Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Fermion familie.

Статті в журналах з теми "Fermion familie"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Fermion familie".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

GUENDELMAN, E. I., and A. B. KAGANOVICH. "DARK ENERGY, DARK MATTER AND FERMION FAMILIES IN THE TWO MEASURES THEORY." International Journal of Modern Physics A 19, no. 31 (2004): 5325–32. http://dx.doi.org/10.1142/s0217751x04022542.

Повний текст джерела
Анотація:
A field theory is proposed where the regular fermionic matter and the dark fermionic matter are different states of the same "primordial" fermion fields. In regime of the fermion densities typical for normal particle physics, each of the primordial fermions splits into three generations identified with regular fermions. In a simple model, this fermion families birth effect is accompanied with the right lepton numbers conservation laws. It is possible to fit the muon to electron mass ratio without fine tuning of the Yukawa coupling constants. When fermion energy density becomes comparable with
Стилі APA, Harvard, Vancouver, ISO та ін.
2

GUENDELMAN, E. I., and A. B. KAGANOVICH. "NEW PHYSICS AT LOW ENERGIES AND DARK MATTER-DARK ENERGY TRANSMUTATION." International Journal of Modern Physics A 20, no. 06 (2005): 1140–47. http://dx.doi.org/10.1142/s0217751x05024018.

Повний текст джерела
Анотація:
A field theory is proposed where the regular fermionic matter and the dark fermionic matter can be different states of the same "primordial" fermion fields. In regime of the fermion densities typical for normal particle physics, the primordial fermions split into three families identified with regular fermions. When fermion energy density becomes comparable with dark energy density, the theory allows transition to new type of states. The possibility of such Cosmo-Low Energy Physics (CLEP) states is demonstrated by means of solutions of the field theory equations describing FRW universe filled
Стилі APA, Harvard, Vancouver, ISO та ін.
3

GUENDELMAN, E. I., and A. B. KAGANOVICH. "GEOMETRICAL ORIGIN OF FERMION FAMILIES IN SU(2) × U(1) GAUGE THEORY." Modern Physics Letters A 17, no. 19 (2002): 1227–37. http://dx.doi.org/10.1142/s0217732302007351.

Повний текст джерела
Анотація:
A spontaneously broken SU (2) × U (1) gauge theory with just one "primordial" generation of fermions is formulated in the context of generally covariant theory which contains two measures of integration in the action: the standard [Formula: see text] and a new Φd4x, where Φ is a density built out of degrees of freedom independent of the metric. Such type of models are known to produce a satisfactory answer to the cosmological constant problem. Global scale invariance is implemented. After SSB of scale invariance and gauge symmetry it is found that with the conditions appropriate to laboratory
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bernardini, Alex E., and Roldão da Rocha. "Matter Localization on Brane-Worlds Generated by Deformed Defects." Advances in High Energy Physics 2016 (2016): 1–10. http://dx.doi.org/10.1155/2016/3650632.

Повний текст джерела
Анотація:
Localization and mass spectrum of bosonic and fermionic matter fields of some novel families of asymmetric thick brane configurations generated by deformed defects are investigated. The localization profiles of spin 0, spin 1/2, and spin 1 bulk fields are identified for novel matter field potentials supported by thick branes with internal structures. The condition for localization is constrained by the brane thickness of each model such that thickest branes strongly induce matter localization. The bulk mass terms for both fermion and boson fields are included in the global action as to produce
Стилі APA, Harvard, Vancouver, ISO та ін.
5

GUENDELMAN, E. I., and A. B. KAGANOVICH. "FERMION FAMILIES AND LONG-RANGE FORCE PROBLEMS: INTERRELATION AND RESOLUTION." International Journal of Modern Physics D 11, no. 10 (2002): 1591–95. http://dx.doi.org/10.1142/s0218271802002943.

Повний текст джерела
Анотація:
We study a generally covariant model with SSB of scale invariance where two measures of integration in the action enter: the standard [Formula: see text] and a new Φd4x, where Φ is a density built out of degrees of freedom independent of the metric. Under normal laboratory conditions where the fermionic matter dominates, it is found that starting from a single fermionic field we obtain exactly three different types of spin 1/2 particles which can be identified with known fermion families. It is automatically achieved that for two of them, fermion masses are constants, the energy-momentum tenso
Стилі APA, Harvard, Vancouver, ISO та ін.
6

DOFF, A., and F. PISANO. "CHARGE QUANTIZATION IN THE LARGEST LEPTOQUARK–BILEPTON CHIRAL ELECTROWEAK SCHEME." Modern Physics Letters A 14, no. 17 (1999): 1133–42. http://dx.doi.org/10.1142/s0217732399001218.

