Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Flow Reynolds number.

Статті в журналах з теми "Flow Reynolds number"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Flow Reynolds number".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Matsunuma, Takayuki, and Yasukata Tsutsui. "Effects of Low Reynolds Number on Wake-Generated Unsteady Flow of an Axial-Flow Turbine Rotor." International Journal of Rotating Machinery 2005, no. 1 (2005): 1–15. http://dx.doi.org/10.1155/ijrm.2005.1.

Повний текст джерела
Анотація:
The unsteady flow field downstream of axial-flow turbine rotors at low Reynolds numbers was investigated experimentally using hot-wire probes. Reynolds number, based on rotor exit velocity and rotor chord lengthReout,RT, was varied from3.2×104to12.8×104at intervals of1.0×104by changing the flow velocity of the wind tunnel. The time-averaged and time-dependent distributions of velocity and turbulence intensity were analyzed to determine the effect of Reynolds number. The reduction of Reynolds number had a marked influence on the turbine flow field. The regions of high turbulence intensity due t
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shen, C., and J. M. Floryan. "Low Reynolds number flow over cavities." Physics of Fluids 28, no. 11 (1985): 3191. http://dx.doi.org/10.1063/1.865366.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rehm, Thomas R. "Low Reynolds Number Flow Heat Exchangers." Nuclear Technology 73, no. 1 (1986): 129–30. http://dx.doi.org/10.13182/nt86-a16213.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Katz, J. I. "Subsuns and Low Reynolds Number Flow." Journal of the Atmospheric Sciences 55, no. 22 (1998): 3358–62. http://dx.doi.org/10.1175/1520-0469(1998)055<3358:salrnf>2.0.co;2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dsouza, Brian, Andrea Sciacchitano, and W. Yu. "Reynolds Number Independence In An Urban Street Canyon Using 3D Robotic Particle Tracking Velocimetry." Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics 21 (July 8, 2024): 1–14. http://dx.doi.org/10.55037/lxlaser.21st.171.

Повний текст джерела
Анотація:
The Reynolds number in an Urban Street Canyon is a difficult parameter to match between reduced-scale experiments and full-scale measurements. It is possible to overcome this mismatch in Reynolds numbers by satisfying the Reynolds number independence criterion, which states that above a certain critical Reynolds number, the flow field remains invariant with increasing Reynolds numbers. For an urban canyon with an aspect ratio 1, this critical Reynolds number is often reported to be 12000 for the mean flow quantities. This critical Reynolds number, however, is not applicable for higher-order qu
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yamada, Shunsuke, Hirotatsu Sagawa, Shinsuke Okamoto, and Shinji Honami. "A Behavior of Backward Facing Step Flow in Low Reynolds Number(Swirling Flow and Separation)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 709–14. http://dx.doi.org/10.1299/jsmeicjwsf.2005.709.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

WILLIAMSON, N., N. SRINARAYANA, S. W. ARMFIELD, G. D. McBAIN, and W. LIN. "Low-Reynolds-number fountain behaviour." Journal of Fluid Mechanics 608 (July 11, 2008): 297–317. http://dx.doi.org/10.1017/s0022112008002310.

Повний текст джерела
Анотація:
Experimental evidence for previously unreported fountain behaviour is presented. It has been found that the first unstable mode of a three-dimensional round fountain is a laminar flapping motion that can grow to a circling or multimodal flapping motion. With increasing Froude and Reynolds numbers, fountain behaviour becomes more disorderly, exhibiting a laminar bobbing motion. The transition between steady behaviour, the initial flapping modes and the laminar bobbing flow can be approximately described by a function FrRe2/3=C. The transition to turbulence occurs at Re &gt; 120, independent of
Стилі APA, Harvard, Vancouver, ISO та ін.
8

ZAGAROLA, MARK V., and ALEXANDER J. SMITS. "Mean-flow scaling of turbulent pipe flow." Journal of Fluid Mechanics 373 (October 25, 1998): 33–79. http://dx.doi.org/10.1017/s0022112098002419.

