Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: First order dynamic.

Статті в журналах з теми "First order dynamic"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "First order dynamic".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

ÖZOĞUZ, BANU EBRU, YIĞIT GÜNDÜÇ, and MERAL AYDIN. "DYNAMIC SCALING FOR FIRST-ORDER PHASE TRANSITIONS." International Journal of Modern Physics C 11, no. 03 (2000): 553–59. http://dx.doi.org/10.1142/s0129183100000468.

Повний текст джерела
Анотація:
The critical behavior in short time dynamics for the q = 6 and 7 state Potts models in two-dimensions is investigated. It is shown that dynamic finite-size scaling exists for first-order phase transitions.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bharadwaj, Shrikant R., and Clifton M. Schor. "Dynamic control of ocular disaccommodation: First and second-order dynamics." Vision Research 46, no. 6-7 (2006): 1019–37. http://dx.doi.org/10.1016/j.visres.2005.06.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sanner, Scott, and Kristian Kersting. "Symbolic Dynamic Programming for First-order POMDPs." Proceedings of the AAAI Conference on Artificial Intelligence 24, no. 1 (2010): 1140–46. http://dx.doi.org/10.1609/aaai.v24i1.7747.

Повний текст джерела
Анотація:
Partially-observable Markov decision processes (POMDPs) provide a powerful model for sequential decision-making problems with partially-observed state and are known to have (approximately) optimal dynamic programming solutions. Much work in recent years has focused on improving the efficiency of these dynamic programming algorithms by exploiting symmetries and factored or relational representations. In this work, we show that it is also possible to exploit the full expressive power of first-order quantification to achieve state, action, and observation abstraction in a dynamic programming solution to relationally specified POMDPs. Among the advantages of this approach are the ability to maintain compact value function representations, abstract over the space of potentially optimal actions, and automatically derive compact conditional policy trees that minimally partition relational observation spaces according to distinctions that have an impact on policy values. This is the first lifted relational POMDP solution that can optimally accommodate actions with a potentially infinite relational space of observation outcomes.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dos Santos, Iguer Luis Domini, Sanket Tikare, and Martin Bohner. "First-order nonlinear dynamic initial value problems." International Journal of Dynamical Systems and Differential Equations 11, no. 3/4 (2021): 241. http://dx.doi.org/10.1504/ijdsde.2021.10040295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bohner, Martin, Sanket Tikare, and Iguer Luis Domini Dos Santos. "First-order nonlinear dynamic initial value problems." International Journal of Dynamical Systems and Differential Equations 11, no. 3/4 (2021): 241. http://dx.doi.org/10.1504/ijdsde.2021.117358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fu, Bin, and Qiongzhang Li. "The expressibility of first order dynamic logic." Journal of Computer Science and Technology 7, no. 3 (1992): 268–73. http://dx.doi.org/10.1007/bf02946577.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pu, Yewen, Rastislav Bodik, and Saurabh Srivastava. "Synthesis of first-order dynamic programming algorithms." ACM SIGPLAN Notices 46, no. 10 (2011): 83–98. http://dx.doi.org/10.1145/2076021.2048076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Atici, F. Merdivenci, and D. C. Biles. "First order dynamic inclusions on time scales." Journal of Mathematical Analysis and Applications 292, no. 1 (2004): 222–37. http://dx.doi.org/10.1016/j.jmaa.2003.11.053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mantin, Benny, Daniel Granot, and Frieda Granot. "Dynamic pricing under first order Markovian competition." Naval Research Logistics (NRL) 58, no. 6 (2011): 608–17. http://dx.doi.org/10.1002/nav.20470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Joshi, S., and R. Khardon. "Probabilistic Relational Planning with First Order Decision Diagrams." Journal of Artificial Intelligence Research 41 (June 21, 2011): 231–66. http://dx.doi.org/10.1613/jair.3205.

Повний текст джерела
Анотація:
Dynamic programming algorithms have been successfully applied to propositional stochastic planning problems by using compact representations, in particular algebraic decision diagrams, to capture domain dynamics and value functions. Work on symbolic dynamic programming lifted these ideas to first order logic using several representation schemes. Recent work introduced a first order variant of decision diagrams (FODD) and developed a value iteration algorithm for this representation. This paper develops several improvements to the FODD algorithm that make the approach practical. These include, new reduction operators that decrease the size of the representation, several speedup techniques, and techniques for value approximation. Incorporating these, the paper presents a planning system, FODD-Planner, for solving relational stochastic planning problems. The system is evaluated on several domains, including problems from the recent international planning competition, and shows competitive performance with top ranking systems. This is the first demonstration of feasibility of this approach and it shows that abstraction through compact representation is a promising approach to stochastic planning.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Bohner, Martin, and Sanket Tikare. "Ulam Stability for First-Order Nonlinear Dynamic Equations." Sarajevo Journal of Mathematics 18, no. 1 (2024): 83–96. http://dx.doi.org/10.5644/sjm.18.01.06.