Повний текст джерела
Анотація:
The uniqueness of the hypercharge assignments in the three-fermion families leptoquark–bilepton SU (3)C× SU (4)L× U (1)N model is established. Although the gauge group contains an explicit U(1) factor, freedom from triangle anomalies combined with the requirement of nonvanishing charged fermion masses uniquely fix the electric charges of all fermions independently of the neutrinos being massless or not. The electric-charge quantization, flavor family replication, and the existence of three colors are interwoven.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Beylin, Vitaly A., Maxim Yu Khlopov, and Danila O. Sopin. "Charge Asymmetry of New Stable Families in Baryon Asymmetrical Universe." Symmetry 15, no. 3 (2023): 657. http://dx.doi.org/10.3390/sym15030657.

Повний текст джерела
Анотація:
The new stable fermion family, with Standard Model electroweak (EW) charges, should take part in sphaleron transitions in the early Universe before breaking of the EW symmetry. The conditions of balance between the excess of new fermions (additional generation of new superheavy U, D quarks and new E, N leptons) and baryon asymmetry, were considered at temperatures above, and below, the phase transition, using a system of equations for chemical potentials.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Adler, Stephen L. "SU(8) family unification with boson–fermion balance." International Journal of Modern Physics A 29, no. 22 (2014): 1450130. http://dx.doi.org/10.1142/s0217751x14501309.

Повний текст джерела
Анотація:
We formulate an SU(8) family unification model motivated by requiring that the theory should incorporate the graviton, gravitinos, and the fermions and gauge fields of the standard model, with boson–fermion balance. Gauge field SU(8) anomalies cancel between the gravitinos and spin ½ fermions. The 56 of scalars breaks SU(8) to SU(3) family × SU(5) × U(1)/Z5, with the fermion representation content needed for "flipped" SU(5) with three families, and with residual scalars in the 10 and [Formula: see text] representations that break flipped SU(5) to the standard model. Dynamical symmetry breaking
Стилі APA, Harvard, Vancouver, ISO та ін.
9

GUENDELMAN, E. I., and A. B. KAGANOVICH. "QUINTESSENTIAL POTENTIAL, FERMION FAMILIES AND SPONTANEOUS BREAKING OF SCALE SYMMETRY." International Journal of Modern Physics A 17, no. 29 (2002): 4419–24. http://dx.doi.org/10.1142/s0217751x02013496.

Повний текст джерела
Анотація:
We study a generally covariant model with SSB of scale invariance where two measures of integration in the action enter: the standard [Formula: see text] and a new Φd4x, where Φ is a density built out of degrees of freedom independent of the metric. The theory demonstrates a new mechanism for generation of the exponential potential: in the conformal Einstein frame, after SSB of scale invariance, the theory develops the exponential potential and, in general, non-linear kinetic term is generated as well. The scale symmetry does not allow the appearance of terms breaking the exponential shape of
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abbas, Gauhar. "Solving the fermionic mass hierarchy of the Standard Model." International Journal of Modern Physics A 34, no. 20 (2019): 1950104. http://dx.doi.org/10.1142/s0217751x19501045.

Повний текст джерела
Анотація:
We show that a simultaneous explanation for fermionic mass hierarchy among and within the fermionic families, quark-mixing, can be obtained in an extension of the Standard Model, with real singlet scalar fields, which are UV completed by vector-like fermions and a strongly interacting sector.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Mankoč Borštnik, N. S. "Do we understand the internal spaces of second quantized fermion and boson fields, with gravity included?" Journal of Physics: Conference Series 2987, no. 1 (2025): 012008. https://doi.org/10.1088/1742-6596/2987/1/012008.