Повний текст джерела
Анотація:
Measurements of the mean velocity profile and pressure drop were performed in a fully developed, smooth pipe flow for Reynolds numbers from 31×103 to 35×106. Analysis of the mean velocity profiles indicates two overlap regions: a power law for 60&lt;y+&lt;500 or y+&lt;0.15R+, the outer limit depending on whether the Kármán number R+ is greater or less than 9×103; and a log law for 600&lt;y+&lt;0.07R+. The log law is only evident if the Reynolds number is greater than approximately 400×103 (R+&gt;9×103). Von Kármán's constant was shown to be 0.436 which is consistent with the friction factor da
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Funaki, Jiro, Motohide Hisada, and Katsuya Hirata. "Aspect-Ratio and Reynolds-number Effect On Cross-Flow Impellers(Fluid Machinery)." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2005 (2005): 507–12. http://dx.doi.org/10.1299/jsmeicjwsf.2005.507.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Salac, David, and Michael J. Miksis. "Reynolds number effects on lipid vesicles." Journal of Fluid Mechanics 711 (August 31, 2012): 122–46. http://dx.doi.org/10.1017/jfm.2012.380.

Повний текст джерела
Анотація:
AbstractVesicles exposed to the human circulatory system experience a wide range of flows and Reynolds numbers. Previous investigations of vesicles in fluid flow have focused on the Stokes flow regime. In this work the influence of inertia on the dynamics of a vesicle in a shearing flow is investigated using a novel level-set computational method in two dimensions. A detailed analysis of the behaviour of a single vesicle at finite Reynolds number is presented. At low Reynolds numbers the results recover vesicle behaviour previously observed for Stokes flow. At moderate Reynolds numbers the cla
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Ahn, Heehak, Sunghyuk Lee, and Sehyun Shin. "Flow distribution in manifolds for low Reynolds number flow." KSME International Journal 12, no. 1 (1998): 87–95. http://dx.doi.org/10.1007/bf02946537.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Gad-el-Hak, Mohamed, and Promode R. Bandyopadhyay. "Reynolds Number Effects in Wall-Bounded Turbulent Flows." Applied Mechanics Reviews 47, no. 8 (1994): 307–65. http://dx.doi.org/10.1115/1.3111083.

Повний текст джерела
Анотація:
This paper reviews the state of the art of Reynolds number effects in wall-bounded shear-flow turbulence, with particular emphasis on the canonical zero-pressure-gradient boundary layer and two-dimensional channel flow problems. The Reynolds numbers encountered in many practical situations are typically orders of magnitude higher than those studied computationally or even experimentally. High-Reynolds number research facilities are expensive to build and operate and the few existing are heavily scheduled with mostly developmental work. For wind tunnels, additional complications due to compress
Стилі APA, Harvard, Vancouver, ISO та ін.
13

V. Hemanth, K. S. Kushal, and S. S. Varun. "Aerodynamic Study on Low Reynolds Number Aerofoil." ACS Journal for Science and Engineering 4, no. 1 (2024): 39–57. http://dx.doi.org/10.34293/acsjse.v4i1.104.

Повний текст джерела
Анотація:
Low Reynolds number refers to a specific range of values of the dimensionless parameter known as the Reynolds number (Re) in fluid dynamics. The Reynolds number is a critical factor used to characterize and predict fluid flow behaviour around objects or within fluid systems. Low Reynolds numbers (typically Re &lt; 2000), laminar flow prevails, where fluid particles move in smooth, orderly layers with minimal mixing or turbulence. Low Reynolds number aerodynamics is a focal point of interest, especially for micro air vehicles (MAVs), drones, and small-scale aircraft. Understanding the nuanced a
Стилі APA, Harvard, Vancouver, ISO та ін.
14

SHIMIZU, Masaki, Hiro ARAKO, Takahiro KANAZAWA, and Genta KAWAHARA. "J057014 Critical Reynolds number in channel flow." Proceedings of Mechanical Engineering Congress, Japan 2013 (2013): _J057014–1—_J057014–3. http://dx.doi.org/10.1299/jsmemecj.2013._j057014-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Munson, B. R. "Very Low Reynolds Number Flow Through Screens." Journal of Fluids Engineering 110, no. 4 (1988): 462–63. http://dx.doi.org/10.1115/1.3243578.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

