Добірка наукової літератури з теми "Formulation of Nanocomposite Materials"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Formulation of Nanocomposite Materials".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Formulation of Nanocomposite Materials"

1

Vafaeva, Khristina Maksudovna, Abhishek Chhetri, Prerak Sudan, Mukul Mishra, B. Pakkiraiah, and Chandra Mohan. "Polymer Matrix Nanocomposites for Sustainable Packaging: A Green Approach." E3S Web of Conferences 511 (2024): 01008. http://dx.doi.org/10.1051/e3sconf/202451101008.

Повний текст джерела
Анотація:
This research examines the characteristics and ecological viability of polymer matrix nanocomposites used in sustainable packaging. Nanocomposites were produced by combining varied proportions of polymer and nanofiller material. Through mechanical testing, it was determined that nanocomposite formulation 3 had the maximum tensile strength of 55 MPa, as well as a Young’s modulus of 3.5 GPa, showing greater stiffness in comparison to the other formulations. The evaluation of barrier qualities revealed that nanocomposite formulation 2 exhibited the most minimal oxygen permeability at a rate of 8 cc/m²/day and the lowest water vapor transmission rate at 4.5 g/m²/day, showing very efficient performance in preventing the passage of gases and moisture. The environmental impact study showed that nanocomposite formulation 3 had the most efficient energy consumption during manufacture, with a rate of 1.8 kWh/kg. It also had the lowest waste creation, with just 0.08 kg/kg, and the lowest CO2 emissions, with only 0.4 kg/kg. Nanocomposite formulation 3 demonstrated substantial improvements in mechanical characteristics, barrier properties, and environmental impact indicators when compared to the reference formulations, as shown by the percentage change analysis. In summary, this study showcases the capabilities of polymer matrix nanocomposites, specifically formulation 3, as environmentally friendly packaging materials that offer improved mechanical properties, effective barrier performance, and reduced ecological footprint. These findings contribute to the development of sustainable packaging solutions across different industries.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vafaeva, Khristina Maksudovna, Abhishek Chhetri, Prerak Sudan, Mukul Mishra, B. Sankara Babu, and Binitendra Naath Mongal. "Polymer Matrix Nanocomposites for Sustainable Packaging: A Green Approach." E3S Web of Conferences 537 (2024): 08001. http://dx.doi.org/10.1051/e3sconf/202453708001.

Повний текст джерела
Анотація:
This research examines the characteristics and ecological viability of polymer matrix nanocomposites used in sustainable packaging. Nanocomposites were produced by combining varied proportions of polymer and nanofiller material. Through mechanical testing, it was determined that nanocomposite formulation 3 had the maximum tensile strength of 55 MPa, as well as a Young's modulus of 3.5 GPa, showing greater stiffness in comparison to the other formulations. The evaluation of barrier qualities revealed that nanocomposite formulation 2 exhibited the most minimal oxygen permeability at a rate of 8 cc/m2/day and the lowest water vapor transmission rate at 4.5 g/m2/day, showing very efficient performance in preventing the passage of gases and moisture. The environmental impact study showed that nanocomposite formulation 3 had the most efficient energy consumption during manufacture, with a rate of 1.8 kWh/kg. It also had the lowest waste creation, with just 0.08 kg/kg, and the lowest CO2 emissions, with only 0.4 kg/kg. Nanocomposite formulation 3 demonstrated substantial improvements in mechanical characteristics, barrier properties, and environmental impact indicators when compared to the reference formulations, as shown by the percentage change analysis. In summary, this study showcases the capabilities of polymer matrix nanocomposites, specifically formulation 3, as environmentally friendly packaging materials that offer improved mechanical properties, effective barrier performance, and reduced ecological footprint. These findings contribute to the development of sustainable packaging solutions across different industries.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Carrascosa, Ana, Jaime S. Sánchez, María Guadalupe Morán-Aguilar, Gemma Gabriel, and Fabiola Vilaseca. "Advanced Flexible Wearable Electronics from Hybrid Nanocomposites Based on Cellulose Nanofibers, PEDOT:PSS and Reduced Graphene Oxide." Polymers 16, no. 21 (October 29, 2024): 3035. http://dx.doi.org/10.3390/polym16213035.

Повний текст джерела
Анотація:
The need for responsible electronics is leading to great interest in the development of new bio-based devices that are environmentally friendly. This work presents a simple and efficient process for the creation of conductive nanocomposites using renewable materials such as cellulose nanofibers (CNF) from enzymatic pretreatment, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), and/or reduced graphene oxide (rGO). Different combinations of CNF, rGo, and PEDOT:PSS were considered to generate homogeneous binary and ternary nanocomposite formulations. These formulations were characterized through SEM, Raman spectroscopy, mechanical, electrical, and electrochemical analysis. The binary formulation containing 40 wt% of PEDOT:PSS resulted in nanocomposite formulations with tensile strength, Young’s modulus, and a conductivity of 70.39 MPa, 3.87 GPa, and 0.35 S/cm, respectively. The binary formulation with 15 wt% of rGO reached 86.19 MPa, 4.41 GPa, and 13.88 S/cm of the same respective properties. A synergy effect was observed for the ternary formulations between both conductive elements; these nanocomposite formulations reached 42.11 S/cm of conductivity and kept their strength as nanocomposites. The 3D design strategy provided a highly conductive network maintaining the structural integrity of CNF, which generated homogenous nanocomposites with rGO and PEDOT:PSS. These formulations can be considered as greatly promising for the next generation of low-cost, eco-friendly, and energy storage devices, such as batteries or electrochemical capacitors.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Marin, Maria Minodora, Ioana Catalina Gifu, Gratiela Gradisteanu Pircalabioru, Madalina Albu Kaya, Rodica Roxana Constantinescu, Rebeca Leu Alexa, Bogdan Trica, et al. "Microbial Polysaccharide-Based Formulation with Silica Nanoparticles; A New Hydrogel Nanocomposite for 3D Printing." Gels 9, no. 5 (May 19, 2023): 425. http://dx.doi.org/10.3390/gels9050425.

