Добірка наукової літератури з теми "Fluide (gaz et liquide)"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Fluide (gaz et liquide)".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Fluide (gaz et liquide)"
DROUIN, M., G. PARRAVICINI, S. NASSER, and P. MOULIN. "Traitement des effluents de désulfuration des gaz d’échappement des navires de transport maritime par filtration membranaire." Techniques Sciences Méthodes 1-2 (February 20, 2023): 27–39. http://dx.doi.org/10.36904/202301027.
Повний текст джерелаNGU, Vincent, Claire DUMAS, Yan RAFRAFI, Jérôme MORCHAIN, and Arnaud COCKX. "Développement d’un procédé de méthanation biologique à l’aide d’une approche de modélisation multi-échelle." Techniques Sciences Méthodes, TSM 5/ 2024 (May 20, 2024): 47–63. http://dx.doi.org/10.36904/20240547.
Повний текст джерелаDIRRENBERGER1, P. "Méthanisation (partie 1) : principe, paramètres et polluants émis – état de l’art." Techniques Sciences Méthodes, no. 9 (September 21, 2020): 15–30. http://dx.doi.org/10.36904/tsm/202009015.
Повний текст джерелаFrechou, D. "Etude expérimentale de l'écoulement gaz-liquide ascendant à deux et trois fluides en conduite verticale." Revue de l'Institut Français du Pétrole 41, no. 1 (January 1986): 115–29. http://dx.doi.org/10.2516/ogst:1986006.
Повний текст джерелаLe Goff, H., A. Ramadane, and P. Le Goff. "Modelisations des transferts couples de matière et de chaleur dans l'absorption gaz-liquide en film ruisselant laminaire." International Journal of Heat and Mass Transfer 28, no. 11 (November 1985): 2005–17. http://dx.doi.org/10.1016/0017-9310(85)90094-8.
Повний текст джерелаDIRRENBERGER1, P. "Méthanisation (partie 2) : technologies de digestion et procédés utilisés – état de l’art." Techniques Sciences Méthodes, no. 9 (September 21, 2020): 33–56. http://dx.doi.org/10.36904/tsm/202009033.
Повний текст джерелаCOUTU, A., L. ANDRÉ, S. MOTTELET, S. AZIMI, S. GUÉRIN, V. ROCHER, A. PAUSS, and T. RIBEIRO. "Conception de réacteurs et compteurs de gaz innovants pour la méthanisation en voie sèche à l’échelle laboratoire." Techniques Sciences Méthodes, no. 9 (September 21, 2020): 71–82. http://dx.doi.org/10.36904/tsm/202009071.
Повний текст джерелаLe Goff, H., A. Ramadane, and P. Le Goff. "Un modèle simple de la pénétration couplée de chaleur et de matière dans l'absorption gaz-liquide en film ruisselant laminaire." International Journal of Heat and Mass Transfer 29, no. 4 (April 1986): 625–34. http://dx.doi.org/10.1016/0017-9310(86)90094-3.
Повний текст джерелаFerrari, Gérald, and Chantal Hory. "Dosage des acides aminés des vins et des moûts par chromatographie gaz-liquide sur colonne macrobore." OENO One 22, no. 4 (December 31, 1988): 299. http://dx.doi.org/10.20870/oeno-one.1988.22.4.1266.
Повний текст джерелаAderinboye, R. Y., and A. O. Olanipekun. "An in-vitro evaluation of the potentials of turmeric as phytogenic feed additive for rumen modification." Nigerian Journal of Animal Production 48, no. 3 (March 6, 2021): 193–203. http://dx.doi.org/10.51791/njap.v48i3.2950.
Повний текст джерелаДисертації з теми "Fluide (gaz et liquide)"
Raynal, Ludovic. "Instabilité et entrainement à l'interface d'une couche de mélange liquide-gaz." Université Joseph Fourier (Grenoble ; 1971-2015), 1997. http://www.theses.fr/1997GRE10222.
Повний текст джерелаNaciri, Ahmed. "Contribution à l'étude des forces exercées par un liquide sur une bulle de gaz : portance, masse ajoutée et interactions hydrodynamiques." Ecully, Ecole centrale de Lyon, 1992. http://bibli.ec-lyon.fr/exl-doc/TH_T1574_anaciri.pdf.