HIRATA, Katsuya, Yasuhiro SAKATA, Shoji YAJIMA, Hiromu YAMAZAKI, and Jiro FUNAKI. "High-Reynolds-Number Flow Past a Pipe." TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series B 77, no. 775 (2011): 614–27. http://dx.doi.org/10.1299/kikaib.77.614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Meseguer, Á., and L. N. Trefethen. "Linearized pipe flow to Reynolds number 107." Journal of Computational Physics 186, no. 1 (2003): 178–97. http://dx.doi.org/10.1016/s0021-9991(03)00029-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Schultz, M. P., and K. A. Flack. "Reynolds-number scaling of turbulent channel flow." Physics of Fluids 25, no. 2 (2013): 025104. http://dx.doi.org/10.1063/1.4791606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

HIRATA, Katsuya, Yasuhiro SAKATA, Shoji YAJIMA, Hiromu YAMAZAKI, and Jiro FUNAKI. "High-Reynolds-Number Flow past a Pipe." Journal of Fluid Science and Technology 8, no. 3 (2013): 380–95. http://dx.doi.org/10.1299/jfst.8.380.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Ruschak, Kenneth J., and Steven J. Weinstein. "Thin-Film Flow at Moderate Reynolds Number." Journal of Fluids Engineering 122, no. 4 (2000): 774–78. http://dx.doi.org/10.1115/1.1319499.

Повний текст джерела
Анотація:
Viscous, laminar, gravitationally-driven flow of a thin film over a round-crested weir is analyzed for moderate Reynolds numbers. A previous analysis of this flow utilized a momentum integral approach with a semiparabolic velocity profile to obtain an equation for the film thickness (Ruschak, K. J., and Weinstein, S. J., 1999, “Viscous Thin-Film Flow Over a Round-Crested Weir,” ASME J. Fluids Eng., 121, pp. 673–677). In this work, a viscous boundary layer is introduced in the manner of Haugen (Haugen, R., 1968, “Laminar Flow Around a Vertical Wall,” ASME J. Appl. Mech. 35, pp. 631–633). As in
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Ota, T., H. Nishiyama, and Y. Taoka. "Flow Around an Elliptic Cylinder in the Critical Reynolds Number Regime." Journal of Fluids Engineering 109, no. 2 (1987): 149–55. http://dx.doi.org/10.1115/1.3242635.

Повний текст джерела
Анотація:
Flow around an elliptic cylinder of axis ratio 1:3 has been investigated experimentally in the critical Reynolds number regime on the basis of mean static pressure measurements along the cylinder surface and of hot-wire velocity measurements in the near wake. The critical Reynold number has been found to vary with the angle of attack α and attains a minimum around α = 5 to 10 deg. At the critical Reynolds number, the drag, lift, and moment coefficients change discontinuously, and the Strouhal number based on the upstream uniform flow velocity and the major axis length of the cylinder reaches a
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Billenness, D. A., N. Djilali, and E. Zeidan. "LOW REYNOLDS NUMBER FLOW OVER A SQUARE RIB." Transactions of the Canadian Society for Mechanical Engineering 21, no. 4 (1997): 371–87. http://dx.doi.org/10.1139/tcsme-1997-0018.

Повний текст джерела
Анотація:
Laminar flow over a square rib placed in a fully developed channel flow is investigated over the Reynolds number range 80-350. The effect of Reynolds number on the flow and the variation of the primary reattachment length with Reynolds number are investigated using flow visualization and laser-Doppler velocimetry. The primary recirculation region length is found to increase in a slightly non-linear fashion with Reynolds number up to Reh = 250, at which point shear layer instabilities first appear downstream of the rib. Increasing the Reynolds number further, first results in continuing growth
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Tam, Christopher K. W., and Hongbin Ju. "Aerofoil tones at moderate Reynolds number." Journal of Fluid Mechanics 690 (December 1, 2011): 536–70. http://dx.doi.org/10.1017/jfm.2011.465.