Повний текст джерела
Анотація:
Abstract In this paper, the internal spaces of all fermion and boson second quantized fields, with gravity included, are described by “basis vectors” which are the superposition of odd (for fermions) and even (for bosons) products of the operators γa . For an arbitrarily chosen symmetry SO(d − 1, 1) of the internal spaces, it is the number of “basis vectors” of fermion fields (appearing in families) equal to the number of “basis vectors” of boson fields, manifesting a kind of supersymmetry. On the assumption that fermions and bosons are active (they have momenta different from zero) only in d
Стилі APA, Harvard, Vancouver, ISO та ін.
12

PALCU, ADRIAN. "NEUTRAL CURRENTS IN ASU(4)L⊗U(1)YGAUGE MODEL WITH EXOTIC ELECTRIC CHARGES." Modern Physics Letters A 24, no. 27 (2009): 2175–80. http://dx.doi.org/10.1142/s0217732309031508.

Повний текст джерела
Анотація:
The weak currents with respect to the diagonal neutral bosons Z, Z′ and Z′′of a specific SU (4)L⊗ U (1)Ygauge model are computed in detail for all the fermion families involved therein. Our algebraical approach, which is based on the general method of solving gauge models with high symmetries proposed several years ago by Cotăescu, recovers in a nontrivial way all the Standard Model values for current couplings of the traditional leptons and quarks, and predicts plausible values for those of the exotic fermions in the model.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Delbourgo, R., PD Jarvis, and RC Warner. "Models for Fermion Generations based on Five Fermionic Coordinates." Australian Journal of Physics 44, no. 3 (1991): 135. http://dx.doi.org/10.1071/ph910135.

Повний текст джерела
Анотація:
We show that a limited range of options for fermion families may be neatly encompassed in a spacetime augmented by five Grassmann internal coordinates if we require that the superfields are self-dual in an 5U(5) sense. Amongst the possibilities is a family of just three standard model generations. We consider the nature of Higgs fields in this formalism and the form of possible gauge symmetries.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Daas, Jesse, Wouter Oosters, Frank Saueressig, and Jian Wang. "Asymptotically Safe Gravity-Fermion Systems on Curved Backgrounds." Universe 7, no. 8 (2021): 306. http://dx.doi.org/10.3390/universe7080306.

Повний текст джерела
Анотація:
We set up a consistent background field formalism for studying the renormalization group (RG) flow of gravity coupled to Nf Dirac fermions on maximally symmetric backgrounds. Based on Wetterich’s equation, we perform a detailed study of the resulting fixed point structure in a projection including the Einstein–Hilbert action, the fermion anomalous dimension, and a specific coupling of the fermion bilinears to the spacetime curvature. The latter constitutes a mass-type term that breaks chiral symmetry explicitly. Our analysis identified two infinite families of interacting RG fixed points, whic
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Roque, Armando A., and L. Arturo Ureña-López. "Horndeski fermion–boson stars." Classical and Quantum Gravity 39, no. 4 (2022): 044001. http://dx.doi.org/10.1088/1361-6382/ac4614.

Повний текст джерела
Анотація:
Abstract We establish the existence of static and spherically symmetric fermion–boson stars, in a low energy effective model of (beyond) Horndeski theories. These stars are in equilibrium, and are composed by a mixing of scalar and fermionic matters that only interact gravitationally one with each other. Properties such as mass, radius, and compactness are studied, highlighting the existence of two families of configurations defined by the parameter c 4. These families have distinctive properties, although in certain limits both are reduced to their counterparts in general relativity (GR). Fin
Стилі APA, Harvard, Vancouver, ISO та ін.
16

MASLIKOV, A. A., S. M. SERGEEV, and G. G. VOLKOV. "STRING-MOTIVATED GRAND UNIFIED THEORIES WITH HORIZONTAL GAUGE SYMMETRY." International Journal of Modern Physics A 09, no. 30 (1994): 5369–85. http://dx.doi.org/10.1142/s0217751x94002156.

Повний текст джерела
Анотація:
In the framework of four-dimensional heterotic superstring with free fermions, we investigate the rank 8 grand unified string theories (GUST’s) which contain the SU(3) H gauge family symmetry. GUST’s of this type accommodate naturally the three fermion families presently observed and, moreover, can describe the fermion mass spectrum without high-dimensional representations of conventional unification groups. We explicitly construct GUST’s with gauge symmetry G= SU(5) × U(1) ×[ SU(3) × U(1) ]H ⊂ SO (16) in free complex fermion formulation. As the GUST’s originating from Kac-Moody algebras (KMA’
Стилі APA, Harvard, Vancouver, ISO та ін.
17

OKUN, L. B. "Fermion Families: Conference Summary." Annals of the New York Academy of Sciences 578, no. 1 The Fourth Fa (1989): 306–8. http://dx.doi.org/10.1111/j.1749-6632.1989.tb50622.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

JOHNSON, CLIFFORD V. "HETEROTIC COSET MODELS." Modern Physics Letters A 10, no. 07 (1995): 549–59. http://dx.doi.org/10.1142/s0217732395000582.