Повний текст джерелаDel, Pozo Mariano. "Transfert de matière et de chaleur particule-liquide en lit fluidise gaz liquide-solide." Vandoeuvre-les-Nancy, INPL, 1992. http://www.theses.fr/1992INPL044N.
Повний текст джерелаCappello, Vincenzo. "Extrapolation des réacteurs agités gaz-liquide par modélisation tridimensionnelle de l'hydrodynamique, transferts et cinétique." Thesis, Université Clermont Auvergne (2017-2020), 2020. http://www.theses.fr/2020CLFAC040.
Повний текст джерелаMechanically-agitated reactors are widely used in aerobic fermentation, because they provide good mixing of reactants and high performance in terms of oxygen mass transfer. In the enzyme production process by filamentous fungi Trichoderma reesei, the mass transfer is hindered by the complex rheology of the fermentation broth. This process is a key step in the production of second-generation ethanol; however, because of the high fermentation volumes (∼ 100 m3) required for future bioethenol production units, the reactor scale-up is challenging. In fact, by increasing the size of the fermenter, large scale substrate gradients tend to appear.In this framework, the objective of this study is to develop a predictive tool based on Computational Fluid Dynamics (CFD) for the design and scale-up of aerated reactors. The numerical model here proposed, allows one to characterize such systems by coupling hydrodynamics, rheology, mass transfer, and a simplified metabolic model. To assess the fidelity of the model, several experimental analyses were carried out. Bubble size in shear-thinning liquids and in fermentation broth was measured thanks to a novel technique that was previously developed at IFPEN. This measuring techniques is based on phase- detective optical probes, and its use in stirred tank reactors and in viscous liquids was validated during this study. Bubble size measurements were supplemented with gas-liquid transfer coefficient (kLa) and gas holdup measurements. By combining these data, it was possible to develop a dimensional model for the liquid-side mass transfer coefficient (kL), that served to model the mass transfer mechanism in the CFD simulations.Moreover, the reactor hydrodynamics was characterized in terms of mixing time (via colorimetric method and image processing), and liquid velocity (with the Pavlov tube). These data were then used to quantify the accuracy of the simulations. The numerical model — based on the two-phase Eulerian model, and on Reynolds-averaged Navier-Stokes equations — was used to highlight the mixing degradation that accompanies the scale-up of the protein production process. Results from coupled simulations (distribution of substrate and oxygen concentrations) will be used to guide future design and technology optimization of fermenters, as well as to develop more representative scale-down models for microbial cultures. CFD simulations and scale-down data will assess the microorganisms’ resistance to exposure to substrate content variation inside industrial reactors
Tavakoli, Gheynani Touraj. "Hydrodynamique et transfert gaz-liquide non newtonien en fluidisation triphasique." Toulouse, INPT, 1989. http://www.theses.fr/1989INPT039G.
Повний текст джерелаFu, Taotao. "Ecoulements gaz-liquide et comportement des bulles en microcanaux." Thesis, Vandoeuvre-les-Nancy, INPL, 2010. http://www.theses.fr/2010INPL030N/document.
Повний текст джерелаGas-liquid two-phase flow is an important research project in microfluidics. The gas-liquid two-phase flow, the bubble formation and moving behaviours in microchannels were investigated, by using a high speed digital camera and a micro Particle Image Velocimetry (micro-PIV). The gas-liquid two-phase flow in vertical rectangular microchannels was investigated and a flow pattern map was constructed; the bubble formation in both Newtonian and non-Newtonian fluids in cross-flowing microfluidic T-junctions and flow-focusing devices was investigated; the bubble formation process could be divided into expansion, collapse and pinch-off stages; the collapse speed of the gaseous thread in the second stage is controlled by the squeezing pressure, and is proportional to the liquid flow rates; while the minimum width of the neck of the gaseous thread in the third stage for bubble formation in flow-focusing devices could be scaled with the remaining time to the ultimate pinch-off as a power law relationship with an exponent of 1/3; the PAAm solutions prolong the gaseous thread in the tangential direction of the neck; bubble coalescence in a microchannel with an expansion section was studied; the bubble behavior in a microchannel with a loop was also investigated
Kuwahara, Takuya. "Caractérisation des régimes d'écoulement diphasique gaz-liquide par fluide magnétique : appareillage, mesures, traitement du signal et analyse de données." Châtenay-Malabry, Ecole centrale de Paris, 2008. http://www.theses.fr/2008ECAP1064.