Повний текст джерела
Анотація:
The purpose of this paper is to investigate Ulam stability of firstorder nonlinear dynamic equations on time scales. Based on the method of the Picard operator and using dynamic inequalities, we obtain four types of stability. In addition, as applications of our main result, we obtain new Ulam stability results for other nonlinear dynamic equations. An example is also provided to illustrate our main result.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Erbe, Lynn, Taher Hassan, and Allan Peterson. "Oscillation criteria for first order forced dynamic equations." Applicable Analysis and Discrete Mathematics 3, no. 2 (2009): 253–63. http://dx.doi.org/10.2298/aadm0902253e.

Повний текст джерела
Анотація:
We obtain some new oscillation criteria for solutions to certain first order forced dynamic equations on a time scale T of the form x?(t) + r(t)??(x? (t)) + p(t)?? (x? (t)) + q(t)??(x?(t)) = f(t); with ??(u) :=?u?n-1, ?>0. > 0. Here r(t); p (t) ; q(t) and f (t) are rdcontinuous functions on T and the forcing term f(t) is not required to be the derivative of an oscillatory function. Our results in the special cases when T = R and T = N involve and improve some previous oscillation results for first-order differential and difference equations. An example illustrating the importance of our results is also included.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Schülke, L., and B. Zheng. "Dynamic approach to weak first-order phase transitions." Physical Review E 62, no. 5 (2000): 7482–85. http://dx.doi.org/10.1103/physreve.62.7482.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Binz, Tim, and Klaus-Jochen Engel. "First-order evolution equations with dynamic boundary conditions." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 378, no. 2185 (2020): 20190615. http://dx.doi.org/10.1098/rsta.2019.0615.

Повний текст джерела
Анотація:
In this paper, we introduce a general framework to study linear first-order evolution equations on a Banach space X with dynamic boundary conditions, that is with boundary conditions containing time derivatives. Our method is based on the existence of an abstract Dirichlet operator and yields finally to equivalent systems of two simpler independent equations. In particular, we are led to an abstract Cauchy problem governed by an abstract Dirichlet-to-Neumann operator on the boundary space ∂ X . Our approach is illustrated by several examples and various generalizations are indicated. This article is part of the theme issue ‘Semigroup applications everywhere’.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Atici, FM, and DC Biles. "First- and second-order dynamic equations with impulse." Advances in Difference Equations 2005, no. 2 (2005): 193525. http://dx.doi.org/10.1155/ade.2005.119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Xue, Shuqiang, Yuanxi Yang, Yamin Dang, and Wu Chen. "Dynamic positioning configuration and its first-order optimization." Journal of Geodesy 88, no. 2 (2013): 127–43. http://dx.doi.org/10.1007/s00190-013-0683-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Sung, Yoon-Gyung, and Seongjun Lee. "Robust Input Shaping Commands with First-Order Actuators." Micromachines 15, no. 9 (2024): 1086. http://dx.doi.org/10.3390/mi15091086.

Повний текст джерела
Анотація:
This paper presents robust input shaping commands with first-order actuators utilizing a classical robust input shaper for practical applications in input shaping technology. An ideal input shaping command can deviate due to actuator dynamics so that the modified command has a detrimental effect on the performance of oscillation reduction in feedforward control applications. A zero-vibration-derivative (ZVDF) shaper with first-order actuators is analytically proposed using a phasor–vector approach, an exponential function for the approximation of the dynamic response of first-order actuators and the usage of the ZVD shaper. In addition, an equivalent transformation is utilized based on the superposition principle for the convenient inclusion of first-order actuator dynamics and is applied to the individual segment input command. The residual deflection and robustness of the proposed robust input shaping commands are numerically evaluated and compared with those of a conventional ZVD shaper with respect to the parameter uncertainties of flexible systems and actuators. The robust input shaping commands that are possible with first-order actuators are experimentally validated, presenting a better robustness and residual deflection reduction performance than the classical ZVD shaper on a mini bridge crane.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Wang, Yongzhao, Qian Liu, and Qiansheng Feng. "Periodic problem of first order nonlinear uncertain dynamic systems." Journal of Nonlinear Sciences and Applications 10, no. 12 (2017): 6288–97. http://dx.doi.org/10.22436/jnsa.010.12.13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Benchohra, M., J. Henderson, S. K. Ntouyas‡, and A. Ouahab. "On First Order Impulsive Dynamic Equations on Time Scales." Journal of Difference Equations and Applications 10, no. 6 (2004): 541–48. http://dx.doi.org/10.1080/10236190410001667986.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

