Добірка наукової літератури з теми "Ferrite de Bismuth"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ferrite de Bismuth".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Ferrite de Bismuth"
Wang, Xinxin, and Yifa Dong. "Studies on the Preparation and Photocatalytic Performance of Bismuth Ferrite." E3S Web of Conferences 245 (2021): 03078. http://dx.doi.org/10.1051/e3sconf/202124503078.
Повний текст джерелаSarkar, Kakali, Soumya Mukherjee, and Siddhartha Mukherjee. "Structural, electrical and magnetic behaviour of undoped and nickel doped nanocrystalline bismuth ferrite by solution combustion route." Processing and Application of Ceramics 9, no. 1 (2015): 53–60. http://dx.doi.org/10.2298/pac1501053s.
Повний текст джерелаDeng, Xiao Ling, Xing Bing Liu, Wei Cai, Chun Lin Fu, and Jia Mu Huang. "The Influence of Sintering Temperature on the Microstructure and Electrical Properties of BiFeO3 Ceramics." Key Engineering Materials 602-603 (March 2014): 942–46. http://dx.doi.org/10.4028/www.scientific.net/kem.602-603.942.
Повний текст джерелаBasantakumar Sharma, H. "Multiferroic bismuth ferrite thin film and bismuth ferrite-cobalt ferrite nanocomposites." Ferroelectrics 516, no. 1 (August 18, 2017): 90–97. http://dx.doi.org/10.1080/00150193.2017.1362289.
Повний текст джерелаNazir, Ammara, Shoomaila Latif, Syed Farooq Adil, Mufsir Kuniyil, Muhammad Imran, Mohammad Rafe Hatshan, Farah Kanwal, and Baji Shaik. "Photocatalytic Degradation of Cefixime Trihydrate by Bismuth Ferrite Nanoparticles." Materials 15, no. 1 (December 28, 2021): 213. http://dx.doi.org/10.3390/ma15010213.
Повний текст джерелаKannolli, Amrutesh, and P. Avinash. "Physicochemical Investigation of Synthesized Bismuth and Silver-Doped Bismuth Nanoferrites, And Their Dielectric Properties." IOP Conference Series: Materials Science and Engineering 1300, no. 1 (April 1, 2024): 012038. http://dx.doi.org/10.1088/1757-899x/1300/1/012038.
Повний текст джерелаIrfan, Syed, Guang-xing Liang, Fu Li, Yue-xing Chen, Syed Rizwan, Jingcheng Jin, Zheng Zhuanghao, and Fan Ping. "Effect of Graphene Oxide Nano-Sheets on Structural, Morphological and Photocatalytic Activity of BiFeO3-Based Nanostructures." Nanomaterials 9, no. 9 (September 19, 2019): 1337. http://dx.doi.org/10.3390/nano9091337.
Повний текст джерелаVaraprasad, Kokkarachedu, Koduri Ramam, G. Siva Mohan Reddy, and Rotimi Sadiku. "Development and characterization of nano-multifunctional materials for advanced applications." RSC Adv. 4, no. 104 (2014): 60363–70. http://dx.doi.org/10.1039/c4ra09980j.
Повний текст джерелаSharon, V. S., K. A. Malini, and K. J. Arun. "Synthesis and characterization of bismuth ferrite-barium titanate nano composites." IOP Conference Series: Materials Science and Engineering 1263, no. 1 (October 1, 2022): 012028. http://dx.doi.org/10.1088/1757-899x/1263/1/012028.
Повний текст джерелаChung, Kyong-Hwan, Hyun-Hak Jung, Sun-Jae Kim, Young-Kwon Park, Sang-Chai Kim, and Sang-Chul Jung. "Hydrogen Production through Catalytic Water Splitting Using Liquid-Phase Plasma over Bismuth Ferrite Catalyst." International Journal of Molecular Sciences 22, no. 24 (December 18, 2021): 13591. http://dx.doi.org/10.3390/ijms222413591.
Повний текст джерелаДисертації з теми "Ferrite de Bismuth"
Moniz, S. J. A. "Growth of bismuth oxide and bismuth ferrite thin films via CVD." Thesis, University College London (University of London), 2012. http://discovery.ucl.ac.uk/1370616/.
Повний текст джерелаHatling, Oddmund. "Multiferroic, Magnetoelectric Nanoparticles : Lanthanum-substituted Bismuth Ferrite." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for materialteknologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-16315.
Повний текст джерелаLiu, Yuhang. "First Principle Study of Multiferroic Bismuth Ferrite." Thesis, Uppsala universitet, Materialteori, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-364857.