Повний текст джерела
Анотація:
A description is given on how to construct (0, 2) supersymmetric conformal field theories as coset models. These models may be used as non-trivial backgrounds for heterotic string theory. They are realized as a combination of an anomalously gauged Wess–Zumino–Witten model, right-moving supersymmetric fermions, and left-moving current algebra fermions. Requiring the sum of the gauge anomalies from the bosonic and fermionic sectors to cancel yields the final model. Applications discussed include exact models of extremal four-dimensional charged black holes and Taub–NUT solutions of string theory
Стилі APA, Harvard, Vancouver, ISO та ін.
19

BABU, K. S., та JOGESH C. PATI. "PROBING VECTORLIKE FAMILIES IN ESSM/SO(10) THROUGH NEUTRINO COUNTING, HIGGS MASS AND ν–N SCATTERING". International Journal of Modern Physics A 20, № 28 (2005): 6403–36. http://dx.doi.org/10.1142/s0217751x05019981.

Повний текст джерела
Анотація:
The Extended Supersymmetric Standard Model (ESSM), motivated on several grounds, introduces two vectorlike families [[Formula: see text] of SO (10)] with masses of order 1 TeV. In an earlier work, a successful pattern for fermion masses and mixings (to be called pattern I) has been proposed within a unified SO (10)-framework, based on MSSM, which makes seven predictions, in good accord with observations, including Vcb ≈ 0.04, and sin 2 2θνμντ ≈ 1. Extension of this framework to ESSM, preserving the successes of pattern I, has recently been proposed, where it was noted that ESSM can provide a s
Стилі APA, Harvard, Vancouver, ISO та ін.
20

GUENDELMAN, E. I., and A. B. KAGANOVICH. "SSB OF SCALE SYMMETRY, FERMION FAMILIES AND QUINTESSENCE WITHOUT THE LONG-RANGE FORCE PROBLEM." International Journal of Modern Physics A 17, no. 03 (2002): 417–33. http://dx.doi.org/10.1142/s0217751x02005736.

Повний текст джерела
Анотація:
We study a scale-invariant two measures theory where a dilaton field ϕ has no explicit potentials. The scale transformations include the translation of a dilaton ϕ→ϕ+ const . The theory demonstrates a new mechanism for generation of the exponential potential: in the conformal Einstein frame (CEF), after SSB of scale invariance, the theory develops the exponential potential and, in general, the nonlinear kinetic term is generated as well. The scale symmetry does not allow the appearance of terms breaking the exponential shape of the potential that solves the problem of the flatness of the scala
Стилі APA, Harvard, Vancouver, ISO та ін.
21

MUÑOZ, CARLOS. "A KIND OF PREDICTION FROM STRING PHENOMENOLOGY: EXTRA MATTER AT LOW ENERGY." Modern Physics Letters A 22, no. 14 (2007): 989–1003. http://dx.doi.org/10.1142/s021773230702347x.

Повний текст джерела
Анотація:
We review the possibility that the Supersymmetric Standard Model arises from orbifold constructions of the E8×E8 Heterotic Superstring, and the phenomenological properties that such a model should have. In particular, trying to solve the discrepancy between the unification scale predicted by the Heterotic Superstring (≈g GUT × 5.27 × 1017 GeV ) and the value deduced from LEP experiments (≈2 × 1016 GeV ), we will predict the presence at low energies of three families of Higgses and vector-like colour triplets. Our approach relies on the Fayet–Iliopoulos breaking, and this is also a crucial ingr
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Montvay, I. "Three mirror pairs of fermion families." Physics Letters B 205, no. 2-3 (1988): 315–20. http://dx.doi.org/10.1016/0370-2693(88)91671-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

KLASSEN, TIMOTHY R., and EZER MELZER. "SINE-GORDON VS. MASSIVE THIRRING." International Journal of Modern Physics A 08, no. 23 (1993): 4131–74. http://dx.doi.org/10.1142/s0217751x93001703.

