Добірка наукової літератури з теми "Flux radiatif"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Flux radiatif".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Flux radiatif"
Singh, Bhawan, and Richard Taillefer. "Le bilan énergétique et le gel au sol : une analyse statistique." Géographie physique et Quaternaire 38, no. 2 (November 29, 2007): 135–47. http://dx.doi.org/10.7202/032548ar.
Повний текст джерелаCantat, Olivier, and Alexandre Follin. "Les singularités thermiques d’un espace périurbain dans une agglomération de dimension moyenne : le cas de Caen durant l’hiver 2018/2019." Climatologie 17 (2020): 3. http://dx.doi.org/10.1051/climat/202017003.
Повний текст джерелаBuckus, Raimondas, Aleksandras Chlebnikovas, Birute Strukcinskiene, Rimantas Stukas, Donatas Austys, Jacek Caban, Marcin Bogucki, et al. "Simulating the Dispersion of the Energy Flux Density of the Electromagnetic Field Generated by Antennas for Mobile Communications." Electronics 11, no. 15 (August 4, 2022): 2431. http://dx.doi.org/10.3390/electronics11152431.
Повний текст джерелаPomraning, G. C. "Multimode flux-limited diffusion theory." Laser and Particle Beams 10, no. 2 (June 1992): 239–51. http://dx.doi.org/10.1017/s0263034600004389.
Повний текст джерелаPerovich, Donald K. "Sunlight, clouds, sea ice, albedo, and the radiative budget: the umbrella versus the blanket." Cryosphere 12, no. 6 (June 27, 2018): 2159–65. http://dx.doi.org/10.5194/tc-12-2159-2018.
Повний текст джерелаRosida, NFN, and Indah Susanti. "PENGARUH AEROSOL TERHADAP FLUKS RADIASI NETO DI LAPISAN ATAS ATMOSFER DAN DI PERMUKAAN BERDASAR DATA SATELIT [INFLUENCE OF AEROSOL ON NET RADIATION FLUX AT THE TOP OF ATMOSPHERE AND SURFACE BASED ON SATELLITE]." Jurnal Sains Dirgantara 14, no. 2 (July 21, 2017): 27. http://dx.doi.org/10.30536/j.jsd.2016.v14.a2444.
Повний текст джерелаJHA, T. N. "Characteristics of radiative and non-radiative energy fluxes over monsoon trough zone." MAUSAM 52, no. 3 (January 11, 2022): 581–92. http://dx.doi.org/10.54302/mausam.v52i3.1729.
Повний текст джерелаWang, Zhenhua, Shikui Dong, Zhihong He, Lei Wang, Weihua Yang, and Bengt Ake Sunden. "Numerical analysis of radiative heat transfer in an inhomogeneous and non-isothermal combustion system considering H2O/CO2/CO and soot." International Journal of Numerical Methods for Heat & Fluid Flow 27, no. 9 (September 4, 2017): 1967–85. http://dx.doi.org/10.1108/hff-03-2016-0127.
Повний текст джерелаKnight, I. K., and A. L. Sullivan. "A semi-transparent model of bushfire flames to predict radiant heat flux." International Journal of Wildland Fire 13, no. 2 (2004): 201. http://dx.doi.org/10.1071/wf03047.
Повний текст джерелаGolkarfard, Vahid, Seyyed Abdolreza Gandjalikhan Nassab, and Amir Babak Ansari. "Simulation of Solid Particles in Combined Conduction, Convection and Radiation Gas Flow over a Backward-Facing Step in a Duct." Applied Mechanics and Materials 110-116 (October 2011): 5276–82. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.5276.
Повний текст джерелаДисертації з теми "Flux radiatif"
Guilbert, Simonne. "Comparaisons des flux ondes courtes POLDER / PARASOL et CERES / Aqua : amélioration des flux ondes courtes POLDER / PARASOL." Electronic Thesis or Diss., Université de Lille (2022-....), 2022. http://www.theses.fr/2022ULILR027.