Повний текст джерелаSkiadopoulou, Styliani. "Multiferroic behaviour of bismuth ferrite porous thin films." Master's thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/11829.
Повний текст джерелаAn enormous contribution in the scientific community of material engineering is being made by the exceptionally rapid evolution of the field of multifunctional materials. Multiferroics combine simultaneously at least two of the three ferroic properties: ferroelectricity, ferromagnetism and ferroelasticity. Magnetoelectric multiferroics’ ability of magnetic field manipulation via electric fields or vice versa can be extremely promising for information storage applications, leading to thinner, as well as flexible devices, with significantly high energetic efficiencies and elevated capacities. The aim of this work is the preparation and characterization of bismuth ferrite porous thin films, having as further objective to be able to serve as matrices for future functionalization. The strategy of this work consists of: a) dense film preparation with varying deposition velocities, b) porous film preparation with varying solution template quantities, inorganic precursor concentration and deposition velocities. Annealing temperature studies were also required, for the obtainment of the desired properties and control of microstructure. The methodologies for the film preparation in use were: a) sol-gel process, b) Evaporation Induced Self-Assembly (EISA), for the induction of porosity, and c) dip-coating technique. A series of dense films with varying deposition velocities were produced, serving as means of comparison for the porous thin films. Increasing the sol-gel deposition velocity led to increasing thickness. Piezoresponse Force Microscopy (PFM) characterization was conducted, revealing the expected ferroelectric domains. By the same technique, local piezoelectric hysteresis loops were obtained, showing increase of polarization saturation with increasing thickness. Lastly, magnetic moment measurements were carried out by the use of Superconducting Quantum Interference Device (SQUID), presenting decrease of remnant magnetization with increasing thickness. Varying template concentration was introduced in order to obtain a homogenous porous network. Homogeneity and lack of cracks in the films were successfully achieved, by decreasing solution template mass, for a given solution concentration. Thermal treatment studies revealed loss of porous network ordering at elevated annealing temperatures, required for the obtainment of crystallization and enhanced multiferroic properties. Local piezoelectric hysteresis loops showed increase of the effective piezoelectric coefficient with increasing thickness. SQUID characterization presented increasing remnant magnetization with increasing porosity. Lastly, increasing inorganic precursors concentration resulted in better control of porosity order and increase in the piezoelectric coefficient.
Uma enorme contribuição na comunidade científica da Engenharia de Materiais tem sido feita pela evolução excecionalmente rápida no âmbito dos materiais multifuncionais. Os multiferróicos combinam simultaneamente pelo menos duas das três propriedades ferróicas: ferroeletricidade, ferromagnetismo e ferroelasticidade. Os multiferróicos magnetoelétricos que permitem a manipulação do campo magnético através do campo elétrico e vice versa são extremamente promissores para aplicações de armazenamento de informação, levando a dispositivos mais finos e flexíveis com eficiência energética significativamente mais alta e elevadas capacidades. O objetivo deste trabalho é a preparação e caracterização de filmes porosos de ferrite de bismuto, com vista a serem capazes a uma futura funcionalização. A estratégia deste trabalho consiste: a) preparação de filme denso variando a velocidade de deposição, b) preparação de filme poroso variando o template da solução concentração do precursor inorgânico, e velocidades de deposição. Os estudos sobre temperatura de calcinação são também necessários, para a obtenção das propriedades requeridas e o controlo da microestrutura. As metodologias para a preparação dos filmes foram: a) sol-gel, b) Evaporation Induced Self-Assembly, para a indução da porosidade, e c) dip-coating. Foi preparada uma série de filmes densos variando a velocidade de deposição, servindo como meio de comparação para os filmes porosos. Aumento da velocidade de deposição resulta em aumento da espessura dos filmes. Foi utilizada a caracterização por piezoresponse force microscopy (PFM), revelando domínios ferroelétricos como esperado. Pela mesma técnica, foram obtidas curvas de histerese piezoelétricas locais mostrando o aumento da saturação da polarização com o aumento da espessura. Por fim, as medidas dos momentos magnéticos foram obtidos através do Superconducting Quantum Interference Device (SQUID), apresentando uma diminuição da magnetização remanescente com o aumento da espessura. A variação da concentração do template foi introduzida de modo a obter uma porosidade homogénea. A homogeneidade e ausência de fissuras nos filmes foi conseguida com sucesso pela diminuição da massa do template da solução, para uma determinada concentração da solução. Os estudos do tratamento térmico revelou a perda da porosidade ordenada para temperaturas mais elevadas, necessárias para a obtenção da cristalização e melhoria das propriedades multiferróicas. As curvas de histerese piezoelétrica local mostraram um aumento do coeficiente efetivo piezoelétrico com o aumento da espessura. A caracterização por SQUID apresentou um aumento da magnetização remanescente com o aumento da porosidade. Por fim, o aumento da concentração dos precursores inorgânicos resulta em um melhor controlo da ordem da porosidade e aumento do coeficiente piezoelétrico.
