown and qualitatively agree with those obtain with sucrose.
5
Rosser, Tracy. "Pathogenic potential of Escherichia coli O26 and sorbitol-fermenting Escherichia coli O157:NM." Electronic Thesis or Dissertation, University of Edinburgh, 2010. http://hdl.handle.net/1842/4427.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Verocytotoxin-producing Escherichia coli (VTEC) are important human pathogens that may cause diarrhoea, haemorrhagic colitis and haemolytic uremic syndrome (HUS). Worldwide, non-sorbitol-fermenting (NSF) VTEC O157:H7 is the most common serogroup associated with HUS but several non-O157:H7 serogroups have emerged as causes of this disease. This research investigated the pathogenic potential of two non-O157:H7 serogroups: O26 and sorbitol-fermenting (SF) O157:NM. While VTEC O26 have emerged as a significant cause of HUS in continental Europe, human infections associated with this pathogen are uncommon in Scotland and generally only result in simple diarrhoea. The study characterised E. coli O26 isolates recovered from human infections in Europe and Scotland and isolates collected from Scottish cattle with the objectives to identify factors which may allow strains to cause more serious clinical disease and to investigate the potential of bovine VTEC O26 in Scotland to cause human infection. MLST analysis of housekeeping genes found little genetic variation in the genomic ‘backbone’ among the vast majority of E. coli O26 isolates. The gene for verocytotoxin 2 (vtx2) alone was carried by VTEC O26 isolates recovered from patients in continental Europe but was found in no Scottish human isolate, where the majority of isolates did not harbour a vtx gene. It was demonstrated that among the European VTEC O26 human isolates, 67% carried a specific allele within the promoter region for LEE1 and 87% harboured the tccP2 gene. In contrast, no Scottish VTEC O26 human isolate carried this allele or the tccP2 gene. The impact these genotypic characteristics have on the pathogenic potential of a strain remains uncertain. There were no clear differences in verocytotoxin titres, levels of LEEencoded protein secretion or levels of adherence to Caco-2 cells between VTEC O26 isolates recovered from human infections of varying severity. However, levels of LEE-encoded protein secretion from cattle isolates were generally higher than those from many of the human isolates. The differences in pathogenic potential between isolates are likely to be due to horizontally acquired DNA, including vtx2 carriage and the O-island-phage-associated effector protein repertoire. Further work is required to determine if the differences identified may also impact on shedding levels from cattle and therefore the likelihood of transmission to humans. Since 1988, SF VTEC O157:NM strains have emerged and have been associated with a higher incidence of progression to HUS than NSF VTEC O157:H7. This study investigated bacterial factors that may account for the increased pathogenic potential of SF VTEC O157:NM. While no evidence of toxin or toxin expression differences between the two VTEC O157 groups was found, the SF VTEC O157:NM strains adhered at significantly higher levels to a human colonic cell line. Under the conditions tested, curli were shown to be the main factor responsible for the increased adherence to Caco-2 cells. The capacity of SF VTEC O157:NM strains to express curli at 37C may have relevance to the epidemiology of human infections as curliated strains could promote higher levels of colonization and inflammation in the human intestine. In turn this could lead to increased toxin exposure and an increased likelihood of progression to HUS.
6
