Добірка наукової літератури з теми "Formulation de Matériaux Nanocomposites"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Formulation de Matériaux Nanocomposites".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Formulation de Matériaux Nanocomposites"
Ton-That, M. T., F. Perrin-Sarazin, K. C. Cole, M. N. Bureau, and J. Denault. "Polyolefin nanocomposites: Formulation and development." Polymer Engineering and Science 44, no. 7 (2004): 1212–19. http://dx.doi.org/10.1002/pen.20116.
Повний текст джерелаOualit, Mehena, Amar Irekti, and Arezki Sarri. "Influence des conditions de durcissement et le taux d’alcalins sur les performances mécaniques des matériaux alcali-activés à base du laitier de haut fourneau." Matériaux & Techniques 110, no. 2 (2022): 202. http://dx.doi.org/10.1051/mattech/2022017.
Повний текст джерелаOualit, Mehena, Amar Irekti, and Arezki Sarri. "Influence des conditions de durcissement et le taux d’alcalins sur les performances mécaniques des matériaux alcali-activés à base du laitier de haut fourneau." Matériaux & Techniques 110, no. 2 (2022): 202. http://dx.doi.org/10.1051/mattech/2022017.
Повний текст джерелаMomeni, K., and R. S. Yassar. "Analytical Formulation of Stress Distribution in Cellulose Nanocomposites." Journal of Computational and Theoretical Nanoscience 6, no. 7 (July 1, 2009): 1511–18. http://dx.doi.org/10.1166/jctn.2009.1203.
Повний текст джерелаAllamel-Raffin, Catherine. "Le texte et l'image dans la formulation de la preuve en physique des matériaux." Revue d'anthropologie des connaissances Vol 4, 3, no. 3 (2010): 476. http://dx.doi.org/10.3917/rac.011.0476.
Повний текст джерелаVafaeva, Khristina Maksudovna, Abhishek Chhetri, Prerak Sudan, Mukul Mishra, B. Pakkiraiah, and Chandra Mohan. "Polymer Matrix Nanocomposites for Sustainable Packaging: A Green Approach." E3S Web of Conferences 511 (2024): 01008. http://dx.doi.org/10.1051/e3sconf/202451101008.
Повний текст джерелаVafaeva, Khristina Maksudovna, Abhishek Chhetri, Prerak Sudan, Mukul Mishra, B. Sankara Babu, and Binitendra Naath Mongal. "Polymer Matrix Nanocomposites for Sustainable Packaging: A Green Approach." E3S Web of Conferences 537 (2024): 08001. http://dx.doi.org/10.1051/e3sconf/202453708001.
Повний текст джерелаSahebi Jouibari, Iman, Vahid Haddadi-Asl, and Mohammad Masoud Mirhosseini. "Formulation of micro-phase separation kinetics of polyurethane nanocomposites." Polymers for Advanced Technologies 29, no. 12 (July 19, 2018): 2909–16. http://dx.doi.org/10.1002/pat.4410.
Повний текст джерелаOlad, Ali, Hamid Zebhi, Dariush Salari, Abdolreza Mirmohseni, and Adel Reyhani Tabar. "Water retention and slow release studies of a salep-based hydrogel nanocomposite reinforced with montmorillonite clay." New Journal of Chemistry 42, no. 4 (2018): 2758–66. http://dx.doi.org/10.1039/c7nj03667a.
Повний текст джерелаAzani, Mohammad-Reza, and Azin Hassanpour. "UV-Curable Polymer Nanocomposites: Material Selection, Formulations, and Recent Advances." Journal of Composites Science 8, no. 11 (October 25, 2024): 441. http://dx.doi.org/10.3390/jcs8110441.
Повний текст джерелаДисертації з теми "Formulation de Matériaux Nanocomposites"
Luna, Cornejo Ollin Alan. "Formulation de matériaux électrostrictifs par voie émulsion pour la récupération d'énergie." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0012/document.