Повний текст джерела
Анотація:
Natural polysaccharides are highly attractive biopolymers recommended for medical applications due to their low cytotoxicity and hydrophilicity. Polysaccharides and their derivatives are also suitable for additive manufacturing, a process in which various customized geometries of 3D structures/scaffolds can be achieved. Polysaccharide-based hydrogel materials are widely used in 3D hydrogel printing of tissue substitutes. In this context, our goal was to obtain printable hydrogel nanocomposites by adding silica nanoparticles to a microbial polysaccharide’s polymer network. Several amounts of silica nanoparticles were added to the biopolymer, and their effects on the morpho-structural characteristics of the resulting nanocomposite hydrogel inks and subsequent 3D printed constructs were studied. FTIR, TGA, and microscopy analysis were used to investigate the resulting crosslinked structures. Assessment of the swelling characteristics and mechanical stability of the nanocomposite materials in a wet state was also conducted. The salecan-based hydrogels displayed excellent biocompatibility and could be employed for biomedical purposes, according to the results of the MTT, LDH, and Live/Dead tests. The innovative, crosslinked, nanocomposite materials are recommended for use in regenerative medicine.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

HAFEZ, INAS H., MOHAMED R. BERBER, KEIJI MINAGAWA, TAKESHI MORI, and MASAMI TANAKA. "FORMULATION OF POLYACRYLIC ACID-LAYERED DOUBLE HYDROXIDE COMPOSITE SYSTEM AS A SOIL CONDITIONER FOR WATER MANAGEMENT." International Journal of Modern Physics: Conference Series 06 (January 2012): 138–43. http://dx.doi.org/10.1142/s2010194512003078.

Повний текст джерела
Анотація:
An efficient strategy of soil-conditioner application was offered by incorporating a high molecular weight organic polymer (polyacrylic acid; PAA) into a soil-friendly inorganic material (layered double hydroxide; LDH). The prepared materials were characterized by different spectroscopic techniques to confirm the formed nanocomposite structure. The SEM images captured the morphological ability of PAA-LDH nanocomposites to absorb and keep water molecules during soil-water application. The IR analysis indicated an electrostatic grafting process between PAA units and LDH moieties. The platform of PAA-LDH nanocomposite formulation stabilized the soil aggregates and improved the water-stability.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gatos, K. G., A. A. Apostolov, and J. Karger-Kocsis. "Compatibilizer Effect of Grafted Glycidyl Methacrylate on EPDM/Organoclay Nanocomposites." Materials Science Forum 482 (April 2005): 347–50. http://dx.doi.org/10.4028/www.scientific.net/msf.482.347.

Повний текст джерела
Анотація:
The nanocomposite formation in ethylene/propylene/diene rubber (EPDM) mixed with montmorillonite modified with octadecylamine (MMT-ODA) was investigated. The rubber formulation used proved to be critical for the final materials’ properties. The combined action of the curatives and glycidyl methacrylate (GMA), which was grafted on the EPDM, resulted in better intercalation and enhanced mechanical behavior of the rubber nanocomposites.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Pinto, Susana C., Paula A. A. P. Marques, Romeu Vicente, Luís Godinho, and Isabel Duarte. "Hybrid Structures Made of Polyurethane/Graphene Nanocomposite Foams Embedded within Aluminum Open-Cell Foam." Metals 10, no. 6 (June 9, 2020): 768. http://dx.doi.org/10.3390/met10060768.

Повний текст джерела
Анотація:
This paper focuses on the development of hybrid structures containing two different classes of porous materials, nanocomposite foams made of polyurethane combined with graphene-based materials, and aluminum open-cell foams (Al-OC). Prior to the hybrid structures preparation, the nanocomposite foam formulation was optimized. The optimization consisted of studying the effect of the addition of graphene oxide (GO) and graphene nanoplatelets (GNPs) at different loadings (1.0, 2.5 and 5.0 wt%) during the polyurethane foam (PUF) formation, and their effect on the final nanocomposite properties. Globally, the results showed enhanced mechanical, acoustic and fire-retardant properties of the PUF nanocomposites when compared with pristine PUF. In a later step, the hybrid structure was prepared by embedding the Al-OC foam with the optimized nanocomposite formulation (prepared with 2.5 wt% of GNPs (PUF/GNPs2.5)). The process of filling the pores of the Al-OC was successfully achieved, with the resulting hybrid structure retaining low thermal conductivity values, around 0.038 W∙m−1∙K−1, and presenting an improved sound absorption coefficient, especially for mid to high frequencies, with respect to the individual foams. Furthermore, the new hybrid structure also displayed better mechanical properties (the stress corresponding to 10% of deformation was improved in more than 10 and 1.3 times comparatively to PUF/GNPs2.5 and Al-OC, respectively).
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Guz, Alexander N., and Jeremiah J. Rushchitsky. "Some Fundamental Aspects of Mechanics of Nanocomposite Materials and Structural Members." Journal of Nanotechnology 2013 (2013): 1–16. http://dx.doi.org/10.1155/2013/641581.

Повний текст джерела
Анотація:
This paper is devoted to formulation and analysis of fundamental aspects of mechanics of nanocomposite materials and structural members. These aspects most likely do not exhaust all of the possible fundamental characteristics of mechanics of nanocomposite materials and structural members, but, nevertheless, they permit to form the skeleton of direction of mechanics in hand. The proposed nine aspects are described and commented briefly.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Reddy, J. N., Vinu U. Unnikrishnan, and Ginu U. Unnikrishnan. "Recent advances in the analysis of nanotube-reinforced polymeric biomaterials." Journal of the Mechanical Behavior of Materials 22, no. 5-6 (December 1, 2013): 137–48. http://dx.doi.org/10.1515/jmbm-2013-0021.

Повний текст джерела
Анотація:
AbstractConventional experimental or computational techniques are often inadequate for the analysis and development of nanocomposite-based materials as they are tedious (e.g., experimental methods) or are unsuitable to capture the properties of these novel materials (e.g., conventional computational techniques), thereby requiring multiscale computational strategies. During the last 5 years, major developments were made by the authors on the formulation and implementation of multiscale computational models, using atomistic simulation and micro-mechanics-based techniques, to study the mechanical and thermal behavior of nanocomposite-based materials. In this article, the advances made in the computational analysis of nanocomposites for tissue engineering applications (e.g., scaffolds and bioreactors) would be discussed. The material properties of the nanocomposites in the lower scales were determined using molecular dynamics, and were then transferred to the macroscale using various homogenization techniques. Also in this article, the authors discuss the development of a theory of mixture-based finite element model for nutrient flow in a hollow fiber membrane bioreactor and the use of computational tools to improve the efficiency of the bioreactor.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Najem Abed, Nisreen Abdul Rahman, Suha Mujahed Abudoleh, Iyad Daoud Alshawabkeh, Abdul Rahman Najem Abed, Rasha Khaled Ali Abuthawabeh, and Samer Hasan Hussein-Al-Ali. "Aspirin Drug Intercalated into Zinc-Layered Hydroxides as Nanolayers: Structure and In Vitro Release." Nano Hybrids and Composites 18 (November 2017): 42–52. http://dx.doi.org/10.4028/www.scientific.net/nhc.18.42.