Palizdar, Meghdad. "Preparation and characterization of textured bismuth ferrite based ceramics." Thesis, University of Leeds, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.590464.
Повний текст джерелаTurner, Stuart Lee. "The structure of bismuth ferrite - lead titanate (BiFeO3 - PbTiO3)." Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.507885.
Повний текст джерелаGupta, Rekha. "Magnetoelectric coupling in multiferroic bismuth ferrite based composite nanostructures." Thesis, IIT Delhi, 2017. http://localhost:8080/iit/handle/2074/7057.
Повний текст джерелаBurnett, Timothy Laurence. "Growth and charaterisation of bismuth ferrite lead titanate single crystals." Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487709.
Повний текст джерелаShenton, John Kane. "First-principles investigations of structure-function relationships in bismuth ferrite." Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10057684/.
Повний текст джерелаStevenson, Timothy James. "Magnetic and electric properties of bismuth ferrite lead titanate ceramics." Thesis, University of Leeds, 2010. http://etheses.whiterose.ac.uk/1371/.
Повний текст джерелаКниги з теми "Ferrite de Bismuth"
Jadhav, Vijaykumar V., Rajaram S. Mane, and Pritamkumar V. Shinde. Bismuth-Ferrite-Based Electrochemical Supercapacitors. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-16718-9.
Повний текст джерелаMane, Rajaram S., Vijaykumar V. Jadhav, and Pritamkumar V. Shinde. Bismuth-Ferrite-Based Electrochemical Supercapacitors. Springer, 2020.
Знайти повний текст джерелаSehar, Fatima, and Zeeshan Mustafa. Synthesis and characterization of bismuth doped cobalt ferrite. LAP Lambert Academic Publishing, 2015.
Знайти повний текст джерелаЧастини книг з теми "Ferrite de Bismuth"
Wu, Jiagang. "Bismuth Ferrite-Based Piezoelectric Materials." In Advances in Lead-Free Piezoelectric Materials, 301–78. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8998-5_6.
Повний текст джерелаJadhav, Vijaykumar V., Rajaram S. Mane, and Pritamkumar V. Shinde. "Electrochemical Supercapacitors of Bismuth Ferrites." In Bismuth-Ferrite-Based Electrochemical Supercapacitors, 69–84. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-16718-9_5.
Повний текст джерелаJadhav, Vijaykumar V., Rajaram S. Mane, and Pritamkumar V. Shinde. "Introduction." In Bismuth-Ferrite-Based Electrochemical Supercapacitors, 1–10. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-16718-9_1.
Повний текст джерелаJadhav, Vijaykumar V., Rajaram S. Mane, and Pritamkumar V. Shinde. "Electrochemical Supercapacitors: History, Types, Designing Processes, Operation Mechanisms, and Advantages and Disadvantages." In Bismuth-Ferrite-Based Electrochemical Supercapacitors, 11–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-16718-9_2.
Повний текст джерелаJadhav, Vijaykumar V., Rajaram S. Mane, and Pritamkumar V. Shinde. "Basics of Ferrites: Structures and Properties." In Bismuth-Ferrite-Based Electrochemical Supercapacitors, 37–45. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-16718-9_3.
Повний текст джерелаJadhav, Vijaykumar V., Rajaram S. Mane, and Pritamkumar V. Shinde. "Bismuth Ferrites: Synthesis Methods and Experimental Techniques." In Bismuth-Ferrite-Based Electrochemical Supercapacitors, 47–67. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-16718-9_4.
Повний текст джерелаJadhav, Vijaykumar V., Rajaram S. Mane, and Pritamkumar V. Shinde. "Limitations and Perspectives." In Bismuth-Ferrite-Based Electrochemical Supercapacitors, 85–90. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-16718-9_6.
Повний текст джерелаSeidel, Jan. "Electronic and Optical Properties of Domain Walls and Phase Boundaries in Bismuth Ferrite." In Bismuth-Containing Compounds, 305–20. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8121-8_13.