van Eijck, J. "Tableau reasoning and programming with dynamic first order logic." Logic Journal of IGPL 9, no. 3 (2001): 411–45. http://dx.doi.org/10.1093/jigpal/9.3.411.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Braverman, Elena, and Başak Karpuz. "Nonoscillation of First-Order Dynamic Equations with Several Delays." Advances in Difference Equations 2010 (2010): 1–22. http://dx.doi.org/10.1155/2010/873459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Battaglini, Marco, and Rohit Lamba. "Optimal dynamic contracting: The first‐order approach and beyond." Theoretical Economics 14, no. 4 (2019): 1435–82. http://dx.doi.org/10.3982/te2355.

Повний текст джерела
Анотація:
We explore the conditions under which the “first‐order approach” (FO approach) can be used to characterize profit maximizing contracts in dynamic principal–agent models. The FO approach works when the resulting FO‐optimal contract satisfies a particularly strong form of monotonicity in types, a condition that is satisfied in most of the solved examples studied in the literature. The main result of our paper is to show that except for nongeneric choices of the stochastic process governing the types' evolution, monotonicity and, more generally, incentive compatibility are necessarily violated by the FO‐optimal contract if the frequency of interactions is sufficiently high (or, equivalently, if the discount factor, time horizon, and persistence in types are sufficiently large). This suggests that the applicability of the FO approach is problematic in environments in which expected continuation values are important relative to per period payoffs. We also present conditions under which a class of incentive compatible contracts that can be easily characterized is approximately optimal.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Wang, Da-Bin, Jian-Ping Sun, and Xiao-Jun Li. "Positive Solutions for System of First-Order Dynamic Equations." Discrete Dynamics in Nature and Society 2010 (2010): 1–13. http://dx.doi.org/10.1155/2010/371285.

Повний текст джерела
Анотація:
We study the existence of positive solutions to the system of nonlinear first-order periodic boundary value problems on time scalesxΔ(t)+P(t)x(σ(t))=F(t,x(σ(t))),t∈[0,T]T,x(0)=x(σ(T)), by using a well-known fixed point theorem in cones. Moreover, we characterize the eigenvalue intervals forxΔ(t)+P(t)x(σ(t))=λH(t)G(x(σ(t))),t∈[0,T]T,x(0)=x(σ(T)).
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Occhipinti Liberman, Andrés, Andreas Achen, and Rasmus Kræmmer Rendsvig. "Dynamic term-modal logics for first-order epistemic planning." Artificial Intelligence 286 (September 2020): 103305. http://dx.doi.org/10.1016/j.artint.2020.103305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Cingara, Aleksandar, Miodrag Jovanovic, and Milan Mitrovic. "Analytical first-order dynamic model of binary distillation column." Chemical Engineering Science 45, no. 12 (1990): 3585–92. http://dx.doi.org/10.1016/0009-2509(90)87161-k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Selvam, A. George Maria, M. Paul Loganathan, and S. Janci Rani. "Existence of Nonoscillatory Solutions of First-order Neutral Dynamic Equations." International Journal of Advanced Research in Computer Science and Software Engineering 7, no. 6 (2017): 671–79. http://dx.doi.org/10.23956/ijarcsse/v7i6/0310.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Bohner, Martin, and Allian Peterson. "First and second order linear dynamic equations on time scales." Journal of Difference Equations and Applications 7, no. 6 (2001): 767–92. http://dx.doi.org/10.1080/10236190108808302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Kiviet, Jan F., Garry D. A. Phillips, and Bernhard Schipp. "Alternative bias approximations in first-order dynamic reduced form models." Journal of Economic Dynamics and Control 23, no. 7 (1999): 909–28. http://dx.doi.org/10.1016/s0165-1889(98)00055-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Darowicki, K., and P. Ślepski. "Dynamic electrochemical impedance spectroscopy of the first order electrode reaction." Journal of Electroanalytical Chemistry 547, no. 1 (2003): 1–8. http://dx.doi.org/10.1016/s0022-0728(03)00154-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Passenbrunner, Thomas E., Mario Sassano, and Luca Zaccarian. "Optimality-based dynamic allocation with nonlinear first-order redundant actuators." European Journal of Control 31 (September 2016): 33–40. http://dx.doi.org/10.1016/j.ejcon.2016.04.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Wu, Haihua, and Zhan Zhou. "Stability for first order delay dynamic equations on time scales." Computers & Mathematics with Applications 53, no. 12 (2007): 1820–31. http://dx.doi.org/10.1016/j.camwa.2006.09.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Dufour, Jean-Marie, and Jan F. Kiviet. "Exact tests for structural change in first-order dynamic models." Journal of Econometrics 70, no. 1 (1996): 39–68. http://dx.doi.org/10.1016/0304-4076(94)01683-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Rizi, V., and S. K. Ghosh. "Dynamic critical behavior above a strong first-order phase transition." Physics Letters A 127, no. 5 (1988): 270–74. http://dx.doi.org/10.1016/0375-9601(88)90695-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Bendouma, Bouharket, Amine Benaissa Cherif, and Ahmed Hammoudi. "Systems of first-order nabla dynamic equations on time scales." Malaya Journal of Matematik 06, no. 04 (2018): 757–65. http://dx.doi.org/10.26637/mjm0604/0009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Bohner, M., B. Karpuz, and Ö. Öcalan. "Iterated Oscillation Criteria for Delay Dynamic Equations of First Order." Advances in Difference Equations 2008, no. 1 (2008): 458687. http://dx.doi.org/10.1155/2008/458687.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Lew, Dongkyu, Suho Cha, and Sung-hwan Shin. "Factor affecting dynamic feeling of vehicle sound related to firing-order component and its effect." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 268, no. 4 (2023): 4463–69. http://dx.doi.org/10.3397/in_2023_0636.

