Добірка наукової літератури з теми "Formulation of Nanocomposite Materials"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Formulation of Nanocomposite Materials".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Formulation of Nanocomposite Materials"
Vafaeva, Khristina Maksudovna, Abhishek Chhetri, Prerak Sudan, Mukul Mishra, B. Pakkiraiah, and Chandra Mohan. "Polymer Matrix Nanocomposites for Sustainable Packaging: A Green Approach." E3S Web of Conferences 511 (2024): 01008. http://dx.doi.org/10.1051/e3sconf/202451101008.
Повний текст джерелаVafaeva, Khristina Maksudovna, Abhishek Chhetri, Prerak Sudan, Mukul Mishra, B. Sankara Babu, and Binitendra Naath Mongal. "Polymer Matrix Nanocomposites for Sustainable Packaging: A Green Approach." E3S Web of Conferences 537 (2024): 08001. http://dx.doi.org/10.1051/e3sconf/202453708001.
Повний текст джерелаCarrascosa, Ana, Jaime S. Sánchez, María Guadalupe Morán-Aguilar, Gemma Gabriel, and Fabiola Vilaseca. "Advanced Flexible Wearable Electronics from Hybrid Nanocomposites Based on Cellulose Nanofibers, PEDOT:PSS and Reduced Graphene Oxide." Polymers 16, no. 21 (October 29, 2024): 3035. http://dx.doi.org/10.3390/polym16213035.
Повний текст джерелаMarin, Maria Minodora, Ioana Catalina Gifu, Gratiela Gradisteanu Pircalabioru, Madalina Albu Kaya, Rodica Roxana Constantinescu, Rebeca Leu Alexa, Bogdan Trica, et al. "Microbial Polysaccharide-Based Formulation with Silica Nanoparticles; A New Hydrogel Nanocomposite for 3D Printing." Gels 9, no. 5 (May 19, 2023): 425. http://dx.doi.org/10.3390/gels9050425.
Повний текст джерелаHAFEZ, INAS H., MOHAMED R. BERBER, KEIJI MINAGAWA, TAKESHI MORI, and MASAMI TANAKA. "FORMULATION OF POLYACRYLIC ACID-LAYERED DOUBLE HYDROXIDE COMPOSITE SYSTEM AS A SOIL CONDITIONER FOR WATER MANAGEMENT." International Journal of Modern Physics: Conference Series 06 (January 2012): 138–43. http://dx.doi.org/10.1142/s2010194512003078.
Повний текст джерелаGatos, K. G., A. A. Apostolov, and J. Karger-Kocsis. "Compatibilizer Effect of Grafted Glycidyl Methacrylate on EPDM/Organoclay Nanocomposites." Materials Science Forum 482 (April 2005): 347–50. http://dx.doi.org/10.4028/www.scientific.net/msf.482.347.
Повний текст джерелаPinto, Susana C., Paula A. A. P. Marques, Romeu Vicente, Luís Godinho, and Isabel Duarte. "Hybrid Structures Made of Polyurethane/Graphene Nanocomposite Foams Embedded within Aluminum Open-Cell Foam." Metals 10, no. 6 (June 9, 2020): 768. http://dx.doi.org/10.3390/met10060768.
Повний текст джерелаGuz, Alexander N., and Jeremiah J. Rushchitsky. "Some Fundamental Aspects of Mechanics of Nanocomposite Materials and Structural Members." Journal of Nanotechnology 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/641581.
Повний текст джерелаReddy, J. N., Vinu U. Unnikrishnan, and Ginu U. Unnikrishnan. "Recent advances in the analysis of nanotube-reinforced polymeric biomaterials." Journal of the Mechanical Behavior of Materials 22, no. 5-6 (December 1, 2013): 137–48. http://dx.doi.org/10.1515/jmbm-2013-0021.
Повний текст джерелаNajem Abed, Nisreen Abdul Rahman, Suha Mujahed Abudoleh, Iyad Daoud Alshawabkeh, Abdul Rahman Najem Abed, Rasha Khaled Ali Abuthawabeh, and Samer Hasan Hussein-Al-Ali. "Aspirin Drug Intercalated into Zinc-Layered Hydroxides as Nanolayers: Structure and In Vitro Release." Nano Hybrids and Composites 18 (November 2017): 42–52. http://dx.doi.org/10.4028/www.scientific.net/nhc.18.42.
Повний текст джерелаДисертації з теми "Formulation of Nanocomposite Materials"
Acquadro, Julien. "Étude des propriétés tribologiques et électriques de revêtements sol-gel comme alternative anticorrosion au cadmium et au chrome hexavalent pour la connectique en environnements sévères." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST150.
Повний текст джерелаConnector technology involves the components that create electrical connections between different systems. In critical sectors such as aerospace and military, these connections must be highly reliable and able to perform under harsh conditions. Therefore, the electrical contacts within connectors are protected by housings made from aluminium alloys, like AA6061, which must meet three essential criteria: electrical conductivity, mechanical strength, and corrosion resistance. Currently, these properties are achieved through surface protection coatings based on cadmium passivated with hexavalent chromium (VI). However, since 2017, this solution has been deemed unacceptable in Europe due to evolving RoHS and REACH directives and regulations, given the severe toxicity of cadmium and hexavalent chromium to both the environment and human health.This thesis is part of a significant industrial collaboration involving seven partners focused on developing and producing coatings to replace cadmium passivated with chromium (VI). Among the various approaches explored, the most innovative and promising involves using sol-gel coatings made conductive through the incorporation of appropriate conductive fillers. The strategy entails implementing these coatings at the laboratory scale and subjecting them to rigorous industrial qualification tests on connector housings.This thesis aims to enhance understanding of how various stages in the development of coatings affect their properties related to electrical conduction, wear resistance, and anti-corrosion capabilities. Deposits applied to laboratory model specimens were studied at both macroscopic and microscopic scales to determine the optimal synthesis parameters. These parameters include sol-gel precursors, amount of water, maturation conditions, and deposition techniques, all of which are adjusted based on the physicochemical and structural properties of the resulting films. The influence of the type and quantity of conductive fillers, whether carbon-based or metallic, on properties such as electrical conduction, wear resistance, mechanical strength, and corrosion protection, was rigorously evaluated.Periodic comparisons were made between these study results and the outcomes of qualification tests conducted on industrially complex connector housings coated with the same formulations. This allowed the identification of challenges to overcome in achieving the necessary properties of electrical conduction, mechanical strength, and corrosion resistance. These efforts also provide development prospects for the future of this technology in the connector industry
Oyharçabal, Mathieu. "Synthèse, formulation, et mise en oeuvre de nanomatériaux conducteurs base poly(aniline) / nanotubes de carbone pour des applications micro-ondes." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14633.
Повний текст джерелаThis thesis deals with the formulation of electrically conductive nanocomposites for microwave applications. The main purpose is to process radar-absorbent materials, more particularly at the X band. (8-12 GHz). Polyaniline and carbon nanotubes, dispersed in an epoxyde matrix, have been selected. Different morphologies of polyaniline have been synthesized to study its impact on the absorption properties of composites. Using flake-like polyaniline showing high anisotropy and aspect ratio increases conductivity and dielectric losses of composites. Moreover, its association with carbon nanotubes significantly improves the absorption properties at microwaves frequencies. Efficient radar absorbing screens, showing reflection losses lower than -20 dB, have been calculated and processed confirming the potential of these materials for stealth applications
PAMMI, SRI LAXMI. "CARBON NANOCOMPOSITE MATERIALS." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1069881274.
Повний текст джерелаThomas, Michael David Ross. "Electrical phenomena in nanocomposite materials." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621926.
Повний текст джерелаBobrinetskiy, I. I., A. Y. Gerasimenko, L. Ichkitidze, O. R. Khrolova, R. V. Morozov, V. M. Podgaetsky, and S. V. Selishchev. "Nanocomposite Materials for Cell Growth." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35452.
Повний текст джерелаLee, Ji Hoon. "Tensegrity-inspired nanocomposite structures." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44839.
Повний текст джерелаBera, Chandan. "Thermo electric properties of nanocomposite materials." Phd thesis, Ecole Centrale Paris, 2010. http://tel.archives-ouvertes.fr/tel-00576360.
Повний текст джерелаYani, Yin. "Molecular dynamics simulation of nanocomposite materials." [Ames, Iowa : Iowa State University], 2009.
Знайти повний текст джерелаDi, Carlo Lidia. "Nanocomposite cathodic materials for secondary cells." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17765.
Повний текст джерелаHexagonal tungsten bronze (HTB)-FeF3∙0.33H2O xerogel and HTB-FeF3∙0.33H2O/GO nanocomposite were firstly obtained by a room temperature fluorolytic sol-gel approach in MeOH, and their electrochemical properties evaluated. Operando Mössbauer spectroscopy and X-Ray diffraction were employed to investigate the reaction mechanism during reaction with lithium. The fluoride evidenced a complex behavior, with structural collapse of the HTB phase and gradual transformation into FeF2-rutile-like nanodomains, becoming the predominant component all along the reaction. XRD confirmed the amorphization of the electroactive material. Structural optimization of HTB-FeF3·0.33H2O was then achieved by a microwave-assisted fluorolytic sol-gel in benzyl alcohol. The procedure allowed the synthesis of phase pure nanoparticles of ~30 nm in diameter, along with the production of a reduced graphene oxide (RGO)-based nanocomposite and the reduction of reaction times. Deposition onto conductive RGO resulted beneficial for the electrochemical performance of the fluoride, which was able to sustain repeated cycling at different C-rates and recovered full capacity after more than 50 cycles with respect to the unsupported HTB-FeF3·0.33H2O. Aiming at the production of active ions-holding materials to solve safety issues related to the use of metallic anodes, necessary with structures such as HTB-FeF3·0.33H2O, Na-containing hexafluoroferrate nanocomposites were produced using RGO and partially oxidized carbon black (ox-CB) as conductive carbons. Carbon type greatly affected the electrochemical performance, whose best improvement was obtained using RGO as support
Ye, Yueping. "Microstructure and properties of epoxy/halloysite nanocomposite /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20YE.