Повний текст джерелаThe aim of this work is to develop near percolated networks of conductive nanoparticles such as carbon nanotubes (CNT) or graphenesheets within an elastic polymer matrix, such as polydimethylsiloxane (PDMS). A novel emulsion formulation route is employed to achieve a fine control over the inner structure of the materials. Graphene or CNT aqueous dispersions are integrated in the continuous phase of an emulsion made of PDMS droplets in water. After water removal, the nanoparticles are segregated in between the PDMS droplets at the Plateau borders of the emulsion. The morphology of the networks formed by the particles is controlled by the size of the emulsion droplets. The dielectrics properties of such materials are governed by (i) the droplets size, (ii) the filler concentration and (iii) the aggregation state. The optimization of such factors by the emulsion approach leads to giant dielectric permittivity (ϵ'r≈104 à 100Hz). In addition, we developed accurate characterization devices to study the material dielectric properties in response to a mechanical stress (i.e. electrostriction). Particularly high electrostrictive coefficients of M33 ≈ 10-11 m2/V2 at 100Hz are measured. To our knowledge, these are the highest values in the literature to date. The electrostrictive materials developed in the present work can be implemented in variable capacitors for conversion of mechanical energy into electrical energy. They are promising candidates for ambient mechanical energy harvesting; however, the optimization of some parameters remains to be studied
Waché, Rémi. "Formulation et caractérisation de polyéthylènes chargés avec des argiles : Propriétés barrière des nanocomposites obtenus." Brest, 2004. http://www.theses.fr/2004BRES2035.
Повний текст джерелаThe particularity of polymer layered silicate nanocomposites is based on the exfoliation of the clay platelets in the polymer matrix. Therefore properties may be dramatically modified with very low clay loading. In this work polyethylene and organoclay have been melt blended. Due to a lack of polarity, the polymer chains do not intercalate the clay stacking. However exfoliation is achieved using maleated polyethylene. We used this polymer as a compatibilizer to promote clay exfoliation in the polyethylene matrix. Partial exfoliation is obtained. Barrier properties of these materials have been characterized. Permeability is higher for the clay reinforced products than their matrix. To understand the poor permeability results a tortuosity model has been developed. The quality of the interface seems to be involved. Several organoclays and compatibilizers have been tested to improve it. But for the concentrations of these products used polyethylene clay interactions always exist and lead to an increase of diffusion
Oyharçabal, Mathieu. "Synthèse, formulation, et mise en oeuvre de nanomatériaux conducteurs base poly(aniline) / nanotubes de carbone pour des applications micro-ondes." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14633.
Повний текст джерелаThis thesis deals with the formulation of electrically conductive nanocomposites for microwave applications. The main purpose is to process radar-absorbent materials, more particularly at the X band. (8-12 GHz). Polyaniline and carbon nanotubes, dispersed in an epoxyde matrix, have been selected. Different morphologies of polyaniline have been synthesized to study its impact on the absorption properties of composites. Using flake-like polyaniline showing high anisotropy and aspect ratio increases conductivity and dielectric losses of composites. Moreover, its association with carbon nanotubes significantly improves the absorption properties at microwaves frequencies. Efficient radar absorbing screens, showing reflection losses lower than -20 dB, have been calculated and processed confirming the potential of these materials for stealth applications
Fatome, Emilie. "Formulations de nanocomposites hautes performances pour revêtements coil-coating : optimisation des interactions nanocharges-matrice." Lyon, INSA, 2007. http://theses.insa-lyon.fr/publication/2007ISAL0027/these.pdf.