Повний текст джерела
Анотація:
Zinc layered hydroxides (ZLHs) can be used as host materials for drug-ZLH host–guest structures. Aspirin with 0.1 and 0.4 M were intercalated into zinc layered hydroxides to form aspirin nanocomposites; ASPN1 and ASPN4, respectively. From XRD and software, the interlayer spacing of ASPN1 and ASPN4 was 15.2 Å. The result coupled with molecular geometry calculation indicates that the spatial orientation of the drug in the ZLH was monolayer for ASPN1 and ASPN4 nanocomposites. The release of the aspirin from ASPN4 nanocomposite at pH 6.8 is 35%, compared to 98% at pH 1.2, and followed Hixson model and Korsmeyer model for ASPN4 at pH 6.8 and pH 1.2, respectively. This result indicates sustained release of the drugs from their respective nanocomposites, and therefore these nanocomposites have good potential to be used as controlled-release formulation of the aspirin. The ASPN4 nanocomposite was highly effective to Escherichia coli compared to free aspirin, where the ASPN4 given 1.37 inhibition zone compared to aspirin which given 1.17 cm inhibition zone.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Formulation of Nanocomposite Materials"

1

Acquadro, Julien. "Étude des propriétés tribologiques et électriques de revêtements sol-gel comme alternative anticorrosion au cadmium et au chrome hexavalent pour la connectique en environnements sévères." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST150.

Повний текст джерела
Анотація:
Le domaine de la connectique englobe l'ensemble des éléments permettant de réaliser des liaisons électriques entre différents composants. Dans les secteurs aéronautique et militaire, ces liaisons doivent être hautement fiables et fonctionner de manière optimale dans des environnements sévères. Ainsi, les contacts électriques des connecteurs sont généralement protégés par des boîtiers fabriqués en alliages d'aluminium, notamment l'alliage AA6061, qui doivent remplir les trois principales fonctions de conduction électrique, de tenue mécanique et de résistance à la corrosion. Actuellement, ces propriétés sont assurées par des revêtements de protection de surface à base de cadmium passivé au chrome (VI). Cependant, depuis 2017, cette solution n'est plus acceptable en Europe en raison de l'évolution des directives et réglementations RoHS et REACH, le cadmium et le chrome hexavalent étant tous deux très toxiques pour l'environnement et la santé humaine.Cette thèse s'inscrit dans un vaste programme de collaboration industrielle regroupant sept partenaires visant à développer et produire des revêtements de substitution au cadmium passivé au chrome (VI). Parmi les nombreuses approches explorées, la voie la plus innovante et prometteuse est celle des revêtements sol-gel rendus conducteurs par l'intégration de charges conductrices adaptées. La stratégie adoptée consiste à mettre en œuvre ces revêtements à l'échelle du laboratoire, puis à les tester sur des boîtiers de connecteurs soumis à des qualifications industrielles rigoureuses.L'objectif principal de cette thèse est de contribuer à une meilleure compréhension du rôle et de l'influence des différentes étapes d'élaboration des revêtements sur leurs propriétés de conduction, d'usure et d'anticorrosion. Les dépôts réalisés sur des éprouvettes modèles de laboratoire ont été étudiés aux échelles macroscopique et microscopique afin de déterminer les paramètres de synthèse optimaux, tels que les précurseurs, le taux d'hydrolyse, les conditions de maturation et les paramètres de dépôt. Ces paramètres ont été ajustés en fonction des propriétés physico-chimiques et structurelles des films formés. L'impact de la nature et de la quantité des charges conductrices, qu'elles soient carbonées ou métalliques, sur les propriétés de conduction, d'usure, de tenue mécanique et de protection contre la corrosion, a été rigoureusement évalué.Les résultats de ces études ont été comparés périodiquement aux résultats des tests de qualification réalisés sur des boîtiers industriels de formes complexes revêtus des mêmes formulations, permettant ainsi d'identifier les défis à surmonter pour atteindre les propriétés requises en termes de conduction électrique, de tenue mécanique et de résistance à la corrosion. Ces travaux offrent également des perspectives de développement pour l'avenir de cette technologie dans le domaine de la connectique
Connector technology involves the components that create electrical connections between different systems. In critical sectors such as aerospace and military, these connections must be highly reliable and able to perform under harsh conditions. Therefore, the electrical contacts within connectors are protected by housings made from aluminium alloys, like AA6061, which must meet three essential criteria: electrical conductivity, mechanical strength, and corrosion resistance. Currently, these properties are achieved through surface protection coatings based on cadmium passivated with hexavalent chromium (VI). However, since 2017, this solution has been deemed unacceptable in Europe due to evolving RoHS and REACH directives and regulations, given the severe toxicity of cadmium and hexavalent chromium to both the environment and human health.This thesis is part of a significant industrial collaboration involving seven partners focused on developing and producing coatings to replace cadmium passivated with chromium (VI). Among the various approaches explored, the most innovative and promising involves using sol-gel coatings made conductive through the incorporation of appropriate conductive fillers. The strategy entails implementing these coatings at the laboratory scale and subjecting them to rigorous industrial qualification tests on connector housings.This thesis aims to enhance understanding of how various stages in the development of coatings affect their properties related to electrical conduction, wear resistance, and anti-corrosion capabilities. Deposits applied to laboratory model specimens were studied at both macroscopic and microscopic scales to determine the optimal synthesis parameters. These parameters include sol-gel precursors, amount of water, maturation conditions, and deposition techniques, all of which are adjusted based on the physicochemical and structural properties of the resulting films. The influence of the type and quantity of conductive fillers, whether carbon-based or metallic, on properties such as electrical conduction, wear resistance, mechanical strength, and corrosion protection, was rigorously evaluated.Periodic comparisons were made between these study results and the outcomes of qualification tests conducted on industrially complex connector housings coated with the same formulations. This allowed the identification of challenges to overcome in achieving the necessary properties of electrical conduction, mechanical strength, and corrosion resistance. These efforts also provide development prospects for the future of this technology in the connector industry
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Oyharçabal, Mathieu. "Synthèse, formulation, et mise en oeuvre de nanomatériaux conducteurs base poly(aniline) / nanotubes de carbone pour des applications micro-ondes." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14633.