Повний текст джерела
Анотація:
AbstractIt is known experimentally that an aerofoil immersed in a uniform stream at a moderate Reynolds number emits tones. However, there have been major differences in the experimental observations in the past. Some experiments reported the observation of multiple tones, with strong evidence that these tones are most probably generated by a feedback loop. There is also an experiment reporting the observation of a single tone with no tonal jump or other features associated with feedback. In spite of the obvious differences in the experimental observations published in the literature, it is no
Стилі APA, Harvard, Vancouver, ISO та ін.
24

HEATON, C. J. "Linear instability of annular Poiseuille flow." Journal of Fluid Mechanics 610 (August 8, 2008): 391–406. http://dx.doi.org/10.1017/s0022112008002577.

Повний текст джерела
Анотація:
The linear stability of flow along an annular pipe formed by two coaxial circular cylinders is considered. We find that the flow is unstable above a critical Reynolds number for all 0 &lt; η ≤ 1, where η is the ratio between the radii of the inner and outer cylinders. This contradicts a recent claim that the flow is stable at all Reynolds numbers for radius ratio η less than a finite critical value. We find that non-axisymmetric disturbances become stable at all Reynolds numbers for η &lt; 0.11686215, and we are able to study this ‘bifurcation from infinity’ asymptotically. However, axisymmetr
Стилі APA, Harvard, Vancouver, ISO та ін.
25

x, Asaduzzaman, and Md Lutfor Rahman. "Friction Factor Diagram on Turbulent Flow by Different Reynolds Number in Small Pipes." International Journal of Scientific Engineering and Research 7, no. 1 (2019): 58–63. https://doi.org/10.70729/ijser18522.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Seo, Il Won. "Flow Characteristics According to Velocity Conditions of Cylinder Boundary Under Low Reynolds Number." Journal of the Korean Society of Civil Engineers 33, no. 6 (2013): 2267. http://dx.doi.org/10.12652/ksce.2013.33.6.2267.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

da Silva, Ana Maria AF, and Tirupati Bolisetti. "A method for the formulation of Reynolds number functions." Canadian Journal of Civil Engineering 27, no. 4 (2000): 829–33. http://dx.doi.org/10.1139/l00-002.

Повний текст джерела
Анотація:
A general method for the formulation of flow characteristics which are functions of the Reynolds number of the system is presented. It is assumed that the flow characteristics exhibit a strong variation with the Reynolds number when the Reynolds number is "small," and that they become independent of it when the Reynolds number is "large." The method is illustrated by finding mathematical expressions for the experimentally determined "roughness" function curve and for the sediment transport initiation curve (Shields' curve), which are relevant for the analysis of flow and sediment transport in
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Sandulyak, Anna, Alexander Sandulyak, Maria Polismakova, Darya Sandulyak, and Vera Ershova. "About Transition Reynolds Number of Filtration Magnetophoresis Process." Applied Mechanics and Materials 851 (August 2016): 127–31. http://dx.doi.org/10.4028/www.scientific.net/amm.851.127.

Повний текст джерела
Анотація:
In this present work, the approaches providing establishment of transitional value of Reynolds number when filtering liquids in the magnetized granulated (polyspherical) matrix are considered. It is shown that value of transitional number of Reynolds by flow through the granulated matrix is not crisis for process of a magnetophoresis. It is confirmed on the example of magnetophoresis of ferroparticles in water suspension, thermal power plant condensate, liquid ammonia. It is established that the effective of magnetophoresis could be performed also in case of Reynolds's values much more than de
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Gans, R. F. "Lubrication Theory at Arbitrary Knudsen Number." Journal of Tribology 107, no. 3 (1985): 431–33. http://dx.doi.org/10.1115/1.3261103.