Повний текст джерела
Анотація:
By viewing the sine-Gordon and massive Thirring models as perturbed conformal field theories, one sees that they are different (the difference being observable, for instance, in finite-volume energy levels). The UV limit of the former (SGM) is a Gaussian model, that of the latter (MTM) a so-called fermionic Gaussian model, the compactification radius of the boson underlying both theories depending on the SG/MT coupling. (These two families of conformal field theories are related by a “twist”.) Corresponding SG and MT models contain a subset of fields with identical correlation functions, but e
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Kauffman, L., and H. Saleur. "FERMIONS AND LINK INVARIANTS." International Journal of Modern Physics A 07, supp01a (1992): 493–532. http://dx.doi.org/10.1142/s0217751x92003914.

Повний текст джерела
Анотація:
This paper deals with various aspects of knot theory when fermionic degrees of freedom are taken into account in the braid group representations and in the state models. We discuss how the Ř matrix for the Alexander polynomial arises from the Fox differential calculus, and how it is related to the quantum group Uqgl(1,1). We investigate new families of solutions of the Yang Baxter equation obtained from "linear" representations of the braid group and exterior algebra. We study state models associated with Uqsl(n,m), and in the case n=m=1 a state model for the multivariable Alexander polynomial
Стилі APA, Harvard, Vancouver, ISO та ін.
25

CARAVAGLIOS, FRANCESCO, and STEFANO MORISI. "GAUGE BOSON FAMILIES IN GRAND UNIFIED THEORIES OF FERMION MASSES: $E_6^4 \rtimes S_4$." International Journal of Modern Physics A 22, no. 14n15 (2007): 2469–91. http://dx.doi.org/10.1142/s0217751x07036646.

Повний текст джерела
Анотація:
In third quantization the origin of fermion families is easy to understand: the electron field, the muon field and the tau field are identical fields in precisely the same sense as three electrons are identical and indistinguishable particles of a theory of second quantization. In both cases, the permutation of these fields or particles leaves the Lagrangian invariant. One can also extend the concept of family to gauge bosons. This can be obtained through the semidirect product of the gauge group with the group of permutations of n objects. In this paper we have studied the group [Formula: see
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Erdem, R. "Fermion families and chirality through extra dimensions." European Physical Journal C 25, no. 4 (2002): 623–28. http://dx.doi.org/10.1140/epjc/s2002-01037-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Evans, Nick. "Additional fermion families and precision electroweak data." Physics Letters B 340, no. 1-2 (1994): 81–85. http://dx.doi.org/10.1016/0370-2693(94)91301-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Guo, Zhi-qiang, and Bo-Qiang Ma. "Fermion families from two layer warped extra dimensions." Journal of High Energy Physics 2008, no. 08 (2008): 065. http://dx.doi.org/10.1088/1126-6708/2008/08/065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Bars, Itzhak, and Matt Visser. "Number of massless fermion families in superstring theory." Physics Letters B 163, no. 1-4 (1985): 118–22. http://dx.doi.org/10.1016/0370-2693(85)90204-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Kim, Jihn E. "Grand unification models from SO(32) heterotic string." International Journal of Modern Physics A 35, no. 32 (2020): 2050198. http://dx.doi.org/10.1142/s0217751x20501985.

Повний текст джерела
Анотація:
Grand unification groups (GUTs) are constructed from SO(32) heterotic string via [Formula: see text] orbifold compactification. So far, most phenomenological studies from string compactification relied on [Formula: see text] heterotic string, and this invites the SO(32) heterotic string very useful for future phenomenological studies. Here, spontaneous symmetry breaking is achieved by Higgsing of the antisymmetric tensor representations of SU[Formula: see text]. The anti-SU[Formula: see text] presented in this paper is a completely different class from the flipped-SU[Formula: see text]’s from
Стилі APA, Harvard, Vancouver, ISO та ін.
31

DOFF, A., and F. PISANO. "MINIMAL EXTENDED FLAVOR GROUPS, MATTER FIELDS CHIRAL REPRESENTATIONS, AND THE FLAVOR QUESTION." Modern Physics Letters A 15, no. 22n23 (2000): 1471–80. http://dx.doi.org/10.1142/s021773230000178x.