Wu, Gilbert Kar Po. "Signal transduction responses to enteropathogenic Escherichia coli and Shiga toxin-producing Escherichia coli infections." Electronic thesis or dissertation, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape7/PQDD_0007/MQ46054.pdf.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Zundel, Michael. "Ribosome Degradation in Escherichia coli." Text, Scholarly Repository, 2009. http://scholarlyrepository.miami.edu/oa_dissertations/152.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Upon termination of translation, the fate of ribosomes is determined largely by the rate at which cells are growing. During periods of exponential growth, ribosomes are rapidly recycled, translation is re-initiated, and the ribosomes are extremely stable. However, when nutrient sources become limiting, and ribosomes are not actively translating, they may become substrates for degradation. While this phenomenon is well known, details of how the process is initiated and what are the signals for degradation have, until now, remained elusive. Here, I present in vitro and in vivo data showing that free ribosome subunits are the targets of degradative enzymes, whereas 70S particles that remain associated are protected from such degradation. Conditions that increase the formation of subunits both in vitro and in vivo lead to enhanced degradation. Thus, the simple presence of free 50S and 30S subunits is sufficient to serve as the mechanism that initiates ribosome degradation. In order to identify RNases involved in ribosome degradation, both in vitro and in vivo assays were developed. Together, they have provided evidence for a multi-step degradation process involving both endo- and exoribonucleases. Examination of extracts from strains deficient in known RNases revealed that the endoribonucleases, RNase E and RNase G, may be involved in the initial cleavages. The resulting fragments, some of which are small enough oligoribonucleotides that they remain part of the acid-soluble fraction are degraded to mononucleotides primarily by the 3'-5' exoribonucleases, RNase R and polynucleotide phosphorylase.
8
Champion, Matthew Maurice. "Functional proteomics in Escherichia coli." Book, Texas A&M University, 2004. http://hdl.handle.net/1969.1/3194.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cells respond to their environment with programmed changes in gene expression. Cataloging these changes at the protein level is key towards understanding the physiology of an organism. Multi-subunit and multi-protein complexes are also important and pathogenic and physiologic processes. In order to identify expressed proteins and potential protein complexes, we utilized a combination of non-denaturing chromatography and peptide mass fingerprinting. This approach allows us to identify the components of protein mixtures, as well as information lost in traditional proteomics, such as subunit associations. Applying this methodology to cells at both mid-exponential and stationary phase growth conditions, we identified several thousand proteins from each cell-state of E. coli corresponding to hundreds of unique gene products. The copurification of proteins when fractionated at varying pHs could suggest the components of higher order complexes. This non-denaturing proteomic approach should provide physiological data unavailable by other means. The components of several known cellular complexes were also evident in this analysis. To characterize proteins associated with nucleic acid binding, we also performed proteome analysis on log and stationary phase cells grown in LB separated over heparin chromatography at neutral pH, which enriches for these proteins. The complete analysis of these identifications is discussed.
9
Skoog, Karl. "Cell division in Escherichia coli." Doctoral thesis, comprehensive summary, Stockholms universitet, Institutionen för biokemi och biofysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-62908.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Gram-negative bacterium Escherichia coli is a model system to describe the biochemistry and cell biology of cell division in bacteria. This process can be divided into three major steps. The first step involves the replication of the DNA, followed by an elongation step in which the cells become twice as long. In the last step the elongated cell constricts in the middle and the two daughter cells are separated. The cell division process in E. coli has been extensively studied for at least 50 years and a lot is known, however many details are still vague. New proteins involved in the process continue to be identified and the number of these proteins as well as the interactions among them are not yet fully known. It is therefore not completely understood how the contraction proceeds to form two daughter cells. In this thesis, I have carried out experiments that