Повний текст джерела
Анотація:
It is demonstrated that the slip flow Reynolds equations for ultra low clearance gas bearings can be derived from kinetic theory by an approximation scheme appropriate for arbitrary Knudsen numbers. Thus the usefulness of the slip flow Reynolds equation is extended to cases where it would not be expected to hold.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Ivashchenko, V. A., D. I. Zaripov, and R. I. Mullyadzhanov. "The effect of Reynolds number on near-wall reverse flow in a turbulent duct flow." Journal of Physics: Conference Series 2119, no. 1 (2021): 012032. http://dx.doi.org/10.1088/1742-6596/2119/1/012032.

Повний текст джерела
Анотація:
Abstract The influence of the Reynolds number on the statistics of a near-wall reverse flow phenomenon, taking place in a turbulent duct flow, is studied. An increase in the NWRF probability is found in both the core and corner regions of the duct walls for higher Reynolds number. The mechanism of the NWRF formation, described recently by Zaripov et al. [1, 2], is validated for higher Reynolds number flows.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

UHLMANN, MARKUS, ALFREDO PINELLI, GENTA KAWAHARA, and ATSUSHI SEKIMOTO. "Marginally turbulent flow in a square duct." Journal of Fluid Mechanics 588 (September 24, 2007): 153–62. http://dx.doi.org/10.1017/s0022112007007604.

Повний текст джерела
Анотація:
A direct numerical simulation of turbulent flow in a straight square duct was performed in order to determine the minimal requirements for self-sustaining turbulence. It was found that turbulence can be maintained for values of the bulk Reynolds number above approximately 1100, corresponding to a friction-velocity-based Reynolds number of 80. The minimum value for the streamwise period of the computational domain is around 190 wall units, roughly independently of the Reynolds number. We present a characterization of the flow state at marginal Reynolds numbers which substantially differs from t
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Moore, J., J. G. Moore, G. S. Henry, and U. Chaudhry. "Flow and Heat Transfer in Turbine Tip Gaps." Journal of Turbomachinery 111, no. 3 (1989): 301–9. http://dx.doi.org/10.1115/1.3262269.

Повний текст джерела
Анотація:
The effects of Reynolds number on flow through a tip gap are investigated by performing laminar flow calculations for an idealized two-dimensional tip gap geometry. The results of the calculations aid in understanding and reconciliation of low Much number turbine tip gap measurements, which range in tip gap Reynolds number from 100 to 10,000. For the higher Reynolds numbers, both the calculations and the measurements show a large separation off the sharp edge of the blade tip corner. For a high Reynolds number, fully turbulent flow calculations were also made. These also show a large separatio
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Erm, Lincoln P., and Peter N. Joubert. "Low-Reynolds-number turbulent boundary layers." Journal of Fluid Mechanics 230 (September 1991): 1–44. http://dx.doi.org/10.1017/s0022112091000691.

Повний текст джерела
Анотація:
An investigation was undertaken to improve our understanding of low-Reynolds-number turbulent boundary layers flowing over a smooth flat surface in nominally zero pressure gradients. In practice, such flows generally occur in close proximity to a tripping device and, though it was known that the flows are affected by the actual low value of the Reynolds number, it was realized that they may also be affected by the type of tripping device used and variations in free-stream velocity for a given device. Consequently, the experimental programme was devised to investigate systematically the effects
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Davidi, G., and D. Weihs. "Flow Around a Comb Wing in Low-Reynolds-Number Flow." AIAA Journal 50, no. 1 (2012): 249–53. http://dx.doi.org/10.2514/1.j051383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Goltsman, Anna, and Ilya Saushin. "Flow pattern of double-cavity flow at high Reynolds number." Physics of Fluids 31, no. 6 (2019): 065101. http://dx.doi.org/10.1063/1.5099702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Wang, Yu Fu, Guo Quan Tao, Ze Hai Wang, and Zhe Wu. "Numerical Simulation of a Low Reynolds Number Airfoil." Applied Mechanics and Materials 390 (August 2013): 141–46. http://dx.doi.org/10.4028/www.scientific.net/amm.390.141.