Повний текст джерела
Анотація:
We show the specific unusual features on chiral gauge anomalies cancellation in the minimal, necessarily 3-3-1, and the largest 3-4-1 weak isospin chiral gauge semisimple group leptoquark–bilepton extensions of the 3-2-1 conventional standard model of nuclear and electromagnetic interactions. In such models a natural answer for the fundamental question of fermion generation replication arises directly from the self-consistency of a local gauge quantum field theory, which constrains the number of the QFD fermion families to the QCD color charges.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Sánchez, Nicolás Medina, and Borivoje Dakić. "Reconstruction of Quantum Particle Statistics: Bosons, Fermions, and Transtatistics." Quantum 8 (September 12, 2024): 1473. http://dx.doi.org/10.22331/q-2024-09-12-1473.

Повний текст джерела
Анотація:
Identical quantum particles exhibit only two types of statistics: bosonic and fermionic. Theoretically, this restriction is commonly established through the symmetrization postulate or (anti)commutation constraints imposed on the algebra of creation and annihilation operators. The physical motivation for these axioms remains poorly understood, leading to various generalizations by modifying the mathematical formalism in somewhat arbitrary ways. In this work, we take an opposing route and classify quantum particle statistics based on operationally well-motivated assumptions. Specifically, we co
Стилі APA, Harvard, Vancouver, ISO та ін.
33

DU, DONGSHENG, and CHUN LIU. "CYCLIC FAMILY SYMMETRY AND LEPTON HIERARCHY IN SUPERSYMMETRY." Modern Physics Letters A 10, no. 25 (1995): 1837–41. http://dx.doi.org/10.1142/s0217732395001976.

Повний текст джерела
Анотація:
A cyclic symmetry among the left-handed doublets of the three families is proposed. This symmetry can naturally result in a realistic hierarchical pattern of the fermion masses within the framework of supersymmetry with nonvanishing sneutrino vacuum expectation values.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Tiezhong, Li. "Extra z bosons, families and heavy fermions." Chinese Physics Letters 6, no. 9 (1989): 385–88. http://dx.doi.org/10.1088/0256-307x/6/9/001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

KHALILOV, V. R., and K. E. LEE. "BOUND FERMION STATES IN A VECTOR 1/r AND AHARONOV–BOHM POTENTIAL IN (2+1) DIMENSIONS." Modern Physics Letters A 26, no. 12 (2011): 865–83. http://dx.doi.org/10.1142/s0217732311035419.

Повний текст джерела
Анотація:
We construct systematically all the self-adjoint Dirac Hamiltonians with a vector 1/r and Aharonov–Bohm potential in (2+1) dimensions with taking into account the fermion spin. Then we find spectra of these self-adjoint Dirac Hamiltonians. There are one-parameter families of the self-adjoint Dirac Hamiltonians selected by physically acceptable boundary conditions. Equations determining spectra of the self-adjoint radial Dirac Hamiltonians are derived for various values of parameters. We show that the lowest fermion state in the considered potential becomes unstable when the effective charge is
Стилі APA, Harvard, Vancouver, ISO та ін.
36

ADLER, STEPHEN L. "FERMION-SECTOR FRUSTRATED SU(4) AS A PREONIC PRECURSOR OF THE STANDARD MODEL." International Journal of Modern Physics A 14, no. 12 (1999): 1911–34. http://dx.doi.org/10.1142/s0217751x99000968.

Повний текст джерела
Анотація:
We give a model for composite quarks and leptons based on the semisimple gauge group SU(4), with the preons in the 10 representation; this choice of gauge gluon and preon multiplets is motivated by the possibility of embedding them in an N=6 supergravity multiplet, with the preons and antipreons both in the 20 of SU(6). Hypercolor singlets are forbidden in the fermionic sector of this theory; we propose that the SU(4) symmetry spontaneously breaks to SU (3)× U (1), with the binding of triality nonzero preons and gluons into composites, and with the formation of a color singlet condensate that
Стилі APA, Harvard, Vancouver, ISO та ін.
37

LI, Da-xi. "String Theory with Three Families of Chiral Fermions." Communications in Theoretical Physics 7, no. 3 (1987): 245–52. http://dx.doi.org/10.1088/0253-6102/7/3/245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

FINKELSTEIN, ROBERT J. "A KNOT MODEL SUGGESTED BY THE STANDARD ELECTROWEAK THEORY." International Journal of Modern Physics A 20, no. 28 (2005): 6487–94. http://dx.doi.org/10.1142/s0217751x05028545.