Повний текст джерела
Анотація:
As consumers' expectations for the perceptional feeling of vehicles increase, the studies on sound design to improve the dynamic feeling have been actively conducted. The purpose of this study is to propose relevant factors to improve dynamics without reducing pleasantness. To this end, subjective tests were conducted to evaluate dynamic and comfortable feelings on the noises during the acceleration of two comparison vehicles. A factor based on the TNR (tone-to-noise ratio) of ISO7779, TNRorder was extracted that could represent the feature of tonality of non-stationary signals. A vehicle having high TNR order related to the first firing-order exhibited a strong dynamic feeling. It was also investigated that dynamic feeling could be increased after changing the TNRorder of the first- and second firing order components of the test vehicle through subjective test.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Shimpi, R. P., H. G. Patel, and H. Arya. "New First-Order Shear Deformation Plate Theories." Journal of Applied Mechanics 74, no. 3 (2006): 523–33. http://dx.doi.org/10.1115/1.2423036.

Повний текст джерела
Анотація:
First-order shear deformation theories, one proposed by Reissner and another one by Mindlin, are widely in use, even today, because of their simplicity. In this paper, two new displacement based first-order shear deformation theories involving only two unknown functions, as against three functions in case of Reissner’s and Mindlin’s theories, are introduced. For static problems, governing equations of one of the proposed theories are uncoupled. And for dynamic problems, governing equations of one of the theories are only inertially coupled, whereas those of the other theory are only elastically coupled. Both the theories are variationally consistent. The effectiveness of the theories is brought out through illustrative examples. One of the theories has striking similarity with classical plate theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Anderson, Douglas R., and Masakazu Onitsuka. "Hyers-Ulam stability of first-order homogeneous linear dynamic equations on time scales." Demonstratio Mathematica 51, no. 1 (2018): 198–210. http://dx.doi.org/10.1515/dema-2018-0018.