Повний текст джерелаIn the context of climate change, it is essential to estimate precisely and be able to monitor over time the energy balance of the Earth at the top of the atmosphere and at the surface. In terms of measurement, obtaining a correct estimate of the radiative balance requires a precise determination of the shortwave (solar) and longwave (infrared) radiative fluxes. The objective of this thesis is to assess the solar radiative fluxes obtained from the French radiometer POLDER on board the PARASOL microsatellite supported by CNES. A first part of the thesis presents a comparison between the operational products computed from POLDER observations with the reference fluxes obtained through the broadband radiometers CERES on the NASA space platforms Aqua and Terra. The comparisons are made over two periods: first a period with coincident measurements (2005-2009), then a second period which corresponds to the drift of the PARASOL satellite (2010-2013). We show that this drift had an impact on the observations, with strong repercussions on the calculated fluxes. Over the period of coincidence of the measurements, POLDER fluxes are very close to the fluxes from CERES for two of the products studied (CERES SSF1deg and CERES SYN1deg) with relative differences under 2% until December 2009. After 2010, the relative difference increases with the drift. A land/ocean compensation effect is also revealed. The results obtained through these comparisons led us to study in detail the component of the algorithm used to obtain the monthly means of POLDER shortwave fluxes. This part of the algorithm is the diurnal extrapolation, used to estimate a value of albedo at all hours of the day from a single observation using models that are scene-dependent. The models used for the operational products were built using four months of POLDER-1 observations (1996-1997). We decided to take advantage of the data obtained throughout the entire PARASOL mission to improve these models. The shortwave fluxes obtained with the new models show less dependence on the drift over oceans but a drift is still present over lands. These results led to several propositions that could improve POLDER's shortwave fluxes, mainly by increasing the number of POLDER models. This work, based on measurements from POLDER-3, which was shut down in December 2013, but whose data is available, will be largely reusable for the future multispectral, multi-angular and polarized radiometer 3MI, developed by ESA and EUMETSAT and which will fly onboard the EPS-SG mission supported by EUMETSAT from 2024, for approximately 20 years
Baud, Germain. "Conception de récepteurs solaires à lit fluidisé sous flux radiatif concentré." Thesis, Toulouse, INPT, 2011. http://www.theses.fr/2011INPT0106/document.
Повний текст джерелаThe aim of this work is to evaluate the position and the potential of solar fluidized bed receivers compared to other methods for the solar heating of gases at high temperature. To this end, a thorough knowledge of the heat transfer and hydrodynamic of the receiver is necessary. To acquire this knowledge, we modeled the heat transfer in the receiver with a focus on the radiative transfer by taking into account the multiple scattering of light in the particle medium, the effect of walls on radiative heat transfer and the directionality of the concentrated solar radiation. The accurate determination of the distribution of particles within the fluidized bed has been a critical parameter for the calculation of heat transfer. With these models, later refined by a confrontation with experimental references, we have studied the effect of geometry on heat transfer in the receiver. This study highlighted the necessity to use a switching section fluidization column and the importance to optimize the pair : solar concentrator / receiver to avoid any overheating at the walls of the receiver. Moreover, it appears that the homogenization of the temperature in the fluidized bed of the receiver increase its performance
Leray, Cedric. "Etude du comportement thermique et thermomécanique des récepteurs solaires sous haut flux radiatif." Thesis, Perpignan, 2017. http://www.theses.fr/2017PERP0003/document.