Повний текст джерела
Анотація:
In this paper, a low Reynolds number airfoil (S1223) is the objective of the study. The Navier-Stokes equations were established to simulate the complex flow around a low Reynolds number airfoil, in which the turbulence model was used. The complex flow around the airfoil was simulated at 2x105 Reynolds number and its aerodynamic characteristics were analyzed. The relationship among lift coefficient, drag coefficient and angle of attack was studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Van Treuren, Kenneth W., Terrence Simon, Marc von Koller, Aaron R. Byerley, James W. Baughn, and Richard Rivir. "Measurements in a Turbine Cascade Flow Under Ultra Low Reynolds Number Conditions." Journal of Turbomachinery 124, no. 1 (2001): 100–106. http://dx.doi.org/10.1115/1.1415736.

Повний текст джерела
Анотація:
With the new generation of gas turbine engines, low Reynolds number flows have become increasingly important. Designers must properly account for transition from laminar to turbulent flow and separation of the flow from the suction surface, which is strongly dependent upon transition. Of interest to industry are Reynolds numbers based upon suction surface length and flow exit velocity below 150,000 and as low as 25,000. In this paper, the extreme low end of this Reynolds number range is documented by way of pressure distributions, loss coefficients, and identification of separation zones. Reyn
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Sadikin, Azmahani, Nurul Akma Mohd Yunus, Kamil Abdullah, and Akmal Nizam Mohammed. "Numerical Study of Flow Past a Solid Sphere at Moderate Reynolds Number." Applied Mechanics and Materials 660 (October 2014): 674–78. http://dx.doi.org/10.4028/www.scientific.net/amm.660.674.

Повний текст джерела
Анотація:
The unsteady three dimensional flow simulation around sphere using numerical simulation computational fluid dynamic for moderate Reynolds Number between 20 ≤ Re ≤ 500 is presented. The aim of this work is to analyze the flow regimes around sphere and flow separation. Extensive comparisons were made between the present predicted results and available experimental and numerical investigations, and showed that they are in close agreement. The results show that the vortex shedding increases with the Reynolds number. The flow separates early when Reynolds number increases, therefore the separation
Стилі APA, Harvard, Vancouver, ISO та ін.
39

SÉBILLEAU, J., L. LIMAT, and J. EGGERS. "Flow separation from a stationary meniscus." Journal of Fluid Mechanics 633 (August 25, 2009): 137–45. http://dx.doi.org/10.1017/s0022112009008076.

Повний текст джерела
Анотація:
We consider the steady flow near a free surface at intermediate to high Reynolds numbers, both experimentally and theoretically. In our experiment, an axisymmetric capillary meniscus is suspended from a cylindrical tube, held slightly above a horizontal water surface. A flow of dyed water is released through the tube into the reservoir, and flow lines are thus recorded. At low Reynolds numbers, flow lines follow the free surface, and injected water spreads horizontally inside the container. Increasing the Reynolds number, the injected fluid penetrates to a certain distance into the bath, but u
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Boubnov, B. M., E. B. Gledzer, and E. J. Hopfinger. "Stratified circular Couette flow: instability and flow regimes." Journal of Fluid Mechanics 292 (June 10, 1995): 333–58. http://dx.doi.org/10.1017/s0022112095001558.

Повний текст джерела
Анотація:
The stability conditions of the flow between two concentric cylinders with the inner one rotating (circular Couette flow) have been investigated experimentally and theoretically for a fluid with axial, stable linear density stratification. The behaviour of the flow, therefore, depends on the Froude number Fr = Ω/N (where Ω is the angular velocity of the inner cylinder and N is the buoyancy frequency of the fluid) in addition to the Reynolds number and the non-dimensional gap width ε, here equal to 0.275.Experiments show that stratification has a stabilizing effect on the flow with the critical
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Dominy, R. G., and H. P. Hodson. "An Investigation of Factors Influencing the Calibration of Five-Hole Probes for Three-Dimensional Flow Measurements." Journal of Turbomachinery 115, no. 3 (1993): 513–19. http://dx.doi.org/10.1115/1.2929281.