Повний текст джерела
Анотація:
Abstract We establish theHyers-Ulam stability (HUS) of certain first-order linear constant coefficient dynamic equations on time scales, which include the continuous (step size zero) and the discrete (step size constant and nonzero) dynamic equations as important special cases. In particular, for certain parameter values in relation to the graininess of the time scale, we find the minimum HUS constants. A few nontrivial examples are provided. Moreover, an application to a perturbed linear dynamic equation is also included.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Picard, Rainer, and Sascha Trostorff. "Dynamic first order wave systems with drift term on Riemannian manifolds." Journal of Mathematical Analysis and Applications 505, no. 1 (2022): 125465. http://dx.doi.org/10.1016/j.jmaa.2021.125465.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Bao, Yong. "Indirect Inference Estimation of a First-Order Dynamic Panel Data Model." Journal of Quantitative Economics 19, S1 (2021): 79–98. http://dx.doi.org/10.1007/s40953-021-00264-w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Kim, Kyeong-Hwan, Young-Cheol Yoon, and Sang-Ho Lee. "Dynamic Analysis of MLS Difference Method using First Order Differential Approximation." Journal of the Computational Structural Engineering Institute of Korea 31, no. 6 (2018): 331–37. http://dx.doi.org/10.7734/coseik.2018.31.6.331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Brooks, B. P. "Linear stability conditions for a first-order three-dimensional discrete dynamic." Applied Mathematics Letters 17, no. 4 (2004): 463–66. http://dx.doi.org/10.1016/s0893-9659(04)90090-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Zhang, L., and Y. F. Xing. "Extremal Solutions for Nonlinear First-Order Impulsive Integro-Differential Dynamic Equations." Mathematical Notes 105, no. 1-2 (2019): 123–31. http://dx.doi.org/10.1134/s0001434619010139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Braverman, Elena, and Başak Karpuz. "Uniform exponential stability of first-order dynamic equations with several delays." Applied Mathematics and Computation 218, no. 21 (2012): 10468–85. http://dx.doi.org/10.1016/j.amc.2012.04.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Öcalan, Özkan, and Nurten KILIÇ. "Oscillation condition for first order linear dynamic equations on time scales." Malaya Journal of Matematik 11, no. 03 (2023): 263–71. http://dx.doi.org/10.26637/mjm1103/002.

Повний текст джерела
Анотація:
In this paper, we deal with the first-order dynamic equations withnonmonotone arguments\begin{equation*}y^{\Delta }(t)+\underset{i=1}{\overset{m}{\sum }}p_{i}(t)y\left( \tau_{i}(t)\right) =0,\text{ }t\in \lbrack t_{0},\infty )_{\mathbb{T}}\end{equation*}where $p_{i}\in C_{rd}\left( [t_{0},\infty )_{\mathbb{T}},%\mathbb{R}^{+}\right) ,$ $\tau _{i}\in C_{rd}\left( [t_{0},\infty )_{\mathbb{%T}},\mathbb{T}\right) $ and $\tau _{i}(t)\leq t,\ \lim_{t\rightarrow \infty}\tau _{i}(t)=\infty $ for $1\leq i\leq m$. Also, we present a new sufficient condition for theoscillation of delay dynamic equations on time scales. Finally, we give anexample illustrating the result.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Zhang, Jun, Yu Tian, Zongjin Ren, Jun Shao, and Zhenyuan Jia. "A Novel Dynamic Method to Improve First-order Natural Frequency for Test Device." Measurement Science Review 18, no. 5 (2018): 183–92. http://dx.doi.org/10.1515/msr-2018-0026.

Повний текст джерела
Анотація:
Abstract It is important to improve the natural frequency of test device to improve measurement accuracy. First-order frequency is basic frequency of dynamic model, which generally is the highest vibration energy of natural frequency. Taking vector force test device (VFTD) as example, a novel dynamic design method for improving first-order natural frequency by increasing structure stiffness is proposed. In terms of six degree-of-freedom (DOF) of VFTD, dynamic model of VFTD is built through the Lagrange dynamic equation to obtain theoretical natural frequency and mode shapes. Experimental natural frequency obtained by the hammering method is compared with theoretical results to prove rationality of the Lagrange method. In order to improve the stiffness of VFTD, increase natural frequency and meet the requirement of high frequency test, by using the trial and error method combined with curve fitting (TECF), stiffness interval of meeting natural frequency requirement is obtained. Stiffness of VFTD is improved by adopting multiple supports based on the stiffness interval. Improved experimental natural frequency is obtained with the hammering method to show rationality of the dynamic design method. This method can be used in improvement of first-order natural frequency in test structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Kumar K, Arun. "Optimizing Warehouse Layout and Scheduling with the DOBT Algorithm." International Journal of Inventions in Engineering & Science Technology 11, no. 1 (2025): 32–43. https://doi.org/10.37648/ijiest.v11i01.005.