Повний текст джерелаOladyshkin, Sergey. "Découplage de la thermodynamique et hydrodynamique et solutions asymptotiques des problèmes d'écoulement compositionnel gaz-liquide en milieux poreux." Thesis, Vandoeuvre-les-Nancy, INPL, 2006. http://www.theses.fr/2006INPL059N/document.
Повний текст джерелаThe present work deals with the problem of the compositional gas-liquid flow for the well representation in reservoir simulations. The objective is to develop analytical relationships which would be able to link the wellbore pressure, saturation and component concentrations to their mean values within each zone of the well influence. It is shown that N-2 equations describing the transport of phase concentrations can be transformed into the space- and time-independent ordinary differential equations (differentiation with respect to pressure) when examined along flow streamlines. These transformed equations represent additional thermodynamic relations reducing the thermodynamic degree of freedom. Due to this the thermodynamic variance of the limit compositional model is shown to be equal to 1 for any number of chemical components. This transformation ensure a total splitting of the limit compositional model into the new thermodynamic model and a hydrodynamic model, which may be resoved inedpendently of one another. The split thermodynamic model is totally independent on the hydrodynamic one, and describes the equilibrium behaviour of an open gas-liquid system. This model contains the classic equilibrium equations and EOS, as well as N-2 new differential equations called the "delta-law" which determine the composition variation in an open system, in which the mass of each component is not conserved. The split hydrodynamic model consists of two equations for pressure and saturation. The split hydrodynamic model was used to develop asymptotic solutions of gas-condensate flow problems. The problem was shown to be singularly perturbed with formation of a boundary layer in the vicinity of the well. In this layer the basic contrast property of gas and liquid mobilities is perturbed. A special technique is developed which enables to construct asymptotic expansions in the form of two various series, one of them is valid far from the well (the exterior expansion), while the second one in valid in the vicinity of the well (the boundary-layer or interior expansion). By applying the suggested asymptotic method, we have developed the asymptotic solutions for the problem of multi-component gas-condensate flow to a well in a bounded domain at a variable flow rate. In several cases the solution may be obtained in the analytical form, while in general case of flow the method leads to a semi-analytical solution presented as an initial problem for a differential equation. This solution, even being presented in non-analytical form, is much simpler than the original compositional model, as the equation for saturation does not depend on the local pressure, but on the boundary pressure only. In the last chapter we extended this approach to the case when the capillary pressure is not neglected. We assumed however that the capillary forces are lower than the pressure difference between the wellbore and reservoir boundary, due to which we applied the perturbation method over the small inverse capillary number. The improved asymptotic solutions are obtained which take into account the capillary effect. Numerical simulations shown that these effects are maximal in the vicinity of the well. For the practice, the obtained asymptotic solutions may be used in the following way to resolve the problem of gas-condensate well representation. The case of a long-term exploitation of the reservoir}. First of all, the traditional simulation of the reservoir behaviour can be performed with ECLIPSE by adding the Peaceman method of well representation, which is an analytical relation for the wellbore pressure via the production rate. This relation includes a condensate saturation which can be evaluated as a mean reservoir saturation. Such a simulation provides a good result for the wellbore pressure (or the production rate), and a good result for the boundary saturation, but poor data for the wellbore saturation. This value can be calculated next by using the asymptotic solutions suggested in the presented project. The case of a short-term well production (a well test). It is sufficient to simulate the reservoir behaviour in the domain of the well influence, by assuming that the boundary state remains invariable (and known a priori). In this case the asymptotic solutions suggested in the presnet work can be directly used to simulate the problem (without using ECLIPSE)
Soualmia, Amel. "Structure et modélisation d'écoulements internes de gaz et de liquide à phases séparées." Toulouse, INPT, 1993. http://www.theses.fr/1993INPT132H.