Повний текст джерела
Анотація:
The effects of Reynolds number, Mach number, and turbulence on the calibrations of commonly used types of five-hole probe are discussed. The majority of the probes were calibrated at the exit from a transonic nozzle over a range of Reynolds numbers (7 × 103 &lt; Re &lt; 80 × 103 based on probe tip diameter) at subsonic and transonic Mach numbers. Additional information relating to the flow structure were obtained from a large-scale, low-speed wind tunnel. The results confirmed the existence of two distinct Reynolds number effects. Flow separation around the probe head affects the calibrations
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Stone, K., and S. P. Vanka. "Numerical Study of Developing Flow and Heat Transfer in a Wavy Passage." Journal of Fluids Engineering 121, no. 4 (1999): 713–19. http://dx.doi.org/10.1115/1.2823528.

Повний текст джерела
Анотація:
Developing flow and heat transfer in a wavy passage are studied using a numerical scheme that solves the two-dimensional unsteady flow and energy equations. Calculations are presented for a wavy channel consisting of 14 waves. Time-dependent simulations have been performed for several Reynolds numbers. At low Reynolds numbers, the flow is steady in the complete channel. As the Reynolds number is progressively increased, the flow becomes unsteady. As a result of the unsteadiness, there is increased mixing between the core and the wall fluids, thereby increasing the heat transfer rate. With furt
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Oyewola, Olanrewaju Miracle, Adebunmi Okediji, Olusegun Olufemi Ajide, and Muyiwa Samuel Adaramola. "Examination of Reynolds number effect on the development of round jet flow." EUREKA: Physics and Engineering, no. 6 (November 18, 2021): 39–47. http://dx.doi.org/10.21303/2461-4262.2021.001872.

Повний текст джерела
Анотація:
In this study, the Reynolds number effect on the development of round jet flow is presented. The jet is produced from a smoothly contracting round nozzle and the flow structure is controlled by varying the air blower speed in order to obtain various Reynolds numbers (Re). The flow Reynolds number considered varies between 1140 and 9117. Mean velocity measurements were taken using hot-wire probe at different axial and lateral distances (0≤x/d≤50, where x is the downstream distance and d is the nozzle diameter) for the jet flow and at for 0≤x/d≤30 in long pipe attached to the nozzle. Measurement
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Oyewola, Olanrewaju Miracle, Adebunmi Okediji, Olusegun Olufemi Ajide, and Muyiwa Samuel Adaramola. "Examination of Reynolds number effect on the development of round jet flow." EUREKA: Physics and Engineering, no. 6 (November 18, 2021): 39–47. https://doi.org/10.21303/2461-4262.2021.001872.

Повний текст джерела
Анотація:
In this study, the Reynolds number effect on the development of round jet flow is presented. The jet is produced from a smoothly contracting round nozzle and the flow structure is controlled by varying the air blower speed in order to obtain various Reynolds numbers (Re). The flow Reynolds number considered varies between 1140 and 9117. Mean velocity measurements were taken using hot-wire probe at different axial and lateral distances (0≤x/d≤50, where x is the downstream distance and d is the nozzle diameter) for the jet flow and at for 0≤x/d≤30 in long pipe attached to the nozzle. Measurement
Стилі APA, Harvard, Vancouver, ISO та ін.
45

TIAN, ZHONG WEI, and ZI NIU WU. "A study of two-dimensional flow past regular polygons via conformal mapping." Journal of Fluid Mechanics 628 (June 1, 2009): 121–54. http://dx.doi.org/10.1017/s0022112009006168.

Повний текст джерела
Анотація:
In this paper we study two-dimensional flow around regular polygons with an arbitrary but even number of edges N and one apex pointing to the free stream, with comparison to circular-cylinder flow. Both inviscid flow and low-Reynolds-number viscous flow are addressed. For inviscid flow, we obtained the exact solution for pure potential flow through Schwarz–Christoffel transformation, with the emphasis on the role of edge number, N, on the flow details. We also studied the behaviour, stationary lines and stability of vortex pair and found new stationary lines compared to circular cylinder. For
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Canuto, Daniel, and Kunihiko Taira. "Two-dimensional compressible viscous flow around a circular cylinder." Journal of Fluid Mechanics 785 (November 23, 2015): 349–71. http://dx.doi.org/10.1017/jfm.2015.635.