Повний текст джерела
Анотація:
Ces travaux de thèse consistent à formuler des nanocomposites électriquement conducteurs pour des applications micro-ondes. L’objectif principal est la mise en œuvre de matériaux absorbant les ondes radar, plus particulièrement sur la bande X (8-12 GHz). La polyaniline et les nanotubes de carbone, dispersés dans une matrice époxyde, ont été sélectionnés pour apporter les propriétés d’absorption aux fréquences visées. Différentes morphologies de polyaniline ont été synthétisées afin d’étudier leur influence sur les propriétés d’absorption des composites. L’utilisation d’une polyaniline à morphologie feuillet, présentant une forte anisotropie et un facteur de forme élevé, permet d’augmenter la conductivité et les pertes diélectriques des composites. De plus, leur association avec des nanotubes de carbone améliore significativement les propriétés d’absorption aux fréquences micro-ondes. Des écrans absorbants radar performants qui présentent des coefficients de réflexion inférieurs à -20 dB ont pu être modélisés et mis en œuvre, confirmant le potentiel de ces matériaux pour des applications de furtivité radar
This thesis deals with the formulation of electrically conductive nanocomposites for microwave applications. The main purpose is to process radar-absorbent materials, more particularly at the X band. (8-12 GHz). Polyaniline and carbon nanotubes, dispersed in an epoxyde matrix, have been selected. Different morphologies of polyaniline have been synthesized to study its impact on the absorption properties of composites. Using flake-like polyaniline showing high anisotropy and aspect ratio increases conductivity and dielectric losses of composites. Moreover, its association with carbon nanotubes significantly improves the absorption properties at microwaves frequencies. Efficient radar absorbing screens, showing reflection losses lower than -20 dB, have been calculated and processed confirming the potential of these materials for stealth applications
Стилі APA, Harvard, Vancouver, ISO та ін.
3

PAMMI, SRI LAXMI. "CARBON NANOCOMPOSITE MATERIALS." University of Cincinnati / OhioLINK, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1069881274.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Thomas, Michael David Ross. "Electrical phenomena in nanocomposite materials." Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bobrinetskiy, I. I., A. Y. Gerasimenko, L. Ichkitidze, O. R. Khrolova, R. V. Morozov, V. M. Podgaetsky, and S. V. Selishchev. "Nanocomposite Materials for Cell Growth." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35452.

Повний текст джерела
Анотація:
We propose a development of carbon nanotube (CNT)/albumin nanocomposite for 2D and 3D tissue organization by cell growth. The adhesion and proliferation for neuroblastoma and fibroblast cells have been investigated on films based on CNT/bovine serum albumin (BSA) nanocomposite. Single-walled car-bon nanotube (SWNT)/BSA composites can be used as a substrate for cell growth of different kind. The layers of nanocomposite properties growing method based on laser radiation action. Investigations of sta-bility, an adhesion and internal structure of layers were performed. Stabilizing properties of the described laser method of manufacture (laser nanoforming) of layers may be associated with the ability to obtain nanotube frame work in composite structure under action of electric field of directed laser radiation. The presence of a such frame creates the conditions for self-assembly of biomedical tissues. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/35452
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lee, Ji Hoon. "Tensegrity-inspired nanocomposite structures." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44839.

Повний текст джерела
Анотація:
The main goal of this research is to construct hierarchical microstructures from polymer nanocomposites. Specifically, the research focused on constructing tensegrity-inspired microstructure where the nanoparticles are the compression members and the polymer matrix is tensile web. In order to achieve the tensegrity-inpired microstruture, the research was conducted with the following objectives. 1. Synthesis of Hydroxyapatite (HAp) nanoparticles of controlled shapes using block copolymer templates. 2. Investigation of the effects of particle loadings and shapes on isotropic nanocomposite properties. 3. Construction of HAp building blocks into the tensegrity-inspired microstructures First, in order to use the nanoparticles for this structure, needle-shaped HAp nanoparticles were synthesized using block copolymer templates. The results indicated that significant amount of polymer remained on particle surface. Since these particles were coated with polymer blocks, the decorated polymer blocks were considered as the interphase material which would be used to prestress the HAp nanoparticles, and the particles would be acted as the building blocks for constructing tensegrity-inspired microstructure. For nanocomposites, polymer coating on HAp nanoparticles promoted particle dispersion. The effect of particle shapes on thermomechanical properties did not show significant differences between the two particle systems due to their low aspect ratios and chemical similarity. However, the polymer crystallinity and crystallization showed different trend as a function of particle loadings in two particle systems, and the behavior was unified through a common particle spacing of approximately 120 nm. In order to investigate the effect of particle arrangement in the polymer matrix, needle-shaped HAp nanoparticles synthesized with two different block copolymers were mixed with different morphology of polymer matrices and manipulated particle arrangement using the drawing process. Nanocomposites prepared with different matrix morphologies showed the similar dispersion characteristics and reinforcement behavior. The experimental results showed the drawing process influenced the particle arrangement in the polymer matrix, and the particle arrangement and reinforcement behavior were influenced by polymer matrix morphology. The thermomechanical properties of both matrix systems enhanced through the drawing process in the glassy region, but the effect of degree of particle orientation was difficult to distinguish due to low aspect ratios of HAp particles which was not enough to impact on overall microstructure.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Bera, Chandan. "Thermo electric properties of nanocomposite materials." Phd thesis, Ecole Centrale Paris, 2010. http://tel.archives-ouvertes.fr/tel-00576360.