Повний текст джерелаThe objective of this work consists in optimizing formulations of coil-coating comprising nanofillers with the aim of improving the properties of coatings surface robustness without degrading other properties such as brightness or flexibility. We thus selected two families of nanofillers: lamellate clays and fumed silica for their mechanical performances and their economic attraction. We highlighted the importance of cation treatment and dispersion mode for lamellate clays dispersion improvment. However, a part of aggregates is broken, but without involving effects on the mechanical properties: nanofillers intrinsically harder should be used; it is the case of silicas. We then identified strong interactions between silica and melamine, leading to a strong gel. A surface treatment of adapted silica makes possible to reduce these interactions, which results in a quasi-Newtonian rheology due to a good dispersion of the fillers and significantly improved mechanical properties. To summarize, the interactions developed between nanofillers and organic matrix must be selected in an optimal way since they control not only the rheological behaviour of the formulations, but also the state of dispersion of the nanofillers in the cross linked film as well as various properties, in particular mechanical ones
Acquadro, Julien. "Étude des propriétés tribologiques et électriques de revêtements sol-gel comme alternative anticorrosion au cadmium et au chrome hexavalent pour la connectique en environnements sévères." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST150.
Повний текст джерелаConnector technology involves the components that create electrical connections between different systems. In critical sectors such as aerospace and military, these connections must be highly reliable and able to perform under harsh conditions. Therefore, the electrical contacts within connectors are protected by housings made from aluminium alloys, like AA6061, which must meet three essential criteria: electrical conductivity, mechanical strength, and corrosion resistance. Currently, these properties are achieved through surface protection coatings based on cadmium passivated with hexavalent chromium (VI). However, since 2017, this solution has been deemed unacceptable in Europe due to evolving RoHS and REACH directives and regulations, given the severe toxicity of cadmium and hexavalent chromium to both the environment and human health.This thesis is part of a significant industrial collaboration involving seven partners focused on developing and producing coatings to replace cadmium passivated with chromium (VI). Among the various approaches explored, the most innovative and promising involves using sol-gel coatings made conductive through the incorporation of appropriate conductive fillers. The strategy entails implementing these coatings at the laboratory scale and subjecting them to rigorous industrial qualification tests on connector housings.This thesis aims to enhance understanding of how various stages in the development of coatings affect their properties related to electrical conduction, wear resistance, and anti-corrosion capabilities. Deposits applied to laboratory model specimens were studied at both macroscopic and microscopic scales to determine the optimal synthesis parameters. These parameters include sol-gel precursors, amount of water, maturation conditions, and deposition techniques, all of which are adjusted based on the physicochemical and structural properties of the resulting films. The influence of the type and quantity of conductive fillers, whether carbon-based or metallic, on properties such as electrical conduction, wear resistance, mechanical strength, and corrosion protection, was rigorously evaluated.Periodic comparisons were made between these study results and the outcomes of qualification tests conducted on industrially complex connector housings coated with the same formulations. This allowed the identification of challenges to overcome in achieving the necessary properties of electrical conduction, mechanical strength, and corrosion resistance. These efforts also provide development prospects for the future of this technology in the connector industry
Alzina, Camille. "Nouvelles formulations industrielles à base de résine époxyde pour la fabrication de composites et de nanocomposites." Nice, 2009. http://www.theses.fr/2009NICE4074.
Повний текст джерелаPolymeric materials are mostly of composite materials ie they are composed in majority with a phase called matrix which was amended by adding a filler which is most often mineral. The reduction in size of the fillers can lead to new physical and chemical properties and to many potential applications. During this work in collaboration with the company SICOMIN Composites, thermosetting epoxy-amine system was studied with various nanofillers (clays, nanosilica, carbon nanotubes and block copolymers) in order to improve the mechanical properties of this system and to research new properties. In addition, a study on the reactivity of an epoxy-amine model system (DGEBA/mPDA) was conducted to study the secondary reactions involved in the crosslinking with an original kinetic method, the advanced isoconversional method. A study of this system at different ratios DGEBA/mPDA showed that stoichiometric proportions are not the most appropriate. In order to understand the complex physical-chemical phenomena and to optimize the properties of nanocomposite materials containing organophilic montmorillonites or silica nanoparticles, several studies were conducted and they highlighted some new fundamental aspects of the reactivity of these systems and they underlined the importance of the interaction nanofiller/matrix and of the dispersion of nanofillers
Sayah, Simon. "Impact de la formulation d'électrolytes sur les performances d'une électrode négative nanocomposite silicium-étain pour batteries Li-ion." Thesis, Tours, 2017. http://www.theses.fr/2017TOUR4025/document.
Повний текст джерелаThis study focuses on new electrolytes and additives in order to improve the cyclability of a Si0.32Ni0.14Sn0.17Al0.04C0.35 negative composite electrode (Si-Sn) and to obtain a stable electrolyte|electrolyte interface. Indeed, like most silicon-based materials, this high-capacity Si-Sn composite (over 600 mA.hg-1) currently suffers from a short cycle life due to volume expansion during charge-discharge processes leading to the degradation of the SEI. To improve the quality of the interface, two kinds of electrolytes were evaluated: (i) mixtures of alkyl carbonates EC/PC/3DMC in which a lithium salt (LiPF6, LiTFSI, LiFSI or LiDFOB) and additives like SEI builder (vinylene carbonate (VC) or fluoroethylene carbonate (FEC)) were added, (ii) ionic liquids (IL) based on quaternary ammonium (N1114+), imidazolium (EMI+) or pyrrolidinium (PYR+) cation, associated with delocalized charge anions such as bis(trifluoromethanesulfonyl)imide (TFSI-) or bis(fluorosulfonyl)imide (FSI-). The Walden diagram confirms the efficient dissociation of LiFSI and LiPF6 in EC/PC/3DM ensuring ionic conductivities as high as 12 mS.cm-1. Although possessing limited transport properties in such a ternary mixture compared to other salts, LiDFOB forms, without additional additives, an high quality SEI allowing the composite to provide the best performances in half cells (560 mA.hg-1 and 98.4% coulombic efficiency). The use of additive is however necessary to reach the objectives fixed by the ANR research project in terms of coulombic efficiency (>99.5%). In this case, the addition of 2%VC+10%FEC to the ternary mixture is the most interesting composition with LiPF6 as lithium salt. So, the Si-Sn nanocomposite material reaches 550 mA.h.g-1 during 100 cycles at C/5 with 99.8% efficiency. In IL, the best performances are achieved in [EMI][FSI]/LiFSI (1 mol.L-1). The performances of the Si-Sn composite reaches 635 mA.h.g-1 for 100 cycles at C/5 with coulombic efficiency close to 100%, without additives. This electrolyte formulation generates a stable SEI which the mainly mineral composition, is predominantly derived from the reduction products of FSI-
Rocco, Frédéric. "Matériaux nanocomposites pour l'optique." Bordeaux 1, 2007. http://www.theses.fr/2007BOR13494.
Повний текст джерелаNanotools show confinement effects and high interactions from their surface. They are th support of new optical properties like photoemission, absorption or non linear optical emission The modification of intrinsic effects depends of the environment and the coupling wit nonmaterials. The aim of this work is to synthesize nanocomposite materials (mixing two differen types of materials) for optics in order to analyse linear and non linear optical properties : Metal Phosphorus Ag / Ag x+ , semi-conductor / métal (CdS / Ag )
Ciocan, Cristina Elena. "Matériaux lamellaires nanocomposites : synthèse et applications." Thesis, Montpellier, Ecole nationale supérieure de chimie, 2010. http://www.theses.fr/2010ENCM0008.
Повний текст джерелаThe objective of this thesis was the optimization of the synthesis and catalytic performances of nanocomposites materials containing W and Mo in the oxidation with H2O2 of a wide range of model organic compounds. The work achieved during this thesis is the development of new heterogeneous catalysts for the oxidation reaction who is carried out selectively in homogeneous catalytic systems, heterogeneous catalysis is still much more promising in future. The oxidation reaction of sulfur compounds has great interest, especially in the removal of organic sulfur compounds (thiophene, sulfide) contained in fuels and petroleum fractions, performed in mild conditions of temperature and pressure in the presence of H2O2. In this study were as follows : 1. elaboration of materials : a) preparation of precursors of type hydrotalcites (HDL) based on Mg-Al-NO3, Mg-Al-Ni-terephthalate and Mg-Al-NO3. b) preparation of hybrid materials by intercalation species of Mo and W by two synthetic routes : reaction of anion-exchange and hydrothermal synthesis. 2. characterization of the structure, texture and nature of catalytic sites by different techniques : XRD, nitrogen adsorption, TGA, Raman spectroscopy and UV-Vis, SEM, etc. 3. application of these catalysts in the reaction of oxidation of sulfur compounds (sulfides, thiophenes, sulfoxides), epoxidation of cyclooctene and oxidation of anthracene. The catalysts were stable under operating conditions
Binette, Marie-Josée. "Nouveaux matériaux nanocomposites dérivés des polysilicates lamellaires." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0018/NQ57021.pdf.
Повний текст джерелаКниги з теми "Formulation de Matériaux Nanocomposites"
International Conference on Composites and Nanocomposites (1st : 2011 : Kottayam, India), ed. Composites and nanocomposites. Toronto: Apple Academic Press, 2013.
Знайти повний текст джерела(Firm), Knovel, ed. Natural polymers: Nanocomposites. Cambridge: Royal Society of Chemistry, 2012.
Знайти повний текст джерелаNanocomposites for Electrochemical Capacitors. Materials Research Forum LLC, 2018.
Знайти повний текст джерелаKortaberria, Galder, and Agnieszka Tercjak. Block Copolymer Nanocomposites. Jenny Stanford Publishing, 2016.
Знайти повний текст джерелаKortaberria, Galder, and Agnieszka Tercjak. Block Copolymer Nanocomposites. Jenny Stanford Publishing, 2016.
Знайти повний текст джерелаAmiri, Iraj Sadegh, Samira Bagheri, Amin Termeh Yousefi, and Sharifah Bee Abd Hamid. Nanocomposites in Electrochemical Sensors. Taylor & Francis Group, 2016.
Знайти повний текст джерелаЧастини книг з теми "Formulation de Matériaux Nanocomposites"
Salam, Haipan, and Yu Dong. "Properties of Optimal Material Formulation of Bioepoxy/Clay Nanocomposites." In Bioepoxy/Clay Nanocomposites, 171–99. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_6.
Повний текст джерелаSalam, Haipan, and Yu Dong. "Morphological Structures of Bioepoxy/Clay Nanocomposites with Optimum Material Formulation." In Bioepoxy/Clay Nanocomposites, 145–70. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_5.
Повний текст джерелаSalam, Haipan, and Yu Dong. "The Effects of Material Formulation and Manufacturing Process on Mechanical and Thermal Properties of Conventional Epoxy/Clay Nanocomposites." In Bioepoxy/Clay Nanocomposites, 97–112. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_3.
Повний текст джерелаSalam, Haipan, and Yu Dong. "Optimisation of Material Formulation and Processing Parameters in Relation to Mechanical Properties of Bioepoxy/Clay Nanocomposites Using Taguchi Design of Experiments (DoEs)." In Bioepoxy/Clay Nanocomposites, 113–44. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_4.
Повний текст джерелаGobi, Krishantinee, Norliana Munir, Shoriya Aruni Abdul Manaf, Aizi Nor Mazila Ramli, Daniel Joe Dailin, Nur Farzana Ahmad Sanadi, and Nor Hasmaliana Abdul Manas. "Fungal Biofactories for the Formulation of Nanocomposites for Therapeutic Applications." In Bioprospecting of Multi-tasking Fungi for Therapeutic Applications, 181–201. Singapore: Springer Nature Singapore, 2025. https://doi.org/10.1007/978-981-96-2975-6_8.