Повний текст джерела
Анотація:
We attempt to go beyond the standard electroweak theory by replacing SU (2) with its q-deformation: SU q(2). This step introduces new degrees of freedom that we interpret as indicative of nonlocality and as a possible basis for a solitonic model of the elementary particles. The solitons are conjectured to be knotted flux tubes labeled by the irreducible representations of SU q(2), an algebra which is not only closely related to the standard theory but also plays an underlying role in the description of knots. Each of the four families of elementary fermions is conjectured to be represented by
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Gao, Yun. "Fermionic and Bosonic Representations of the Extended Affine Lie Algebra." Canadian Mathematical Bulletin 45, no. 4 (2002): 623–33. http://dx.doi.org/10.4153/cmb-2002-057-3.

Повний текст джерела
Анотація:
AbstractWe construct a class of fermions (or bosons) by using a Clifford (or Weyl) algebra to get two families of irreducible representations for the extended affine Lie algebra of level (1, 0) (or (−1, 0)).
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Frampton, Paul H., and Y. Jack Ng. "Families in confining theory of quarks, leptons, and additional fermions." Physical Review D 42, no. 9 (1990): 3242–45. http://dx.doi.org/10.1103/physrevd.42.3242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Baskaran, G., and A. R. May. "Boson bloom." Journal of Physics B: Atomic, Molecular and Optical Physics 57, no. 14 (2024): 142001. http://dx.doi.org/10.1088/1361-6455/ad3ff4.

Повний текст джерела
Анотація:
Abstract The year 2024 marks the 100th anniversary of the first article on Bose statistics. Bose breathed life into the Planck distribution of radiation by a microscopic derivation (Bose 1924 Z. Phys. 26 178), adding a new insight, namely indistinguishability into the then evolving quantum theory. Einstein recognized the importance of this article and got it published. Using Bose statistics Einstein wrote an article on the theory (Einstein 1924 Sutzungsber. Preuss. Akad. Wiss Phys.-Math Kl. 261) of an ideal Bose gas and Bose–Einstein condensation. The groundbreaking discovery of Bose, an unvei
Стилі APA, Harvard, Vancouver, ISO та ін.
42

PISANO, FELICE. "A SIMPLE SOLUTION FOR THE FLAVOR QUESTION." Modern Physics Letters A 11, no. 32n33 (1996): 2639–47. http://dx.doi.org/10.1142/s0217732396002630.

Повний текст джерела
Анотація:
We consider a simple way of solving the flavor question by embedding the three-family standard model in a semisimple gauge group extending minimally the weak isospin factor. Quantum chiral anomalies between families of fermions cancel with a matching of the number of families and the number of color degrees of freedom. Our demonstration shows how the theory leads to determination of families structure when the standard model is the input at low energies. The new physics is limited to start below a few TeVs within the reach of the next generation colliders.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

FINKELSTEIN, ROBERT J., and A. C. CADAVID. "MASSES AND INTERACTIONS OF q-FERMIONIC KNOTS." International Journal of Modern Physics A 21, no. 21 (2006): 4269–302. http://dx.doi.org/10.1142/s0217751x06032496.

Повний текст джерела
Анотація:
The q-electroweak theory suggests a description of elementary particles as solitons labeled by the irreducible representations of SU q(2). Since knots may also be labeled by the irreducible representations of SU q(2), we study a model of elementary particles based on a one-to-one correspondence between the four families of fermions (leptons, neutrinos, (-1/3) quarks, (2/3) quarks) and the four simplest knots (trefoils). In this model the three particles of each family are identified with the ground and first two excited states of their common trefoil. Guided by the standard electroweak theory,
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Dent, James B., Thomas W. Kephart, Heinrich Päs, and Thomas J. Weiler. "Flipped Quartification: Product Group Unification with Leptoquarks." Entropy 26, no. 7 (2024): 533. http://dx.doi.org/10.3390/e26070533.