Повний текст джерела
Анотація:
Cette thèse présente une étude théorique du transport de chaleur dans les matériaux composites nano poreux et nano fils ainsi qu'une étude théorique des propriétés thermoélectriques de l'alliage Si0:8Ge0:2 confrontée à des mesures expérimentales réalisées pour une partie, dans le cadre de l'étude.La première étude démontre que les alliages poreux affichent des réductions de conductivité thermique à des dimensions de pores beaucoup plus grandes que les matériaux poreux non alliés de même porosité nominale. Si on considère une taille de pores de 1000nm, la conductivité thermique de l'alliage Si0:5Ge0:5 avec 0:1 de porosité est deux fois plus faible que la conductivité thermique d'un matériau non poreux, alors que les pores plus petits que 100 nm sont nécessaires pour obtenir la même réduction relative dans le Si ou Ge pur. Nos résultats indiquent que les alliages nano poreux devraient être avantageux devant les matériaux nano poreux non alliés, et ceux pour les applications nécessitant une faible conductivité thermique, tels que les nouveaux matériaux thermoélectriques.La deuxième étude théorique sur la conductance thermique de nano fils révèle l'effet de la structure sur le transport des phonons. Avec un modèle théorique qui considère la dépendance en fréquence du transport des phonons, nous sommes en mesure quantitativement de rendre compte des résultats expérimentaux sur des nano fils droits et coudés dans la gamme de température qui montre qu'un double coude sur un fil réduit sa conductance thermique de 40% à la température de 5K. Enfin, nous avons procédé à une approche théorique des propriétés thermoélectriques des alliages SiGe frittés, en les comparant aux mesures expérimentales nouvelles et antérieures, tout en évaluant leur potentiel d'amélioration. L'approche théorique a été validée par comparaison de la mobilité prévue et la conductivité thermique prévues, en faisant varier la quantité de Ge et les concentrations de dopage, dans une gamme de température comprise entre 300 et 1000K. Nos calculs suggèrent qu'une optimisation par rapport à l'état de l'art actuel est possible pour le matériau de type n et type p, conduisant potentiellement à une augmentation de 6% (5%) du ZT _a 1000K et 25% (4%) _a température ambiante. Même des améliorations plus grandes devraient être possibles si la probabilité de diffusion des phonons aux joints de grains pouvait être augmentée au-delà de sa valeur actuelle de 10%.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yani, Yin. "Molecular dynamics simulation of nanocomposite materials." [Ames, Iowa : Iowa State University], 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Di, Carlo Lidia. "Nanocomposite cathodic materials for secondary cells." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17765.

Повний текст джерела
Анотація:
Hexagonales Wolframbronze (HTB)–FeF3·0.33H2O Xerogel und eine HTB– FeF3·0.33H2O/GO Nanoverbindung wurden zunächst durch einen fluorolytischen Sol-Gel Ansatz bei Raumtemperatur in MeOH erhalten und ihre elektrochemischen Eigenschaften bewertet. Operando Mössbauer Spektroskopie und Röntgendiffraktometrie (XRD) wurden verwendet, um den Mechanismus während der Reaktion mit Lithium zu untersuchen. Das Fluorid zeigte ein komplexes Verhalten und den strukturellen Zerfall der HTB Phase sowie eine allmähliche Umwandlung in Fe-F2–Rutil–ähnliche Nanodomänen, welche sich als Hauptkomponente im Verlaufe der Reaktion ausbildeten. Die XRD-Analyse bestätigte die Amorphisierung des elektroaktiven Materials. Die strukturelle Optimierung von HTB-FeF3·0.33H2O wurde durch eine mikrowellenunterstützte, fluorolytische Sol-Gel-Reaktion in Benzylalkohol erreicht. Das Verfahren ermöglichte die Synthese von phasenreinen Nanopartikeln mit einem Durchmesser von rund 30 nm, zusammen mit der Herstellung eines auf reduziertem Graphenoxid (RGO) basierten Nanokomposits bei verminderter Reaktionszeit. Die Abscheidung auf leitfähigem RGO erwies sich als vorteilhaft für die elektrochemische Leistung des Fluorids, das wiederholten Zyklen zu unterschiedlichen C–Raten standhalten konnte und seine volle Kapazität nach mehr als 50 Zyklen aufrecht erhielt im Gegensatz zum reinen HTBFeF3 ·0.33H2O. Für die Herstellung von aktiven Ionenspeichermaterialien zur Verminderung der Sichereitsrisiken (im Vergleich zur Verwendung von Metallanoden) sind Strukturen wie HTBFeF3 ·0.33H2O notwendig. Hierzu wurden Na–enthaltende Hexafluoroferrat-Nanokomposite hergestellt und mit RGO und teilweise oxidierten Ruß (ox–CB) als leitfähigen Kohlenstoff versetzt. Die Art des Kohlenstoffzusatzes beeinflusste die elektrochemische Leistung stark, wobei mit RGO die größten Verbesserungen erzielt werden konnten
Hexagonal tungsten bronze (HTB)-FeF3∙0.33H2O xerogel and HTB-FeF3∙0.33H2O/GO nanocomposite were firstly obtained by a room temperature fluorolytic sol-gel approach in MeOH, and their electrochemical properties evaluated. Operando Mössbauer spectroscopy and X-Ray diffraction were employed to investigate the reaction mechanism during reaction with lithium. The fluoride evidenced a complex behavior, with structural collapse of the HTB phase and gradual transformation into FeF2-rutile-like nanodomains, becoming the predominant component all along the reaction. XRD confirmed the amorphization of the electroactive material. Structural optimization of HTB-FeF3·0.33H2O was then achieved by a microwave-assisted fluorolytic sol-gel in benzyl alcohol. The procedure allowed the synthesis of phase pure nanoparticles of ~30 nm in diameter, along with the production of a reduced graphene oxide (RGO)-based nanocomposite and the reduction of reaction times. Deposition onto conductive RGO resulted beneficial for the electrochemical performance of the fluoride, which was able to sustain repeated cycling at different C-rates and recovered full capacity after more than 50 cycles with respect to the unsupported HTB-FeF3·0.33H2O. Aiming at the production of active ions-holding materials to solve safety issues related to the use of metallic anodes, necessary with structures such as HTB-FeF3·0.33H2O, Na-containing hexafluoroferrate nanocomposites were produced using RGO and partially oxidized carbon black (ox-CB) as conductive carbons. Carbon type greatly affected the electrochemical performance, whose best improvement was obtained using RGO as support
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ye, Yueping. "Microstructure and properties of epoxy/halloysite nanocomposite /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?MECH%202006%20YE.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Formulation of Nanocomposite Materials"