Повний текст джерелаYou, Lu, and Junling Wang. "Multiferroism and Magnetoelectric Applications in Bismuth Ferrite." In Functional Materials and Electronics, 97–162. Oakville, ON ; Waretown, NJ : Apple Academic Press, [2017]: Apple Academic Press, 2018. http://dx.doi.org/10.1201/9781315167367-3.
Повний текст джерелаVerma, Ritesh, Ankush Chauhan, Neha, and Rajesh Kumar. "Multiferroic Material Bismuth Ferrite (BFO): Effect of Synthesis." In Engineering Materials, 143–65. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7454-9_9.
Повний текст джерелаТези доповідей конференцій з теми "Ferrite de Bismuth"
Khadka, Dev Bahadur, Shinya Kato, and Tetsuo Soga. "Photovoltaic Properties of Bismuth Vanadate/Bismuth Ferrite p-nJunction." In 2024 IEEE 52nd Photovoltaic Specialist Conference (PVSC), 1570. IEEE, 2024. http://dx.doi.org/10.1109/pvsc57443.2024.10749418.
Повний текст джерелаChuang, Ricky W., Chiao-Cheng Cheng, Pin-Zhi Chen, and Cheng-Liang Huang. "Bismuth ferrite (BiFeO3) optical waveguide memristor realized in lithium niobate (LiNbO3)." In Oxide-based Materials and Devices XVI, edited by Féréchteh H. Teherani and David J. Rogers, 47. SPIE, 2025. https://doi.org/10.1117/12.3044196.
Повний текст джерелаEshore, Abhijit Narayan, Bidesh Mahata, Dipak Kumar Goswami, and Prasanta Kumar Guha. "Nd Modified Bismuth Ferrite Perovskite for Efficient Subtle NO2 Monitoring." In 2024 IEEE SENSORS, 1–4. IEEE, 2024. https://doi.org/10.1109/sensors60989.2024.10784504.
Повний текст джерелаKumar, Pawan, and Manoranjan Kar. "Effect of excess bismuth on synthesis of bismuth ferrite." In PROCEEDING OF INTERNATIONAL CONFERENCE ON RECENT TRENDS IN APPLIED PHYSICS AND MATERIAL SCIENCE: RAM 2013. AIP, 2013. http://dx.doi.org/10.1063/1.4810590.
Повний текст джерелаYesner, G., and A. Safari. "Multiferroic bismuth ferrite based thin films." In 2013 Joint IEEE Int'l Symp on Applications of Ferroelectrics & Workshop on Piezoresponse Force Microscopy (ISAF/PFM). IEEE, 2013. http://dx.doi.org/10.1109/isaf.2013.6748731.
Повний текст джерелаRivera, Rut, and A. Safari. "Fabrication of bismuth ferrite nanofibers via electrospinning." In 2013 Joint IEEE Int'l Symp on Applications of Ferroelectrics & Workshop on Piezoresponse Force Microscopy (ISAF/PFM). IEEE, 2013. http://dx.doi.org/10.1109/isaf.2013.6748682.
Повний текст джерелаKaswan, Kavita, Ashish Agarwal, Sujata Sanghi, and Jogender Singh. "Improved multiferroic properties of bismuth ferrite and sodium bismuth titanate based multiferroic composites." In DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5113332.
Повний текст джерелаChakrabarty, N., and A. K. Chakraborty. "Hydrothermal synthesis of bismuth ferrite nanostructures for supercapacitor." In Proceedings of the International Conference on Nanotechnology for Better Living. Singapore: Research Publishing Services, 2016. http://dx.doi.org/10.3850/978-981-09-7519-7nbl16-rps-152.
Повний текст джерелаDhir, Gitanjali, and N. K. Verma. "Enhanced magnetization in Dy-doped Bismuth ferrite nanoparticles." In 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001426.
Повний текст джерелаSingh, S. K., and H. Ishiwara. "Bismuth ferrite Thin Films for Advanced FeRAM Devices." In 2005 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2005. http://dx.doi.org/10.7567/ssdm.2005.h-8-3.
Повний текст джерелаЗвіти організацій з теми "Ferrite de Bismuth"
Ahmed, M. A., M. S. Ayoub, M. M. Mostafa, and M. M. El-Desoky. Structural and multiferroic properties of nanostructured barium doped Bismuth Ferrite. Edited by Lotfia Elnai and Ramy Mawad. Journal of Modern trends in physics research, December 2014. http://dx.doi.org/10.19138/mtpr/(14)81-89.
Повний текст джерела