Повний текст джерела
Анотація:
The quartification model is an SU(3)4 extension with a bi-fundamental fermion sector of the well-known SU(3)3 bi-fundamentalfication model. An alternative “flipped” version of the quartification model is obtained by rearrangement of the particle assignments. The flipped model has two standard (bi-fundamentalfication) families and one flipped quartification family. In contrast to traditional product group unification models, flipped quartification stands out by featuring leptoquarks and thus allows for new mechanisms to explain the generation of neutrino masses and possible hints of lepton-flav
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Mankoč Borštnik, N. S. "Understanding nature with the spin-charge-family theory." International Journal of Modern Physics A 33, no. 31 (2018): 1844027. http://dx.doi.org/10.1142/s0217751x1844027x.

Повний текст джерела
Анотація:
The spin-charge-family theory, which is a kind of the Kaluza–Klein theories in [Formula: see text] — but with the two kinds of the spin connection fields, the gauge fields of the two Clifford algebra objects, [Formula: see text] and [Formula: see text] — explains all the assumptions of the standard model: The origin of the charges of fermions appearing in one family, the origin and properties of the vector gauge fields of these charges, the origin and properties of the families of fermions, the origin of the scalar fields observed as the Higgs’s scalar and the Yukawa couplings. The theory expl
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Quinn, John J., Arkadiusz Wojs, and Kyung-Soo Yi. "Novel families of fractional quantum Hall states: pairing of composite fermions." Physics Letters A 318, no. 1-2 (2003): 152–55. http://dx.doi.org/10.1016/j.physleta.2003.09.031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Rim, Seog-Hoon, Jeong-Hee Jin, Eun-Jung Moon, and Sun-Jung Lee. "Some Identities on the -Genocchi Polynomials of Higher-Order and -Stirling Numbers by the Fermionic -Adic Integral on." International Journal of Mathematics and Mathematical Sciences 2010 (2010): 1–14. http://dx.doi.org/10.1155/2010/860280.

Повний текст джерела
Анотація:
A systemic study of some families of -Genocchi numbers and families of polynomials of Nörlund type is presented by using the multivariate fermionic -adic integral on . The study of these higher-order -Genocchi numbers and polynomials yields an interesting -analog of identities for Stirling numbers.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Bentsen, Gregory, Phuc Nguyen, and Brian Swingle. "Approximate Quantum Codes From Long Wormholes." Quantum 8 (August 14, 2024): 1439. http://dx.doi.org/10.22331/q-2024-08-14-1439.

Повний текст джерела
Анотація:
We discuss families of approximate quantum error correcting codes which arise as the nearly-degenerate ground states of certain quantum many-body Hamiltonians composed of non-commuting terms. For exact codes, the conditions for error correction can be formulated in terms of the vanishing of a two-sided mutual information in a low-temperature thermofield double state. We consider a notion of distance for approximate codes obtained by demanding that this mutual information instead be small, and we evaluate this mutual information for the SYK model and for a family of low-rank SYK models. After a
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Karozas, A., G. K. Leontaris, and I. Tavellaris. "SU(5) × U(1)′ Models with a Vector-like Fermion Family." Universe 7, no. 10 (2021): 356. http://dx.doi.org/10.3390/universe7100356.

Повний текст джерела
Анотація:
Motivated by experimental measurements indicating deviations from the Standard Model predictions, we discuss F-theory-inspired models, which, in addition to the three chiral generations, contain a vector-like complete fermion family. The analysis takes place in the context of SU(5)×U(1)′ GUT embedded in an E8 covering group, which is associated with the (highest) geometric singularity of the elliptic fibration. In this context, the U(1)′ is a linear combination of four abelian factors subjected to the appropriate anomaly cancellation conditions. Furthermore, we require universal U(1)′ charges
Стилі APA, Harvard, Vancouver, ISO та ін.
50

FINKELSTEIN, ROBERT J. "KNOTS AND PREONS." International Journal of Modern Physics A 24, no. 12 (2009): 2307–16. http://dx.doi.org/10.1142/s0217751x09043225.

Повний текст джерела
Анотація:
It is shown that the four quantum trefoil solitons that are described by the irreducible representations [Formula: see text] of the quantum algebra SL q(2) [and that may be identified with the four families of elementary fermions (e, μ, τ; νeνμντ;d, s, b; u, c, t)] may be built out of three preons, chosen from two charged preons with charges (1/3, -1/3) and two neutral preons. These preons are fermions and are described by the [Formula: see text] representation of SL q(2). There are also four bosonic preons described by the [Formula: see text] and [Formula: see text] representations of SL q(2)
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!