1

Sun, Rong, Ruxu Du, and Yu Shuhui. Functional nanocomposite materials. Durnten-Zurich: Trans Tech Publishing, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gulati, Shikha, ed. Chitosan-Based Nanocomposite Materials. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-5338-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mittal, Vikas. Advances in polymer nanocomposite technology. Hauppauge, NY: Nova Science Publishers, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mahler, Erne, and Detlev Seiler. Carbon nanotube and nanocomposite research. Hauppauge, N.Y: Nova Science Publishers, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kar, Kamal K., ed. Handbook of Nanocomposite Supercapacitor Materials III. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68364-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kar, Kamal K., ed. Handbook of Nanocomposite Supercapacitor Materials II. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52359-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kar, Kamal K., ed. Handbook of Nanocomposite Supercapacitor Materials I. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43009-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Avalos Belmontes, Felipe, Francisco J. González, and Miguel Ángel López-Manchado, eds. Green-Based Nanocomposite Materials and Applications. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-18428-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kar, Kamal K., ed. Handbook of Nanocomposite Supercapacitor Materials IV. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-23701-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pogrebnjak, Alexander D., Yang Bing, and Martin Sahul, eds. Nanocomposite and Nanocrystalline Materials and Coatings. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2667-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Formulation of Nanocomposite Materials"

1

Salam, Haipan, and Yu Dong. "Properties of Optimal Material Formulation of Bioepoxy/Clay Nanocomposites." In Bioepoxy/Clay Nanocomposites, 171–99. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Salam, Haipan, and Yu Dong. "Morphological Structures of Bioepoxy/Clay Nanocomposites with Optimum Material Formulation." In Bioepoxy/Clay Nanocomposites, 145–70. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Parameswaranpillai, Jyotishkumar, Nishar Hameed, Thomas Kurian, and Yingfeng Yu. "Introduction to Nanomaterials and Nanocomposites." In Nanocomposite Materials, 1–4. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gatos, K. G., and Y. W. Leong. "Classification of Nanomaterials and Nanocomposites." In Nanocomposite Materials, 5–36. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ramazani S.A., A., Y. Tamsilian, and M. Shaban. "Synthesis of Nanomaterials." In Nanocomposite Materials, 37–80. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rodriguez, Veronica Marchante, and Hrushikesh A. Abhyankar. "Optical Properties of Nanomaterials." In Nanocomposite Materials, 81–103. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gashti, Mazeyar Parvinzadeh, Farbod Alimohammadi, Amir Kiumarsi, Wojciech Nogala, Zhun Xu, William J. Eldridge, and Adam Wax. "Microscopy of Nanomaterials." In Nanocomposite Materials, 105–28. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shokoohi, Shirin, Ghasem Naderi, and Aliasghar Davoodi. "Mechanical Properties of Nanomaterials." In Nanocomposite Materials, 129–45. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315372310-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nasirpouri, Farzad. "Electrodeposited Nanocomposite Films." In Electrodeposition of Nanostructured Materials, 289–310. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44920-3_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Salam, Haipan, and Yu Dong. "The Effects of Material Formulation and Manufacturing Process on Mechanical and Thermal Properties of Conventional Epoxy/Clay Nanocomposites." In Bioepoxy/Clay Nanocomposites, 97–112. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-7297-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Formulation of Nanocomposite Materials"

1

Advincula, Rigoberto C. "Superhydrophobic and Nanostructured HPHT Stable Polybenzoxazine Nanocomposite Coatings for Oil and Gas." In CORROSION 2019, 1–7. NACE International, 2019. https://doi.org/10.5006/c2019-13524.

Повний текст джерела
Анотація:
Abstract Coatings have the function of resistance to environmental attack, i.e. barrier protection, abrasion and chemical resistance, yet a number of them have not been optimized against wetting when it comes to dual or enhanced properties and durability at higher temperatures and pressures (HPHT). Polybenzoxazine (PBZ) chemistry and polymerization have enjoyed tremendous growth due to its versatility in chemistry and a number of advantages in properties for high-temperature applications compared to epoxy, polyurethane (PU), phenolformaldehyde (PF) resins. This is due to a wide variety of monomers and telechelic structures that can be incorporated in one-pot reactions and curing. We have widely reported the preparation of nanostructured PBZ nanocomposites prepared with nanoclay, nano-silica, and graphene (G) to obtain very robust and superhydrophobic coatings that have resulted in efficient anti-corrosion properties, oil-water separators, and anti-icing properties. The monomers are prepared by simpler chemistry, enabling additives and other preparation protocols that lead to robust coatings. The addition of telechelic polybutadiene and the use of polyaniline (PANI) as part of the interpenetrating network (IPN) and semi-interpenetrating network (SIPN) composition result in robust and very conformal coating compositions. In addition, we have investigated PBZ-Epoxy copolymer compositions, which are highly compatible with commercial formulations. Excellent adhesion properties to substrates even at higher temperature (HT) operations may enable these types of materials to be applied in more demanding conditions for upstream, midstream, and downstream application in the oil and gas industries.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

LEPADATU, Daniel, Loredana JUDELE, Ioana ENTUC, Eduard PROASPAT, and Gabriel SANDULACHE. "NANOPARTICLES AND RECYCLABLE WASTE IN CONSTRUCTION MATERIALS. FROM PRACTICAL NECESSITY TO ADVANCED SOLUTIONS." In SGEM International Multidisciplinary Scientific GeoConference, 231–38. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024v/6.2/s25.29.

Повний текст джерела
Анотація:
In an increasingly competitive economy, we are facing fierce competition in the construction materials industry, where the use of recyclable waste from demolitions has become more than a necessity. The compensation for the loss of certain properties, which could otherwise lead to a reduction in mechanical characteristics, has been achieved through the addition of nanoparticles with superior qualities. This paper will present the main nanoparticles introduced as subtle additives (ranging from 0.01 percent to a maximum of 1 percent) - currently limited due to manufacturing costs - into the formulations of construction materials such as nanocomposites, nanomortars, nanoconcretes, etc., as well as in sometimes substantial fractions of recycled aggregates, among others. Several types of nanoparticles will be discussed, starting with nanoclay, which improves strength and durability and carbon nanotubes, predominantly used in polymers for construction. In concrete, nano-silica can enhance compressive strength and reduce permeability, graphene oxide can improve mechanical properties and reduce weight and nano-metakaolin, being a pozzolanic material, contributes to long-term strength and durability. At the same time, an analysis will be conducted on some of the recyclable waste from construction, which, under certain conditions, can become integral parts of the formulations for new materials. In this way, we can address two societal issues: the first related to recycling demolition waste and the second to reducing pollution. Furthermore, we can highlight the circular economy, as these materials are reintroduced and repurposed in the creation of new advanced building materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tian, Zhiting, Sang Kim, Ying Sun, and Bruce White. "A Molecular Dynamics Study of Thermal Conductivity in Nanocomposites via the Phonon Wave Packet Method." In ASME 2009 InterPACK Conference collocated with the ASME 2009 Summer Heat Transfer Conference and the ASME 2009 3rd International Conference on Energy Sustainability. ASMEDC, 2009. http://dx.doi.org/10.1115/interpack2009-89272.