contribute to our understanding of cell division in E. coli. Using fluorescence microscopy I show that the contraction of the inner membrane in dividing E. coli proceeds in a linear fashion and that the periplasm closes after the cytoplasm. I have also analyzed the oligomeric state of two proteins involved in the cell division and I show that the early cell division protein ZipA can dimerize. This could explain how this protein can bundle FtsZ protofilaments, as it could bridge two protofilaments. Penicillin-binding protein 5 (PBP5) has been found to localize to the septum and it has been suggested to be connected to cell division. I have found that PBP5 forms a homo-oligomeric complex, most likely a dimer. The dimer can be modeled in a back-to-back conformation with the catalytic domains being flexible. This allows PBP5 to reach for pentapeptides of the peptidoglycan at different distances from the membrane. An understanding of the mechanisms used by the cell division proteins and their protein: protein interactions can be a first step towards determining new antibiotic targets.
At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 4: Manuscript.
10
Robertson, Fiona E. "Starvation-survival in Escherichia coli." Electronic Thesis or Dissertation, University of Warwick, 1996. http://wrap.warwick.ac.uk/63636/.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The population dynamics of carbon-starved E. coli K12 cultures was investigated. It was found that less cell lysis occurred when cells were previously grown in low glucose concentrations. Exponential-phase cells grown previously in 0.05% (w/v) glucose had survival rates comparable with their stationary-phase counterparts, suggesting that the rate of growth is more important in determining the outcome of starvation than the phase of batch culture growth. Long-termstarved cells (18-24 months) showed very little protein, DNA and RNA synthesis. Methionine was shown to alter the de novo synthesis protein profiles of longterm- starved cells and growth was seen to occur in the presence of methionine. This suggests that radio-labelling of proteins with 35S-methionine in these cells should be interpreted with care as the cells have been subjected to a nutrient upshift. Radio-labelling of proteins with 3H-leucine did not have the same effect. The ATP content of cells during prolonged incubation was shown to decrease in the first 48 hours incubation, increase until 5-7 days incubation then decrease after 7-8 days. After 13 days a slow, steady increase occurred. The ATP content of cells incubated for 16 days was higher than that of 48 hour-incubated cells. The physiology of long-term-starved cells was investigated with respect to their permeability to routine bacteriological stains ( e.g. DAPI, saffranin, Geimsa) and it was found that very few of these dyes were able to penetrate the cells, indicating that a decrease in cell permeability may be an important factor in survival as is seen in endospores of Bacillus species and swarmer cells of Rhodomicrobium vannielii and Caulobacter crescentus. Resistance of long-term starved cells to heat and biocide challenge was increased in comparison with exponential- and short-term (48 hour) stationary-phase cells and the resistance to biocides was shown to be retained through subsequent generations. Examination of the nucleoids of long-term-starved cells revealed that a more condensed form was present in cultures incubated for over 14 days, suggesting that dehydration of the DNA had occurred, similar to the situation found in endospores of Bacillus species and suggestive of dormancy. Analysis of outer-membrane proteins and lipopolysaccharide of long-term-starved cells showed that alterations occurred to the surface of the cells and it was demonstrated that hydrophobicity changes occurred. Hydrophobicity reached a maximum after 48 hours incubation then subsequently declined between days 2 and 3 which corresponded with an increase in cell numbers. Cell surface hydrophobicity was shown to be a potential method for separating heterogeneous, carbon-starved populations into homogeneous subpopulations. The data suggest that E. coli produces a dormant survival cell type which is morphologically and physiologically distinct from the parent cell.

Книги з теми "Escherichia coli Inclusions":

1
Wiwanitkit, Viroj. Escherichia coli Infections. North Charleston: CreateSpace Independent Publishing Platform, 2011.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Miller, Ellen Kay. Escherichia coli O157. Beltsville, Md: National Agricultural Library, 1993.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Manning, Shannon D. Escherichia coli infections. 2nd ed. New York: Chelsea House, 2010.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Miller, Ellen Kay. Escherichia coli O157. Beltsville, Md: National Agricultural Library, 1992.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Manning, Shannon D. Escherichia coli infections. Philadelphia: Chelsea House, 2005.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Manning, Shannon D. Escherichia coli infections. 2nd ed. New York: Chelsea House, 2010.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
McPartland, Randall. E. coli. New York: Cavendish Square, 2016.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Fox, Sian L. Verocytotoxin expression in Escherichia coli. [s.l.]: typescript, 1992.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Smith-Keary, P. F. Genetic elements in Escherichia Coli. Basingstoke: Macmillan Education, 1988.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Beck, Stephan. Z-DNA aus Escherichia-Coli. Konstanz: Hartung-Gorre, 1985.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Автореферати дисертацій з теми "Escherichia coli Inclusions":

1
Макаров, Е. М. "Взаимодействие диацилированной тРНК с рибосомами Escherichia Coli". Автореф. дис. канд. біол. наук, АН УССР, Ин-т молек. биол. и генет., 1986.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Окунев, О. В. "Клонирование генов лизинового оперона Bacillus Subtilis в клетках Escherichia Coli". Автореф. дис. канд. біол. наук, Ин-т молекул. биол.и генет., 1985.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Ніжельська, О. І. "Дія надвисокочастотного електромагнітного випромінювання на культури дріжджів Saccharomyces cerevisiae, бактерій Escherichia coli і водорості Dunaliella viridis". Автореф. дис. канд. біол. наук, КНУТШ, 2008.
Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Escherichia coli Inclusions":

1
Rabinowitz, Ronald P., and Michael S. Donnenberg. "Escherichia coli." In Infectious Agents and Pathogenesis, 101–31. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-0313-6_6.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Feng, Peter. "Escherichia Coli." In Guide to Foodborne Pathogens, 222–40. Oxford: John Wiley & Sons, 2013. http://dx.doi.org/10.1002/9781118684856.ch14.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Gyles, C. L., and J. M. Fairbrother. "Escherichia Coli." In Pathogenesis of Bacterial Infections in Animals, 267–308. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9780470958209.ch15.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Altenbuchner, Josef, and Ralf Mattes. "Escherichia coli." In Production of Recombinant Proteins, 7–43. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527603670.ch2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Weinstock, George M. "Escherichia coli." In Bacterial Genomes, 651–53. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-6369-3_60.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Bhunia, Arun K. "Escherichia coli." In Foodborne Microbial Pathogens, 249–69. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7349-1_14.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Pitout, Johann D. D. "Escherichia Coli." In Molecular Techniques for the Study of Hospital-Acquired Infection, 179–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118063842.ch11.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Ullmann, Uwe. "Escherichia coli." In Lexikon der Infektionskrankheiten des Menschen, 297–300. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-39026-8_334.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Coia, John, and Heather Cubie. "Escherichia coli." In The Immunoassay Kit Directory, 757–61. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-009-0359-3_16.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Schultz, Michael. "Escherichia coli." In Therapeutic Microbiology, 83–96. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555815462.ch7.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Escherichia coli Inclusions":

1
Xiao Liang and Xiao Liang. "Method To Partition Between Freely Suspended Escherichia coli and Escherichia coli attached to clay particles." In 2012 Dallas, Texas, July 29 - August 1, 2012. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2012. http://dx.doi.org/10.13031/2013.41852.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Freire, Higor, Larissa Gomes, Jose de Carvalho, Francilayne Barbosa, and Diego Pereira. "Escherichia Coli Diarreiogeníca: uma Revisão Literária." In XXI I Congresso Brasileiro de Nutrologia. Thieme Revinter Publicações Ltda, 2018. http://dx.doi.org/10.1055/s-0038-1674671.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Balaev, Aleksei E., K. N. Dvoretski, and Valeri A. Doubrovski. "Refractive index of escherichia coli cells." In Saratov Fall Meeting 2001, edited by Valery V. Tuchin. SPIE, 2002. http://dx.doi.org/10.1117/12.475627.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Sahlan, Muhamad, Ihsan Wiratama, Heri Hermansyah, Anondho Wijarnako, Mohamad Teguh Gumelar, and Masafumi Yohda. "Apoptin gene optimization in Escherichia coli." In SECOND INTERNATIONAL CONFERENCE OF MATHEMATICS (SICME2019). Author(s), 2019. http://dx.doi.org/10.1063/1.5096733.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Hirayama, Kayoko, Yun Jung Heo, and Shoji Takeuchi. "Formation of cross-shaped Escherichia coli." In 2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2014. http://dx.doi.org/10.1109/memsys.2014.6765602.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Zeljkovic, V., C. Drazgalski, and P. Mayorga. "Algorithmic escherichia coli bacteria incidence evaluation." In 2018 Global Medical Engineering Physics Exchanges/Pan American Health Care Exchanges (GMEPE/PAHCE). IEEE, 2018. http://dx.doi.org/10.1109/gmepe-pahce.2018.8400732.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Rastogi, Vivek, Rahul Gadkari, Shilpi Agarwal, Satish K. Dubey, and Chandra Shakher. "Digital holographic interferometric in vitro imaging of Escherichia coli (E. coli) bacteria." In Holography: Advances and Modern Trends, edited by Antonio Fimia, Miroslav Hrabovský, and John T. Sheridan. SPIE, 2019. http://dx.doi.org/10.1117/12.2520881.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Martin, T., and C. Paul. "Induced Polarisation (IP) Laboratory Measurements on Escherichia Coli (E. Coli)-Sand Mixtures." In 25th European Meeting of Environmental and Engineering Geophysics. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902481.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Li, Yu, Dong-jun Kong, Fu-ping Lu, Tao Niu, Hong-hong Jia, and Ke He. "Synthesis of GDP-Mannose in Recombinant Escherichia coli." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5517296.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
He, Hua-gang, Chun-du Wu, Ke-hui Hou, Shan-ying Zhu, Cheng-wu Yi, and Jin-yu Chu. "Killing of Escherichia coli by Exogenous Hydroxyl Radicals." In 2010 4th International Conference on Bioinformatics and Biomedical Engineering (iCBBE 2010). IEEE, 2010. http://dx.doi.org/10.1109/icbbe.2010.5516413.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Escherichia coli Inclusions":

1
Acott, Jedidiah. Interstrand Crosslink Resistance in Escherichia Coli. Portland State University, May 2018. http://dx.doi.org/10.15760/mem.1.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2
Clark, D. P. Regulation of alcohol fermentation by Escherichia coli. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/7206403.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3
Clark, D. P. Regulation of alcohol fermentation by Escherichia coli. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/7279319.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4
Flowers, Ann M. Secretion of Heterologous Proteins from Escherichia coli. Fort Belvoir, VA: Defense Technical Information Center, December 2000. http://dx.doi.org/10.21236/ada391190.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5
Dr. David Nunn. Improvements In Ethanologenic Escherichia Coli and Klebsiella Oxytoca. Office of Scientific and Technical Information (OSTI), September 2010. http://dx.doi.org/10.2172/992134.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6
Mingorance, Jesús. Escherichia coli O104:H4, ¿es nueva la "nueva bacteria"? Sociedad Española de Bioquímica y Biología Molecular (SEBBM), July 2011. http://dx.doi.org/10.18567/sebbmdiv_rpc.2011.07.2.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7
Baehr, A., G. Dunham, Hideo Matsuda, G. Michaels, R. Taylor, R. Overbeek, K. E. Rudd, et al. An integrated database to support research on Escherichia coli. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/5865388.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8
Wendel, Brian. Completion of DNA Replication in Escherichia coli. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.6290.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9
Baehr, A., G. Dunham, Hideo Matsuda, G. Michaels, R. Taylor, R. Overbeek, K. E. Rudd, et al. An integrated database to support research on Escherichia coli. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/10122295.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10
Rabinowitz, Joshua D., Ned S. Wingreen, Herschel A. Rabitz, and Yifan Xu. Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli. Fort Belvoir, VA: Defense Technical Information Center, October 2012. http://dx.doi.org/10.21236/ada575710.
Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії

Будь ласка, вимкніть ваш блокувальник реклами

Adblock logo Adblock logo Adblock logo

"Grafiati" – це незалежний сервіс, що забезпечує унікальну якість оформлення бібліографічних посилань. Ви можете користуватися нашим сайтом безоплатно, дозволивши показ реклами, або оформити передплату.

Передплатити