Повний текст джерела
Анотація:
Traditionally, the integrity of orders has been overlooked in the parallel retrieval processes of multiple stackers. To address this, this paper proposes using an Order Tag to label all items within the same order, which is then used for scheduling retrieval tasks. The method for calculating these Order Tags influences the scheduling discipline of the ARS. To minimize average delay and ensure fairness, two new algorithms are introduced: the Dynamic Order-Based (DOB) Scheduling Algorithm and the Dynamic Order-Based with Threshold (DOBT) Scheduling Algorithm. To automate and expedite this retrieval process, a Smart Warehouse often utilizes an Automated Retrieval System (ARS) to manage and schedule retrieval tasks. Historically, the integrality of orders has been overlooked in the parallel retrieval processes of multiple stackers. To address this issue, this paper introduces the concept of an "Order Tag" to label items belonging to the same order. These Order Tags are used to schedule retrieval sequences for each stacker to optimize performance. Essentially, the design of the Order Tags dictates the scheduling discipline of the ARS. This paper proposes two new scheduling algorithms based on the concept of order integrality: the "Dynamic Order-Based" (DOB) algorithm and the "Dynamic Order-Based with Threshold" (DOBT) algorithm. Through simulations, it is demonstrated that DOB and DOBT significantly outperform existing methods such as First-Come-First-Serve (FCFS), Last-Come-First-Serve (LCFS), and Shortest-Job-First (SJF). Specifically, DOB and DOBT reduce the average order retrieval delay by at least 30% and decrease backlog pressure on downstream operations. Additionally, the DOBT algorithm allows for adjustment of a threshold value to control the maximum delay of orders, thus balancing fairness among all orders
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Gautam, Mahapatra, Mahapatra Srijita, and Banerjee Soumya. "A Study of Firefly Algorithm and its Application in Non Linear Dynamic Systems." International Journal of Trend in Scientific Research and Development 2, no. 2 (2018): 542–49. https://doi.org/10.31142/ijtsrd8393.

Повний текст джерела
Анотація:
Firefly Algorithm FA is a newly proposed computation technique with inherent parallelism, capable for local as well as global search, meta heuristic and robust in computing process. In this paper, Firefly Algorithm for Dynamic System FADS is a proposed system to find instantaneous behavior of the dynamic system within a single framework based on the idealized behavior of the flashing characteristics of fireflies. Dynamic system where flows of mass and or energy is cause of dynamicity is generally represented as a set of differential equations and Fourth Order Runge Kutta RK4 method is one of used tool for numerical measurement of instantaneous behaviours of dynamic system. In FADS, experimental results are demonstrating the existence of more accurate and effective RK4 technique for the study of dynamic system. Gautam Mahapatra | Srijita Mahapatra | Soumya Banerjee "A Study of Firefly Algorithm and its Application in Non-Linear Dynamic Systems" Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-2 | Issue-2 , February 2018, URL: https://www.ijtsrd.com/papers/ijtsrd8393.pdf
Стилі APA, Harvard, Vancouver, ISO та ін.
49

TARAU, PAUL, and VERONICA DAHL. "High-level networking with mobile code and first order AND-continuations." Theory and Practice of Logic Programming 1, no. 3 (2001): 359–80. http://dx.doi.org/10.1017/s1471068401001193.

Повний текст джерела
Анотація:
We describe a scheme for moving living code between a set of distributed processes coordinated with unification based Linda operations, and its application to building a comprehensive Logic programming based Internet programming framework. Mobile threads are implemented by capturing first order continuations in a compact data structure sent over the network. Code is fetched lazily from its original base turned into a server as the continuation executes at the remote site. Our code migration techniques, in combination with a dynamic recompilation scheme, ensure that heavily used code moves up smoothly on a speed hierarchy while volatile dynamic code is kept in a quickly updatable form. Among the examples, we describe how to build programmable client and server components (Web servers, in particular) and mobile agents.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Huang, Zhi Dong, An Min Hui, Guang Yang, and Rui Yang Li. "Parametric Design and Modal Analysis on Four-Order Elliptical Gear." Applied Mechanics and Materials 423-426 (September 2013): 1516–19. http://dx.doi.org/10.4028/www.scientific.net/amm.423-426.1516.

Повний текст джерела
Анотація:
The characteristics of four-order elliptical gear is analyzed. The parameters of four-order elliptical gear are chosen and calculated. The three-dimensional solid modeling of four-order elliptical gear is achieved. The dynamic model of four-order elliptical gear is established by finite element method and modal analysis of four-order elliptical gear is investigated. The natural frequencies and major modes of the first six orders are clarified. The method and the result facilitate the dynamic design and dynamic response analysis of high-order elliptical gear.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!