Повний текст джерелаVial, Christophe. "Apport des méthodes de la mécanique des fluides à l'étude des contacteurs gaz/liquide : expérience et simulation numérique." Vandoeuvre-les-Nancy, INPL, 2000. http://docnum.univ-lorraine.fr/public/INPL_T_2000_VIAL_C.pdf.
Повний текст джерелаThis work is devoted to the experimental study, the modelling and the numerical simulation of the hydrodynamics of a bubble column and an external loop airlift reactor. It includes three parts. First, measuring techniques have been developed to study the local and global hydrodynamic parameters of the bubbly flow. In this section, several treatments of the fluctuating wall pressure signal have been developed to identify the prevailing flow regime; three measuring techniques have been adapted to bubbly flows in order to measure the local velocity of the continuous phase: the "Pavlov" tube, an electrochemical method and Laser Doppler Velocimetry. These techniques have completed the methods already available to study the dynamics of the gas phase: local optical probes and an ultrasound Doppler technique. Then, this set of measuring techniques has been used to characterise the hydrodynamics in both reactors. Regime transitions have been deterrnined. The local and global parameters which have been measured are: the gas hold-up; the velocity, the size and the morphology of the bubbles; the liquid velocity and its local fluctuations. The Reynolds shear stress, which could not be measured, has been estimated using a simple model. The evolution of these parameters has been related to the gas flow rate, the gas distribution and the hydrodynamic regime. The whole experimental data are finally compared to the predicted values obtained using a commercial CFD code. Several models of drag, additional forces and turbulence have been used to obtain the best agreement between calculations and experiments. The ability of this commercial code to predict correctly the flow and its current limits have been highlighted
Книги з теми "Fluide (gaz et liquide)"
Edelman, Anna. Synthèse de polycondensats: Étude, par chromatographie gaz-liquide "inverse", de leur affinité pour la triacetine et divers esters nitrés. Grenoble: A.N.R.T, Université Pierre Mendes France (Grenoble II), 1986.
Знайти повний текст джерелаContribution a l'etude des forces exercees par un liquide sur une bulle de gaz: Portance, masse ajoutee et interactions hydrodynamiques. 1992.
Знайти повний текст джерелаSIMON, Guilhem, ed. Spectroscopies vibrationnelles. Editions des archives contemporaines, 2020. http://dx.doi.org/10.17184/eac.9782813002556.
Повний текст джерелаЧастини книг з теми "Fluide (gaz et liquide)"
Drochon, Bruno. "Énergie et formulation." In Énergie et formulation, 26–34. EDP Sciences, 2005. https://doi.org/10.3917/edp.canse.2005.01.0026.
Повний текст джерелаLE PIERRÈS, Nolwenn. "Stockage de chaleur par procédés à absorption." In Stockage de la chaleur et du froid 2, 99–145. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9134.ch2.
Повний текст джерелаDoraiswamy, L. K. "Gas-Liquid and Liquid-Liquid Reactor Design." In Organic Synthesis Engineering. Oxford University Press, 2001. http://dx.doi.org/10.1093/oso/9780195096897.003.0024.
Повний текст джерелаN’TSOUKPOE, Kokouvi Edem. "Matériaux pour le stockage thermochimique et par sorption." In Stockage de la chaleur et du froid 2, 5–97. ISTE Group, 2023. http://dx.doi.org/10.51926/iste.9134.ch1.
Повний текст джерелаBruch, L. W., Milton W. Cole, and Eugene Zaremba. "Monolayer Examples." In Physical Adsorption: Forces and Phenomena, 196–245. Oxford University PressOxford, 1997. http://dx.doi.org/10.1093/oso/9780198556381.003.0006.
Повний текст джерелаAbriola, Linda M., and Kurt D. Pennell. "Persistence and Interphase Mass Transfer of Liquid Organic Contaminants in the Unsaturated Zone : Experimental Observations and Mathematical Modeling." In Vadose Zone Hydrology. Oxford University Press, 1999. http://dx.doi.org/10.1093/oso/9780195109900.003.0012.
Повний текст джерелаIkariya, Takao, and Ryoji Noyori. "Advances in Homogeneous, Heterogeneous, and Biphasic Metal-Catalyzed Reactions in Dense-Phase Carbon Dioxide." In Green Chemistry Using Liquid and Supercritical Carbon Dioxide. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195154832.003.0006.
Повний текст джерелаMONNERET, C. "De l’arme chimique à l’arme thérapeutique." In Médecine et Armées Vol. 45 No.1, 61–64. Editions des archives contemporaines, 2017. http://dx.doi.org/10.17184/eac.7456.
Повний текст джерелаDoraiswamy, L. K. "Microphase-Assisted Reaction Engineering." In Organic Synthesis Engineering. Oxford University Press, 2001. http://dx.doi.org/10.1093/oso/9780195096897.003.0032.
Повний текст джерелаBlanchard, Lynnette A., and Gang Xu. "Phase Behavior and Its Effects on Reactions in Liquid and Supercritical Carbon Dioxide." In Green Chemistry Using Liquid and Supercritical Carbon Dioxide. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780195154832.003.0005.
Повний текст джерелаТези доповідей конференцій з теми "Fluide (gaz et liquide)"
Alanazi, K., R. Mohan, S. S. Kolla, O. Shoham, and A. Nassef. "Predictability of Computational Fluid Dynamics for Solid Particle Erosion of 90° Stainless-Steel Elbows in Various Erosive Environments." In CONFERENCE 2024, 1–15. AMPP, 2024. https://doi.org/10.5006/c2024-20886.
Повний текст джерелаZhang, Yongli, Brenton S. McLaury, Siamack A. Shirazi, and Edmund F. Rybicki. "Predicting Sand Erosion in Slug Flows Using a Two-Dimensional Mechanistic Model." In CORROSION 2011, 1–18. NACE International, 2011. https://doi.org/10.5006/c2011-11243.
Повний текст джерелаMolina García, Erika Natalia. "Déversement du regard fluide. Esquisse d'une méthodologie pour approcher théoriquement le cinéma." In XXV Coloquio AFUE. Palabras e imaginarios del agua. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/xxvcoloquioafue.2016.3090.
Повний текст джерелаBarbieri, Luca. "« Je fais l’eau avec ma voix » : Paul Claudel et la (méta)physique de l’eau." In XXV Coloquio AFUE. Palabras e imaginarios del agua. Valencia: Universitat Politècnica València, 2016. http://dx.doi.org/10.4995/xxvcoloquioafue.2016.2939.
Повний текст джерелаKawahara, Akimaro, Michio Sadatomi, Hideki Matsuo, and Satoshi Shimokawa. "Investigation of Characteristics of Gas-Liquid Two-Phase Flows in a Rectangular Microchannel With Return Bends." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-10011.
Повний текст джерелаFedun, Viktor. "EXPANSION OF A PLASMA PISTON IN A PIPE FILLED WITH A GAS-LIQUID FLUID." In DÉBATS SCIENTIFIQUES ET ORIENTATIONS PROSPECTIVES DU DÉVELOPPEMENT SCIENTIFIQUE. European Scientific Platform, 2021. http://dx.doi.org/10.36074/logos-05.02.2021.v3.34.
Повний текст джерелаTajiri, Shinsuke, Michihisa Tsutahara, and Long Wu. "Improvement of Two-Component Model of the Finite Difference Lattice Boltzmann Method for a Gas-Liquid Flow Simulation." In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37481.
Повний текст джерелаAbianeh, Omid Samimi, and C. P. Chen. "A Turbulence Model of Bi-Component Fuel Droplet for Atomizing Sprays." In ASME-JSME-KSME 2011 Joint Fluids Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajk2011-10038.
Повний текст джерелаGuzma´n, No´lides M., Ovadia Shoham, and Ram Mohan. "Study of Foam Flow in a Gas-Liquid Cylindrical Cyclone (GLCC) Compact Separator." In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78419.
Повний текст джерелаGhanbarzadeh, S., P. Hanafizadeh, and M. H. Saidi. "Time-Average Drag Coefficient and Void Fraction in Gas-Liquid Two Phase Flow." In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78220.
Повний текст джерелаЗвіти організацій з теми "Fluide (gaz et liquide)"
Guidati, Gianfranco, and Domenico Giardini. Synthèse conjointe «Géothermie» du PNR «Energie». Swiss National Science Foundation (SNSF), February 2020. http://dx.doi.org/10.46446/publication_pnr70_pnr71.2020.4.fr.
Повний текст джерела