Повний текст джерелаYAO, Shenghong, and Jinkai YUAN. "Nanocomposites de polymères électrostrictifs : aspects fondamentaux et applications." In Nanocomposites, 229–58. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9031.ch8.
Повний текст джерелаBLIVI, Adoté Sitou, Benhui FAN, Djimédo KONDO, and Fahmi BEDOUI. "Technique de caractérisation morphologique des polymères nanorenforcés." In Nanocomposites, 49–71. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9031.ch2.
Повний текст джерелаGebel, Gérard. "Les matériaux pour piles à combustible." In Énergie et formulation, 120–31. EDP Sciences, 2020. https://doi.org/10.1051/978-2-86883-844-5.c011.
Повний текст джерелаGebel, Gérard. "Les matériaux pour piles à combustible." In Énergie et formulation, 120–31. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0143-5.c011.
Повний текст джерелаGebel, Gérard. "Énergie et formulation." In Énergie et formulation, 120–31. EDP Sciences, 2005. https://doi.org/10.3917/edp.canse.2005.01.0120.
Повний текст джерелаТези доповідей конференцій з теми "Formulation de Matériaux Nanocomposites"
Luo, Wenyuan, Yingtao Liu, Mrinal Saha, Steven Patterson, and Thomas Robison. "Fabrication, Optimization, and Characterization of PDMS/CNF Nanocomposite Sensor Arrays." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86269.
Повний текст джерелаJohari, N. A., K. Y. Lau, Z. Abdul-Malek, M. R. M. Esa, C. W. Tan, and R. Ayop. "Structure of Polypropylene, Ethylene-Propylene- Diene-Monomer and Magnesium Oxide for the Formulation of PP Blend Nanocomposites." In 2023 IEEE 3rd International Conference in Power Engineering Applications (ICPEA). IEEE, 2023. http://dx.doi.org/10.1109/icpea56918.2023.10093200.
Повний текст джерелаTian, Zhiting, Sang Kim, Ying Sun, and Bruce White. "A Molecular Dynamics Study of Thermal Conductivity in Nanocomposites via the Phonon Wave Packet Method." In ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89272.
Повний текст джерелаZhao, Dongfang, Jacob Meves, Anirban Mondal, Mrinal C. Saha, and Yingtao Liu. "Additive Manufacturing of Embedded Strain Sensors in Structural Composites." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94366.
Повний текст джерелаLi, Yaning, Anthony M. Waas, and Ellen M. Arruda. "A Particle Size-Shape-Dependent Three-Phase Two-Step Mori-Tanaka Method for Studying the Interphase of Polymer/Clay Nanocomposites." In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-67312.
Повний текст джерелаBayar, Selen, Feridun Delale, Benjamin Liaw, Jackie Ji Li, Jerry Chung, Matthew Dabrowski, and Ramki Iyer. "An In-Depth Study on the Mechanical and Thermal Properties of Nanoclay Reinforced Polymers at Various Temperatures." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37341.
Повний текст джерелаOlivera, Adrian, Jhonathan Rosales, and Pedro O. Quintero. "Phase Change Material’s (PCMs) Effectiveness Index for Rapid Assessment in Thermal Management of Transient Pulse Electronics." In ASME 2021 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/ipack2021-69321.
Повний текст джерелаIyer, Akshay, Yichi Zhang, Aditya Prasad, Siyu Tao, Yixing Wang, Linda Schadler, L. Catherine Brinson, and Wei Chen. "Data-Centric Mixed-Variable Bayesian Optimization for Materials Design." In ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/detc2019-98222.
Повний текст джерелаRahman, Kazi M., M. Ruhul Amin, and Ahsan Mian. "A Numerical Study of Diffusion of Nanoparticles in a Viscous Medium During Solidification." In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-70069.
Повний текст джерела