Повний текст джерела
Анотація:
Direct numerical simulation is performed to study compressible viscous flow around a circular cylinder. The present study considers two-dimensional shock-free continuum flow by varying the Reynolds number between 20 and 100 and the free-stream Mach number between 0 and 0.5. The results indicate that compressibility effects elongate the near wake for cases above and below the critical Reynolds number for two-dimensional flow under shedding. The wake elongation becomes more pronounced as the Reynolds number approaches this critical value. Moreover, we determine the growth rate and frequency of l
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Abe, Hiroyuki, Hiroshi Kawamura, and Yuichi Matsuo. "Direct Numerical Simulation of a Fully Developed Turbulent Channel Flow With Respect to the Reynolds Number Dependence." Journal of Fluids Engineering 123, no. 2 (2001): 382–93. http://dx.doi.org/10.1115/1.1366680.

Повний текст джерела
Анотація:
Direct numerical simulation (DNS) of a fully developed turbulent channel flow for various Reynolds numbers has been carried out to investigate the Reynolds number dependence. The Reynolds number is set to be Reτ=180, 395, and 640, where Reτ is the Reynolds number based on the friction velocity and the channel half width. The computation has been executed with the use of the finite difference method. Various turbulence statistics such as turbulence intensities, vorticity fluctuations, Reynolds stresses, their budget terms, two-point correlation coefficients, and energy spectra are obtained and
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Ma, Chunhui, Fenglai Huang, Bin Li, Xujian Li, and Yu Liu. "The Effect of Reynolds Numbers on Flow-Induced Vibrations: A Numerical Study of a Cylinder on Elastic Supports." Water 16, no. 19 (2024): 2765. http://dx.doi.org/10.3390/w16192765.

Повний текст джерела
Анотація:
In the field of fluid dynamics, the Reynolds number is a key parameter that influences the flow characteristics around bluff bodies. While its impact on flow around stationary cylinders has been extensively studied, systematic research into flow-induced vibrations (FIVs) under these conditions remains limited. This study utilizes numerical simulations to explore the FIV characteristics of smooth cylinders and passive turbulence control (PTC) cylinders supported elastically within a Reynolds number range from 0.8 × 104 to 1.1 × 105. By comparing the vibration responses, lift coefficients, and w
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Hurst, Edward, Qiang Yang, and Yongmann M. Chung. "The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves." Journal of Fluid Mechanics 759 (October 31, 2014): 28–55. http://dx.doi.org/10.1017/jfm.2014.524.

Повний текст джерела
Анотація:
AbstractThis paper exploits the turbulent flow control method using streamwise travelling waves (Quadrio et al. J. Fluid Mech., vol. 627, 2009, pp. 161–178) to study the effect of Reynolds number on turbulent skin-friction drag reduction. Direct numerical simulations (DNS) of a turbulent channel flow subjected to the streamwise travelling waves of spanwise wall velocity have been performed at Reynolds numbers ranging from $\mathit{Re}_{{\it\tau}}=200$ to 1600. To the best of the authors’ knowledge, this is the highest Reynolds number attempted with DNS for this type of flow control. The presen
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Ralph, M. E. "Steady Flow Structures and Pressure Drops in Wavy-Walled Tubes." Journal of Fluids Engineering 109, no. 3 (1987): 255–61. http://dx.doi.org/10.1115/1.3242656.

Повний текст джерела
Анотація:
Solutions of the Navier-Stokes equations for steady axisymmetric flows in tubes with sinusoidal walls were obtained numerically, for Reynolds numbers (based on the tube radius and mean velocity at a constriction) up to 500, and for varying depth and wavelength of the wall perturbations. Results for the highest Reynolds numbers showed features suggestive of the boundary layer theory of Smith [23]. In the other Reynolds number limit, it has been found that creeping flow solutions can exhibit flow reversal if the perturbation depth is large enough. Experimentally measured pressure drops for a par
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!