Повний текст джерела
Анотація:
The phonon wave packet technique is used in conjunction with the molecular dynamics simulations to directly observe phonon scattering at material interfaces. The phonon transmission coefficient of nanocomposites is examined as a function of the defect size, thin film thickness, orientation of interface to the heat flow direction. To generalize the results based on phonons in a narrow frequency range and at normal incidence, the effective thermal conductivity of the same nanocomposite structure is calculated using non-equilibrium molecular dynamics simulations for model nanocomposites formed by two mass-mismatched Ar-like solids and heterogeneous Si-SiCO2 systems. The results are compared with the modified effective medium formulation for nanocomposites.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tallman, T. N. "Strain Estimation From Conductivity Changes in Piezoresistive Nanocomposites." In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9012.

Повний текст джерела
Анотація:
Carbon nanofiller-modified composites have incredible potential for self-sensing and structural health monitoring (SHM) because they are piezoresistive. That is, the electrical conductivity of a nanocomposite is inherently coupled with mechanical perturbations such as damage and strain. Because of the correspondence of strain and damage with conductivity changes, non-invasive conductivity imaging techniques such as electrical impedance tomography (EIT) can enable unprecedented insight into the mechanical state of a nanofiller-modified composite. Furthermore, because of the potential of nanocomposites for self-sensing and SHM, considerable effort has been dedicated to studying the effect of strain on nanocomposite conductivity. That is, these efforts seek to determine the change in conductivity of a nanocomposite for a prescribed strain. However, from a SHM perspective, knowing the inverse relation would be much more useful. In other words, for an observed conductivity change, what is the underlying strain state? In light of the potential of EIT to provide insight into the conductivity distribution of a strained nanocomposite, we herein develop a method of estimating the infinitesimal strain tensor of a piezoresistive nanocomposite for observed conductivity changes. This is done by formulating an inverse problem that seeks to minimize the difference between an observed conductivity and a piezoresistivity model that predicts nanocomposite conductivity as a function of the strain in the least-squares sense. Next, this approach is specialized to the finite element method such that the nodal displacements giving rise to an observed conductivity change can be ascertained. Lastly, this method is tested analytically with noisy data. It is found that the proposed method can accurately reproduce nodal displacements and therefore strains from conductivity data.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Talamadupula, Krishna Kiran, and Gary D. Seidel. "Multiscale Modeling of Effective Piezoresistivity and Implementation of Non-Local Damage Formulation in Nanocomposite Bonded Explosives." In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2018. http://dx.doi.org/10.2514/6.2018-0903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zhao, Dongfang, Jacob Meves, Anirban Mondal, Mrinal C. Saha, and Yingtao Liu. "Additive Manufacturing of Embedded Strain Sensors in Structural Composites." In ASME 2022 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/imece2022-94366.

Повний текст джерела
Анотація:
Abstract In this paper, a multi-walled nanotube-based nanocomposite is developed for the 3D printing of embedded strain sensors in structural composites. The formulation of nanocomposites is investigated, and the optimal nanotube concentration is identified, considering multiple aspects including cost, processing capability, and printing capability. The developed nanocomposites are directly printed onto glass fiber fabrics using the material extrusion-based additive manufacturing method. Then, the 3D printed nanocomposites in the format of strain gauges are employed for the fabrication of continuous fiber-reinforced composites with embedded sensors. To demonstrate the load and strain sensing capability, composite laminate beam samples are fabricated for testing. The microstructures, potentially embedded voids, and nanoparticle distributions are characterized using a scanning electron microscope. Moreover, the load sensing functionality of the manufactured glass fiber composites using embedded nanocomposite strain gauge is characterized under 3-point bending load conditions. The sensitivity, repeatability, and reliability of the 3D printed nanocomposites are experimentally characterized using a standard mechanical testing system. Particularly, the effects of maximum load and load rates on sensitivities of the developed composites are tested. The 3D printed strain gauges can be used for the monitoring of composite integrity, indicating their safety and reliability under complex and fatigue loading conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Luo, Wenyuan, Yingtao Liu, Mrinal Saha, Steven Patterson, and Thomas Robison. "Fabrication, Optimization, and Characterization of PDMS/CNF Nanocomposite Sensor Arrays." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-86269.

Повний текст джерела
Анотація:
This paper presents the fabrication, optimization, and characterization of in-situ pressure sensor arrays using polydimethylsiloxane (PDMS) and carbon nanofibers (CNFs) nanocomposites. We first synthesize and characterize the nanocomposites to identify the optimal material formulation and fabrication procedure. Structural optimization algorithms and finite element method are employed to optimize the geometries of sensors. Pressure sensing units in cylinder and conical shapes are fabricated using the optimized material formulation and geometries. Two prototypes of sensors arrays are assembled and tested under different pressure load conditions. The long term sensor performance is validated using cyclic compression tests.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Uttley, Katherine, Anika Galvan, Matthew Nakatsuka, and Marco Basile. "High Temperature Compatible, Field-Deployable Heat Exchanger Nanocomposite Treatments." In Offshore Technology Conference. OTC, 2024. http://dx.doi.org/10.4043/35384-ms.