Повний текст джерелаКниги з теми "Formulation of Nanocomposite Materials"
Sun, Rong, Ruxu Du, and Yu Shuhui. Functional nanocomposite materials. Durnten-Zurich: Trans Tech Publishing, 2012.
Знайти повний текст джерелаGulati, Shikha, ed. Chitosan-Based Nanocomposite Materials. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5338-5.
Повний текст джерелаMittal, Vikas. Advances in polymer nanocomposite technology. Hauppauge, NY: Nova Science Publishers, 2009.
Знайти повний текст джерелаMahler, Erne, and Detlev Seiler. Carbon nanotube and nanocomposite research. Hauppauge, N.Y: Nova Science Publishers, 2011.
Знайти повний текст джерелаKar, Kamal K., ed. Handbook of Nanocomposite Supercapacitor Materials III. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68364-1.
Повний текст джерелаKar, Kamal K., ed. Handbook of Nanocomposite Supercapacitor Materials II. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52359-6.
Повний текст джерелаKar, Kamal K., ed. Handbook of Nanocomposite Supercapacitor Materials I. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43009-2.
Повний текст джерелаAvalos Belmontes, Felipe, Francisco J. González, and Miguel Ángel López-Manchado, eds. Green-Based Nanocomposite Materials and Applications. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18428-4.
Повний текст джерелаKar, Kamal K., ed. Handbook of Nanocomposite Supercapacitor Materials IV. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23701-0.
Повний текст джерелаPogrebnjak, Alexander D., Yang Bing, and Martin Sahul, eds. Nanocomposite and Nanocrystalline Materials and Coatings. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2667-7.
Повний текст джерелаЧастини книг з теми "Formulation of Nanocomposite Materials"
Salam, Haipan, and Yu Dong. "Properties of Optimal Material Formulation of Bioepoxy/Clay Nanocomposites." In Bioepoxy/Clay Nanocomposites, 171–99. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_6.
Повний текст джерелаSalam, Haipan, and Yu Dong. "Morphological Structures of Bioepoxy/Clay Nanocomposites with Optimum Material Formulation." In Bioepoxy/Clay Nanocomposites, 145–70. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_5.
Повний текст джерелаParameswaranpillai, Jyotishkumar, Nishar Hameed, Thomas Kurian, and Yingfeng Yu. "Introduction to Nanomaterials and Nanocomposites." In Nanocomposite Materials, 1–4. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-2.
Повний текст джерелаGatos, K. G., and Y. W. Leong. "Classification of Nanomaterials and Nanocomposites." In Nanocomposite Materials, 5–36. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-3.
Повний текст джерелаRamazani S.A., A., Y. Tamsilian, and M. Shaban. "Synthesis of Nanomaterials." In Nanocomposite Materials, 37–80. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-4.
Повний текст джерелаRodriguez, Veronica Marchante, and Hrushikesh A. Abhyankar. "Optical Properties of Nanomaterials." In Nanocomposite Materials, 81–103. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-5.
Повний текст джерелаGashti, Mazeyar Parvinzadeh, Farbod Alimohammadi, Amir Kiumarsi, Wojciech Nogala, Zhun Xu, William J. Eldridge, and Adam Wax. "Microscopy of Nanomaterials." In Nanocomposite Materials, 105–28. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-6.
Повний текст джерелаShokoohi, Shirin, Ghasem Naderi, and Aliasghar Davoodi. "Mechanical Properties of Nanomaterials." In Nanocomposite Materials, 129–45. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-7.
Повний текст джерелаNasirpouri, Farzad. "Electrodeposited Nanocomposite Films." In Electrodeposition of Nanostructured Materials, 289–310. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44920-3_7.
Повний текст джерелаSalam, Haipan, and Yu Dong. "The Effects of Material Formulation and Manufacturing Process on Mechanical and Thermal Properties of Conventional Epoxy/Clay Nanocomposites." In Bioepoxy/Clay Nanocomposites, 97–112. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_3.
Повний текст джерелаТези доповідей конференцій з теми "Formulation of Nanocomposite Materials"
Advincula, Rigoberto C. "Superhydrophobic and Nanostructured HPHT Stable Polybenzoxazine Nanocomposite Coatings for Oil and Gas." In CORROSION 2019, 1–7. NACE International, 2019. https://doi.org/10.5006/c2019-13524.
Повний текст джерелаLEPADATU, Daniel, Loredana JUDELE, Ioana ENTUC, Eduard PROASPAT, and Gabriel SANDULACHE. "NANOPARTICLES AND RECYCLABLE WASTE IN CONSTRUCTION MATERIALS. FROM PRACTICAL NECESSITY TO ADVANCED SOLUTIONS." In SGEM International Multidisciplinary Scientific GeoConference, 231–38. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024v/6.2/s25.29.
Повний текст джерелаTian, Zhiting, Sang Kim, Ying Sun, and Bruce White. "A Molecular Dynamics Study of Thermal Conductivity in Nanocomposites via the Phonon Wave Packet Method." In ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89272.
Повний текст джерелаTallman, T. N. "Strain Estimation From Conductivity Changes in Piezoresistive Nanocomposites." In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9012.
Повний текст джерелаTalamadupula, Krishna Kiran, and Gary D. Seidel. "Multiscale Modeling of Effective Piezoresistivity and Implementation of Non-Local Damage Formulation in Nanocomposite Bonded Explosives." In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0903.
Повний текст джерелаZhao, Dongfang, Jacob Meves, Anirban Mondal, Mrinal C. Saha, and Yingtao Liu. "Additive Manufacturing of Embedded Strain Sensors in Structural Composites." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94366.
Повний текст джерелаLuo, Wenyuan, Yingtao Liu, Mrinal Saha, Steven Patterson, and Thomas Robison. "Fabrication, Optimization, and Characterization of PDMS/CNF Nanocomposite Sensor Arrays." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86269.
Повний текст джерелаUttley, Katherine, Anika Galvan, Matthew Nakatsuka, and Marco Basile. "High Temperature Compatible, Field-Deployable Heat Exchanger Nanocomposite Treatments." In Offshore Technology Conference. OTC, 2024. http://dx.doi.org/10.4043/35384-ms.
Повний текст джерелаBayar, Selen, Feridun Delale, Benjamin Liaw, Jackie Ji Li, Jerry Chung, Matthew Dabrowski, and Ramki Iyer. "An In-Depth Study on the Mechanical and Thermal Properties of Nanoclay Reinforced Polymers at Various Temperatures." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37341.
Повний текст джерелаHernandez, J. A., H. Zhu, F. Semperlotti, and T. N. Tallman. "The Transient Response of Piezoresistive CNF-Modified Epoxy Rods to One-Dimensional Wave Packet Excitation." In ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/smasis2021-67801.
Повний текст джерелаЗвіти організацій з теми "Formulation of Nanocomposite Materials"
Roy, R., and S. Komarneni. Multifunctional nanocomposite materials. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/6977177.
Повний текст джерелаHunt, A. J., M. Ayers, and W. Cao. Aerogel nanocomposite materials. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/105119.
Повний текст джерелаRoy, R., and S. Komarneni. Multifunctional nanocomposite materials. Progress report. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10187528.
Повний текст джерелаStormont, John. Wellbore Seal Repair Using Nanocomposite Materials. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1337552.
Повний текст джерелаCollins, Eric, Michelle Pantoya, Andreas A. Neuber, Michael Daniels, and Daniel Prentice. Piezoelectric Ignition of Nanocomposite Energetic Materials. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada597296.
Повний текст джерелаPotter, Jr, and Barrett G. Optoelectronic Nanocomposite Materials for Thin Film Photovoltaics. Fort Belvoir, VA: Defense Technical Information Center, June 2012. http://dx.doi.org/10.21236/ada562250.
Повний текст джерелаKrishnan, Sitaraman, John McLaughlin, and Dipankar Roy. Novel Nanocomposite Materials for Solar Cell Fabrication. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada570684.
Повний текст джерелаPantoya, Michelle L. Combustion and Ignition Studies of Nanocomposite Energetic Materials. Fort Belvoir, VA: Defense Technical Information Center, December 2010. http://dx.doi.org/10.21236/ada545482.
Повний текст джерелаHash, M. C., V. N. Zyryanov, J. K. Basco, and D. B. Chamberlain. Fissile Materials Disposition Formulation Report. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/802089.
Повний текст джерелаHaglund, Jr., Richard F. Linear and Nonlinear Optical Properties of Metal Nanocomposite Materials. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1481179.
Повний текст джерела