Повний текст джерелаFor the future, using thermodynamical solar power plant seems to be a good solution to ensure electrical production. Solar tower plants are able to produce electricity in significant amount, are environmentally friendly and economically competitive. One way to increase the yield of these plants is using high efficiency thermodynamical cycles, like combined cycle. That requires to providing a working fluid at high temperature and high pressure (10bar and 1000°C at least). This PHD thesis presents the works performed to develop and enhance a concept of modular plate solar ceramic absorber that can ensure the required air production. We chose the silicon carbide as material due to its resistance to high temperatures and oxidation problems. The drawback is ceramic modules are weak to traction stresses. The study focuses on the knowledge and the control of this phenomenon. This work combines the developments of numerical tools and experimental studies performed at Thémis power plant (Targassonne, 66, FRANCE). The numerical method permits simulations to predict the thermal behavior and the mechanical behavior of a solar module absorber. It allows the reduction of the mechanical stresses undergone by solar receiver and the prediction of its performances. This methodology was tested using experimental results
Simonet, Frédéric. "Optimisation du calcul du flux radiatif dans les lampes a decharge haute pression : applications." Toulouse 3, 1997. http://www.theses.fr/1997TOU30213.
Повний текст джерелаHerin, Philippe. "Conception et caractérisation de capteurs de flux radiatif et convectif : application aux mesures "in situ"." Lille 1, 1988. http://www.theses.fr/1988LIL10051.
Повний текст джерелаRingenbach, Nicolas. "Bilan radiatif et flux de chaleur en climatologie urbaine : Mesures,modélisation et validation sur Strasbourg." Université Louis Pasteur (Strasbourg) (1971-2008), 2004. https://publication-theses.unistra.fr/public/theses_doctorat/2004/RINGENBACH_Nicolas_2004.pdf.
Повний текст джерелаHerin, Philippe. "Conception et caractérisation de capteurs de flux radiatif et convectif application aux mesures "in situ /." Grenoble 2 : ANRT, 1988. http://catalogue.bnf.fr/ark:/12148/cb37614253p.
Повний текст джерелаBen, Rehouma Asma. "Restitutions et analyse des paramètres climatiques mesurés par satellites sur l'Afrique et l'Océan Atlantique pour les deux dernières décennies : Tendances et variabilité des flux radiatifs en liaison avec les autres paramètres." Paris 6, 2007. http://www.theses.fr/2007PA066710.
Повний текст джерелаDia, Oumar, and Martin Hounkanlin. "Etude du transfert thermique et des instabilites dans un film liquide soumis a un flux radiatif." Poitiers, 1991. http://www.theses.fr/1991POIT2308.
Повний текст джерелаZhang, Xing Long. "Etude expérimentale et modélisation théorique d'un feu de combustible liquide de petite dimension : influence d'un flux radiatif extérieur." Poitiers, 1990. http://www.theses.fr/1990POIT2259.
Повний текст джерелаКниги з теми "Flux radiatif"
Mehta, Amita. Longwave radiative flux calculations in the TOVS pathfinder path A data set. Greenbelt, Md: National Aeronautics and Space Administration, Goddard Space Flight Center, 1999.
Знайти повний текст джерелаHartmann, Jörg. Radiation and eddy flux experiment 1991 (REFLEX 1). Bremerhaven, Bundesrepublik Deutschland: Alfred-Wegener-Institut für Polar- und Meeresforschung, 1992.
Знайти повний текст джерелаKottmeier, Christoph. Radiation and eddy flux experiment, 1991 (REFLEX II). Bremerhaven: Alfred-Wegener-Institut für Polar-und Meeresforschung, 1994.
Знайти повний текст джерелаHartmann, Jörg. Radiation and eddy flux experiment, 1991 (REFLEX 1). Bremerhaven: Alfred-Wegener-Institut für Polar-und Meeresforschung, 1992.
Знайти повний текст джерелаSiegel, Robert. Two-flux Green's function analysis for transient spectral radiation in a composite. Reston, VA: American Institute of Aeronautics and Astronautics, 1996.
Знайти повний текст джерелаSiegel, Robert. Two-flux Green's function analysis for transient spectral radiation in a composite. Reston, VA: American Institute of Aeronautics and Astronautics, 1996.
Знайти повний текст джерелаSiegel, Robert. Two-flux Green's function analysis for transient spectral radiation in a composite. Reston, VA: American Institute of Aeronautics and Astronautics, 1996.
Знайти повний текст джерелаBeddini, Robert A. Analysis of turbulent convective and radiative heat transfer in high temperature rocket chamber flows. New York: AIAA, 1987.
Знайти повний текст джерелаHaasz, A. A. Flux and energy dependence of radiation-enhanced sublimation of graphite. Amsterdam: North-Holland, 1987.
Знайти повний текст джерелаKyle, H. Lee. Nimbus-7 Earth Radiation Budget calibration history--Part II: The earth flux channels. Greenbelt, Md: Goddard Space Flight Center, 1994.
Знайти повний текст джерелаЧастини книг з теми "Flux radiatif"
Rouan, Daniel. "Flux, Radiative." In Encyclopedia of Astrobiology, 1. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_584-2.
Повний текст джерелаRouan, Daniel. "Flux, Radiative." In Encyclopedia of Astrobiology, 865. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_584.
Повний текст джерелаRouan, Daniel. "Flux, Radiative." In Encyclopedia of Astrobiology, 594. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_584.
Повний текст джерелаRoederer, J. G. "Introduction to Trapped Particle Flux Mapping." In Radiation Belts: Models and Standards, 149–51. Washington, D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm097p0149.
Повний текст джерелаKalkofen, W., G. Bodo, S. Massaglia, and P. Rossi. "2D Flux Tube in Radiative Equilibrium." In Solar and Stellar Granulation, 571–81. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-0911-3_61.
Повний текст джерелаBalázs, L. G., M. Kun, and V. Tóth. "Multispectral Analysis of IRAS Sky Flux Maps." In The Galactic and Extragalactic Background Radiation, 214–15. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0653-2_32.
Повний текст джерелаXenopoulos, Marguerite A., and David W. Schindler. "Physical Factors Determining Ultraviolet Radiation Flux into Ecosystems." In Ecosystems, Evolution, and Ultraviolet Radiation, 36–62. New York, NY: Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4757-3486-7_2.
Повний текст джерелаTanaka, Masayuki, Teruyuki Nakajima, and Tadahiro Hayasaka. "Estimation of the Aerosol Absorption Index from Spectral Measurements of the Solar Radiation Flux." In Atmospheric Radiation, 584–88. Boston, MA: American Meteorological Society, 1987. http://dx.doi.org/10.1007/978-1-935704-18-8_85.
Повний текст джерелаLong, Craig S. "NOAA/EPA Surface Ultra-Violet Flux Index." In Stratospheric Ozone Depletion/UV-B Radiation in the Biosphere, 293–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78884-0_41.
Повний текст джерелаHasan, S. S., W. Kalkofen, and O. Steiner. "2-D Radiative Equilibrium Models of Magnetic Flux Tubes." In Solar Polarization, 409–20. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9329-8_35.
Повний текст джерелаТези доповідей конференцій з теми "Flux radiatif"
Hu, Lu, Arvind Narayanaswamy, Xiaoyuan Chen, and Gang Chen. "Measurement of Near-Field Thermal Radiation Between Two Closely-Spaced Glass Plates." In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56412.
Повний текст джерелаStrohle, Jochen, Uwe Schnell, and Klaus R. G. Hein. "A MEAN FLUX DISCRETE ORDINATES INTERPOLATION SCHEME FOR GENERAL CO-ORDINATES." In RADIATION III. ICHMT Third International Symposium on Radiative Transfer. Connecticut: Begellhouse, 2001. http://dx.doi.org/10.1615/ichmt.2001.radiationsymp.80.
Повний текст джерелаAfgan, Naim Hamdia, Neven Duic, Zeljko Bogdan, Daniel Rolph Schneider, and Nikola Serman. "TUBE LEAKAGE EFFECT ON RADIATIVE HEAT FLUX IN BOILER." In Radiative Transfer I. Proceedings of the First International Symposium on Radiation Transfer. Connecticut: Begellhouse, 1995. http://dx.doi.org/10.1615/ichmt.1995.radtransfproc.430.
Повний текст джерелаWhale, MacMurray D. "Effective Flux Temperature Formulation for Energy Conversion Using Microscale Thermal Radiation." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/htd-24275.
Повний текст джерелаDamm, David L., and Andrei G. Fedorov. "Spectral Radiative Heat Transfer Analysis of the Planar SOFC." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-60142.
Повний текст джерелаMiguel, R. B., F. H. R. França, I. M. Machado, F. M. Pereira, and P. R. Pagot. "Application of Inverse Analysis to Determine the Parameters of the Weighted Multi Point Source Model for the Prediction of Heat Flux From Flames." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52544.
Повний текст джерелаMurthy, Sunil, and Andrei Fedorov. "Radiation Heat Transfer Analysis of the Monolith-Type Solid Oxide Fuel Cell." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41796.
Повний текст джерелаKrueger, Katherine R., Wojciech Lipiński, and Jane H. Davidson. "Operational Performance of the University of Minnesota 45kWe High-Flux Solar Simulator." In ASME 2012 6th International Conference on Energy Sustainability collocated with the ASME 2012 10th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/es2012-91119.
Повний текст джерелаIlyinsky, Alexander I. "INVERSE RADIATIVE HEAT TRANSFER TECHNIQUE FOR HEAT FLUX RESTORATION USING OPTIMAL WIENER FILTRATION." In Radiative Transfer I. Proceedings of the First International Symposium on Radiation Transfer. Connecticut: Begellhouse, 1995. http://dx.doi.org/10.1615/ichmt.1995.radtransfproc.370.
Повний текст джерелаKim, Kyunghan, and Zhixiong Guo. "Discrete Ordinates Method for Transient Radiation Transfer in Cylindrical Enclosures." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47256.
Повний текст джерелаЗвіти організацій з теми "Flux radiatif"
Grossman, A. S., K. E. Grant, and D. J. Wuebbles. Radiative flux calculations at UV and visible wavelengths. Office of Scientific and Technical Information (OSTI), October 1993. http://dx.doi.org/10.2172/10108002.
Повний текст джерелаTill, Andrew. Discretization Writeup for Grey Flux-Limited Radiation Diffusion. Office of Scientific and Technical Information (OSTI), November 2020. http://dx.doi.org/10.2172/1716739.
Повний текст джерелаWeber, J. M., and S. L. Hulbert. Flux and brightness calculations for various synchrotron radiation sources. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/6038769.
Повний текст джерелаWeber, J. M., and S. L. Hulbert. Flux and brightness calculations for various synchrotron radiation sources. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10119897.
Повний текст джерелаWhiteman, C. D., and Sebastian W. Hoch. Role of Radiative Flux Divergence in Stable Boundary Layer Development. Fort Belvoir, VA: Defense Technical Information Center, April 2011. http://dx.doi.org/10.21236/ada545624.
Повний текст джерелаHarbour, Logan, Jean Ragusa, Yaqi Wang, Sebastian Schunert, Derek Gaston, and Mark DeHart. Uncollided Flux Implementation for Discrete Ordinates Radiation Transport Solutions in Rattlesnake. Office of Scientific and Technical Information (OSTI), August 2017. http://dx.doi.org/10.2172/1468543.
Повний текст джерелаRagusa, Jean C., and Mark D. DeHart. Uncollided Flux Techniques for Discrete-Ordinate Radiation Transport Solutions in Rattlesnake. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1364492.
Повний текст джерелаTenenbaum, P. Synchrotron Radiation Effects in the IR Solenoid Flux Excluder(LCC-0007). Office of Scientific and Technical Information (OSTI), April 2004. http://dx.doi.org/10.2172/826902.
Повний текст джерелаOgren, John A., Ellsworth G. Dutton, and Allison C. McComiskey. Development of Aerosol Models for Radiative Flux Calculations at ARM Sites. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/936852.
Повний текст джерелаCIE. CIE 250:2022 Spectroradiometric Measurement of Optical Radiation Sources. International Commission on Illumination, June 2022. http://dx.doi.org/10.25039/tr.250.2022.
Повний текст джерела