Повний текст джерела
Анотація:
Abstract Fouling of refinery reboilers is a major source of production loss, health, safety, and environment (HSE) issues, and increased carbon emissions. Reboilers can be especially difficult, as fouling is difficult to address without major cleaning operations, and anti-fouling solutions outside of design modifications are limited. Formulation development of a novel coating material for reboiler systems examined a wide variety of polymer and nanocomposite chemistries. An iterative development process was used to identify and synthesize a polymer nanocomposite surface treatment to protect against corrosion induced by the buildup of chloride and sulfide salts typically found within distillation reboilers. Application on carbon steel test panels was completed using industry standard spray application methods and subsequently characterized for adhesion strength, thermal stability, chemical compatibility, and corrosion mitigation. Data included in this study will demonstrate that the material has a durability comparable to existing state-of-the-art coating materials (following ASTM D3359), chemical resistance to high acid and base solutions, and corrosion resistance (following ASTM B117) to support the long-term use of this novel surface treatment to protect metallic surfaces in harsh process conditions. Use of this novel material, compatible up to 350°C, has suggested the overall lifetime of the candidate reboiler system could be increased 2-fold based on previous applications of similar materials in field deployment. This non-fluorinated, highly chemically resistant surface treatment can offer significant cost avoidance through the improvement of operational uptime and reduced maintenance costs in heat transfer applications typically susceptible to corrosion and fouling.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bayar, Selen, Feridun Delale, Benjamin Liaw, Jackie Ji Li, Jerry Chung, Matthew Dabrowski, and Ramki Iyer. "An In-Depth Study on the Mechanical and Thermal Properties of Nanoclay Reinforced Polymers at Various Temperatures." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37341.

Повний текст джерела
Анотація:
In this study, the mechanical properties of nanoclay reinforced polymeric resins are investigated at various temperatures. In recent years there has been heightened interest to develop nanoclay reinforced composites due to their superior performance compared to neat resins at high temperatures under various loading conditions, including impact. First, polypropylene (PP) resin specimens reinforced with varying weight fractions of nanoclay (0%, 1%, 3%, 6% and 10%) some instrumented with strain gages, were subjected to tensile loads and the stress-strain curves were obtained to determine the mechanical properties of the nanocomposite. Extensive experimental data were obtained. The results indicate that as the weight percentage of nanoclay increases, the strength and stiffness of the resulting nanocomposites also increase. Most of PP specimens exhibited significant deformation (more than 100%) and did not break. High temperatures have a deleterious effect on the strength and stiffness of nanoclay reinforced PP specimens. However, the addition of nanoclay, somewhat mitigates the deterioration of these properties. At lower temperatures the material stiffens, has higher strength and becomes more brittle as failure occurs at much lower strains. Also the tests using different PP resins indicate that the type of resin used has significant effect on the properties of the nanocomposite. A micromechanics model based on the Mori-Tanaka formulation was used to predict the results obtained experimentally. The comparison of theoretical/numerical and experimental results indicates that the Mori-Tanaka formulation may be a useful tool in predicting these properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hernandez, J. A., H. Zhu, F. Semperlotti, and T. N. Tallman. "The Transient Response of Piezoresistive CNF-Modified Epoxy Rods to One-Dimensional Wave Packet Excitation." In ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/smasis2021-67801.

Повний текст джерела
Анотація:
Abstract Introducing conductive nanofillers into polymeric, cementitious, and ceramic composites can impart multifunctional properties such as self-sensing capabilities via the piezoresistive effect. Much work has been done to utilize this multifunctionality for conductivity-based structural health monitoring (SHM) and condition monitoring. To date, the majority of such investigations concern static and quasi-static loading conditions. Much less work has been done with regard to general dynamic loading conditions such as transient wave propagation. This is an important gap in state of the art for two reasons: First, the self-sensing nature of these materials potentially allows for full-field (i.e. sub-surface) dynamics monitoring which cannot be achieved via traditional surface-mounted dynamic sensors. And second, conductivity-based and vibratory-based SHM are both independently well researched areas. Combined into a single, piezoresistive elastodynamic formulation, however, they may give rise to unprecedented new diagnostic capabilities. Therefore, the initial results presented in this manuscript seek to address this gap in the state of the art by experimentally exploring the role of dynamic excitation on transient piezoresistive behavior in nanocomposite structures. Specifically, an electromagnetic shaker is used to inject highly-controlled planar strain wave packets into a slender prismatic carbon nanofiber (CNF)-modified epoxy rod. Resistance measurements are then taken as the wave packets travel along the length of the rod. It was found that resistance changes taken from the rod are able to accurately reconstruct the injected strain wave and can be used to discern dynamic properties of CNF-modified epoxy. An external laser vibrometry (LV) system was used as extrinsic validation. Results from this preliminary investigation may lay the foundation for a new exciting field of fully coupled piezoresistive elastodynamics.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Formulation of Nanocomposite Materials"

1

Roy, R., and S. Komarneni. Multifunctional nanocomposite materials. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/6977177.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hunt, A. J., M. Ayers, and W. Cao. Aerogel nanocomposite materials. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/105119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Roy, R., and S. Komarneni. Multifunctional nanocomposite materials. Progress report. Office of Scientific and Technical Information (OSTI), November 1991. http://dx.doi.org/10.2172/10187528.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stormont, John. Wellbore Seal Repair Using Nanocomposite Materials. Office of Scientific and Technical Information (OSTI), August 2016. http://dx.doi.org/10.2172/1337552.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Collins, Eric, Michelle Pantoya, Andreas A. Neuber, Michael Daniels, and Daniel Prentice. Piezoelectric Ignition of Nanocomposite Energetic Materials. Fort Belvoir, VA: Defense Technical Information Center, January 2013. http://dx.doi.org/10.21236/ada597296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Potter, Jr, and Barrett G. Optoelectronic Nanocomposite Materials for Thin Film Photovoltaics. Fort Belvoir, VA: Defense Technical Information Center, June 2012. http://dx.doi.org/10.21236/ada562250.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Krishnan, Sitaraman, John McLaughlin, and Dipankar Roy. Novel Nanocomposite Materials for Solar Cell Fabrication. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada570684.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Pantoya, Michelle L. Combustion and Ignition Studies of Nanocomposite Energetic Materials. Fort Belvoir, VA: Defense Technical Information Center, December 2010. http://dx.doi.org/10.21236/ada545482.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hash, M. C., V. N. Zyryanov, J. K. Basco, and D. B. Chamberlain. Fissile Materials Disposition Formulation Report. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/802089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Haglund, Jr., Richard F. Linear and Nonlinear Optical Properties of Metal Nanocomposite Materials. Office of Scientific and Technical Information (OSTI), November 2018. http://dx.doi.org/10.2172/1481179.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії