Добірка наукової літератури з теми "Functional analyse"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Functional analyse".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Functional analyse"
Charon, Nicolas, and Alain Trouvé. "Functional Currents: A New Mathematical Tool to Model and Analyse Functional Shapes." Journal of Mathematical Imaging and Vision 48, no. 3 (January 17, 2013): 413–31. http://dx.doi.org/10.1007/s10851-012-0413-4.
Повний текст джерелаGile, Daniel. "Les fautes de traduction : une analyse pédagogique." Meta 37, no. 2 (September 30, 2002): 251–62. http://dx.doi.org/10.7202/002907ar.
Повний текст джерелаMhamedi, Abderrahman El, and François B. Vernadat. "ACNOS: A functional and socio-cognitive modelling approach to analyse industrial systems." IFAC Proceedings Volumes 32, no. 2 (July 1999): 145–50. http://dx.doi.org/10.1016/s1474-6670(17)56027-9.
Повний текст джерелаComas, C., P. Delicado, and J. Mateu. "A second order approach to analyse spatial point patterns with functional marks." TEST 20, no. 3 (October 20, 2010): 503–23. http://dx.doi.org/10.1007/s11749-010-0215-1.
Повний текст джерелаAibar, Sara, Celia Fontanillo, Conrad Droste, and Javier De Las Rivas. "Functional Gene Networks: R/Bioc package to generate and analyse gene networks derived from functional enrichment and clustering." Bioinformatics 31, no. 10 (January 18, 2015): 1686–88. http://dx.doi.org/10.1093/bioinformatics/btu864.
Повний текст джерелаOssenblok, Pauly, Andrea Fuster, and Remco Duits. "Medische data-analyse voor minimaal invasieve behandeling van epilepsie." Epilepsie, periodiek voor professionals 16, no. 3 (September 1, 2018): 25–27. http://dx.doi.org/10.54160/epilepsie.11281.
Повний текст джерелаRowe, Francisco. "Functional Labour Market Areas for Chile." REGION 4, no. 3 (August 8, 2017): 7. http://dx.doi.org/10.18335/region.v4i2.199.
Повний текст джерелаRowe, Francisco. "Functional Labour Market Areas for Chile." REGION 4, no. 3 (August 8, 2017): 7. http://dx.doi.org/10.18335/region.v4i3.199.
Повний текст джерелаWu, Dong Jiang, Xian Suo Cao, Hang Gao, and Ren Ke Kang. "Surface Damage Analyse of KDP Crystal Grinding." Advanced Materials Research 24-25 (September 2007): 349–54. http://dx.doi.org/10.4028/www.scientific.net/amr.24-25.349.
Повний текст джерелаEjupi, Arsim. "Functional transformation of Albanian and Serbian settlements in the Presheva Valley, Serbia." Environmental & Socio-economic Studies 5, no. 2 (June 27, 2017): 1–9. http://dx.doi.org/10.1515/environ-2017-0006.
Повний текст джерелаДисертації з теми "Functional analyse"
Ji, Boyang. "Comparative and Functional Genome Analysis of Magnetotactic Bacteria." Thesis, Aix-Marseille, 2013. http://www.theses.fr/2013AIXM4065.
Повний текст джерелаMagnetotactic bacteria (MTB) are a diverse group of aquatic prokaryotes, which synthesize membrane-Enclosed magnetic crystals known as magnetosomes. In this thesis, the genome sequences of two marine MTB strains, Magnetospira sp. QH-2 and magneto-Ovoid strain MO-1 were analyzed. The magnetosome gene cluster synteny and mam gene correlation indicate that the insertion of the magnetosome island into QH-2 chromosome occurred after divergence between freshwater and marine magnetospirilla. Comparative genomic analysis revealed three distinct groups of sequenced MTB strains: Group I with Magnetospirillum spp. strains and Magnetospira strain, Group II with MO-1 strain and M. marinus MC-1, and Group III including Desulfovibrio magneticus RS-1. In addition, it shows an adaptive evolution of two marine MTB strains to marine sediments in comparison with closely related freshwater species. Moreover, comparative metabolic network analysis reveals high level of intra-Group similarity and inter-Group variety in MTB. With anoxic network enzymes, potential “MTB” strains are predicted, and are consistent with recently isolated MTB strains. It suggested that the anoxic metabolic network might be one restricted constraint for MTB distribution in bacterial lineages. Interestingly, analyses from ribosomal proteins to the whole MTB genome strongly support a taxonomic chimeric nature of MO-1 and MC-1 genes, and may represent a novel Proteobacteria lineage. Additionally, I also participate to genome analyses of piezophilic Desulfovibrio and Phaeospirillum molischianum strains as well as genome-Wide analysis of bacterial tyrosine kinases
Lensch, Anne Katrin. "Auswirkungen gesundheitsbezogener Ernährungsinformationen auf die Kaufentscheidung : Analyse am Beispiel funktioneller Lebensmittel mit Folsäure /." Hamburg : Kovač, 2009. http://www.verlagdrkovac.de/978-3-8300-4229-7.htm.
Повний текст джерелаWang, Qi. "Multivariate group analyses for functional neuroimaging : conceptual and experimental advances." Thesis, Ecole centrale de Marseille, 2020. http://www.theses.fr/2020ECDM0002.
Повний текст джерелаIn functional neuroimaging experiments, participants perform a set of tasks while their brain activity is recorded, e.g. with electroencephalography (EEG), magnetoencephalography (MEG) or functional magnetic resonance imaging (fMRI). Analysing data from a group of participants, which is often denoted as group-level analysis, aims at identifying traits in the data that relate with the tasks performed by the participant and that are invariant within the population. This allows understanding the functional organization of the brain in healthy subjects and its dysfunctions in pathological populations. While group-level analyses for classical univariate statistical inference schemes, such as the general linear model, have been heavily studied, there are still many open questions for group-level strategies based on multivariate machine learning methods. This thesis therefore focuses on multivariate group-level analysis of functional neuroimaging and brings four contributions. The first contribution is a comparison of the results provided by two classifier-based multivariate group-level strategies: i) the standard one in which one aggregates the performances of within-subject models in a hierarchical analysis, and ii) the scheme we denote as inter-subject pattern analysis, where a population-level predictive model is directly estimated from data recorded on multiple subjects. An extensive set of experiments are conducted on both a large number of artificial datasets - where we parametrically control the size of the multivariate effect and the amount of inter-individual variability - as well as on two real fMRI datasets. Our results show that the two strategies can provide different results and that inter-subject analysis both offers a greater ability to small multivariate effects and facilitates the interpretation of the obtained results at a comparable computational cost.We then provide a survey of the methods that have been proposed to improve inter-subject pattern analysis, which is actually a hard task due to the largely heterogeneous vocabulary employed in the literature dedicated to this topic. Our second contribution consists in first introducing an unifying formalization of this framework, that we cast as a multi-source transductive transfer learning problem, and then in reviewing more than 500 related papers to offer a first comprehensive view of the existing literature where inter-subject pattern analysis was used in task-based functional neuroimaging experiments.Our third contribution is an experimental study that examines the well-foundedness of our multi-source transductive transfer formalization of inter-subject pattern analysis. With fMRI and MEG data recorded from numerous subjects, we demonstrate that between-subject variability impairs the generalization ability of classical machine learning algorithms and that a standard multi-source transductive learning strategy improves the generalization performances of such algorithms. Based on these promising results we further investigate the use of two more advanced machine learning methods to deal with the multi-source problem.The fourth contribution of this thesis is a new multivariate group-level analysis method for functional neuroimaging datasets. Our method is based on optimal transport, which leverages the geometrical properties of multivariate brain patterns to overcome inter-individual differences impacting the traditional group-level analyses. We extend the concept of Wasserstein barycenter, which was initially meant to average probability measures, to make it applicable to arbitrary data that do not necessarily fulfill the properties of a true probability measure. For this, we introduce a new algorithm that estimates a barycenter and provide an experimental study on artificial and real functional MRI
Lensch, Anne Katrin. "Auswirkungen gesundheitsbezogener Ernährungsinformationen auf die Kaufentscheidung Analyse am Beispiel funktioneller Lebensmittel mit Folsäure." Hamburg Kovač, 2008. http://d-nb.info/992492343/04.
Повний текст джерелаCalbrix, Jean. "Questions de topologie en analyse fonctionnelle." Grenoble 2 : ANRT, 1986. http://catalogue.bnf.fr/ark:/12148/cb375962153.
Повний текст джерелаWu, QiongLi. "Sensitivity Analysis for Functional Structural Plant Modelling." Phd thesis, Ecole Centrale Paris, 2012. http://tel.archives-ouvertes.fr/tel-00719935.
Повний текст джерелаAndreescu, Oana Fabiana. "Static analysis of functional programs with an application to the frame problem in deductive verification." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S047/document.
Повний текст джерелаIn the field of software verification, the frame problem refers to establishing the boundaries within which program elements operate. It has notoriously tedious consequences on the specification of frame properties, which indicate the parts of the program state that an operation is allowed to modify, as well as on their verification, i.e. proving that operations modify only what is specified by their frame properties. In the context of interactive formal verification of complex systems, such as operating systems, much effort is spent addressing these consequences and proving the preservation of the systems' invariants. However, most operations have a localized effect on the system and impact only a limited number of invariants at the same time. In this thesis we address the issue of identifying those invariants that are unaffected by an operation and we present a solution for automatically inferring their preservation. Our solution is meant to ease the proof burden for the programmer. It is based on static analysis and does not require any additional frame annotations. Our strategy consists in combining a dependency analysis and a correlation analysis. We have designed and implemented both static analyses for a strongly-typed, functional language that handles structures, variants and arrays. The dependency analysis computes a conservative approximation of the input fragments on which functional properties and operations depend. The correlation analysis computes a safe approximation of the parts of an input state to a function that are copied to the output state. It summarizes not only what is modified but also how it is modified and to what extent. By employing these two static analyses and by subsequently reasoning based on their combined results, an interactive theorem prover can automate the discharching of proof obligations for unmodified parts of the state. We have applied both of our static analyses to a functional specification of a micro-kernel and the obtained results demonstrate both their precision and their scalability
Sijobert, Benoît. "Assistive control of motion in sensorimotor impairments based on functional electrical stimulation." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS079/document.
Повний текст джерелаThe human central nervous system (CNS) can be subject to multiple dysfunctions. Potentially due to physical lesions (e.g.: spinal cord injuries, hemorrhagic or ischemic stroke) or to neurodegenerative disorders (e.g.: Parkinson’s disease), these deficiencies often result in major functional impairments throughout the years.As an alternative to usual therapeutic approaches, functional electrical stimulation (FES) of preserved muscles enables to assist individuals in executing functional movements in order to improve their daily life condition or to help enhancing rehabilitation process.Despite major technological advances in rehabilitation engineering, the complexity of the musculoskeletal system and the technological constraints associated have led to a very slow acceptance of neurorehabilitation technologies.To promote usability and adaptability, several approaches and algorithms were studied through this thesis and were experimentally validated in different clinical and pathological contexts, using low-cost wearable sensors combined to programmable stimulators to assess and control motion through a patient-centered approach
Rubanova, Natalia. "MasterPATH : network analysis of functional genomics screening data." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC109/document.
Повний текст джерелаIn this work we developed a new exploratory network analysis method, that works on an integrated network (the network consists of protein-protein, transcriptional, miRNA-mRNA, metabolic interactions) and aims at uncovering potential members of molecular pathways important for a given phenotype using hit list dataset from “omics” experiments. The method extracts subnetwork built from the shortest paths of 4 different types (with only protein-protein interactions, with at least one transcription interaction, with at least one miRNA-mRNA interaction, with at least one metabolic interaction) between hit genes and so called “final implementers” – biological components that are involved in molecular events responsible for final phenotypical realization (if known) or between hit genes (if “final implementers” are not known). The method calculates centrality score for each node and each path in the subnetwork as a number of the shortest paths found in the previous step that pass through the node and the path. Then, the statistical significance of each centrality score is assessed by comparing it with centrality scores in subnetworks built from the shortest paths for randomly sampled hit lists. It is hypothesized that the nodes and the paths with statistically significant centrality score can be considered as putative members of molecular pathways leading to the studied phenotype. In case experimental scores and p-values are available for a large number of nodes in the network, the method can also calculate paths’ experiment-based scores (as an average of the experimental scores of the nodes in the path) and experiment-based p-values (by aggregating p-values of the nodes in the path using Fisher’s combined probability test and permutation approach). The method is illustrated by analyzing the results of miRNA loss-of-function screening and transcriptomic profiling of terminal muscle differentiation and of ‘druggable’ loss-of-function screening of the DNA repair process. The Java source code is available on GitHub page https://github.com/daggoo/masterPATH
Beisser, Daniela [Verfasser], and Thomas [Akademischer Betreuer] Dandekar. "Integrated functional analysis of biological networks = Integrierte funktionelle Analyse biologischer Netzwerke / Daniela Beisser. Betreuer: Thomas Dandekar." Würzburg : Universitätsbibliothek der Universität Würzburg, 2012. http://d-nb.info/1021307378/34.
Повний текст джерелаКниги з теми "Functional analyse"
Bony, J. M. Analyse. [Palaiseau, France]: Ecole polytechnique, Dép. de mathématiques, 1991.
Знайти повний текст джерелаSamuelides, M. Analyse fonctionnelle. Toulouse: Cepadues-Editions, 1989.
Знайти повний текст джерелаK, Nikolʹskiĭ N., ed. Functional analysis I: Linear functional analysis. Berlin: Springer-Verlag, 1992.
Знайти повний текст джерелаRudin, Walter. Functional analysis. 2nd ed. New York: McGraw-Hill, 1991.
Знайти повний текст джерелаLeszek, Demkowicz, ed. Applied functional analysis. 2nd ed. Boca Raton: Chapman & Hall/CRC, 2010.
Знайти повний текст джерелаMilojević, P. S. Nonlinear functional analysis. New York: M. Dekker, 1990.
Знайти повний текст джерелаGuichardet, A. Intégration, analyse hilbertienne. Paris: Editions Marketing, 1989.
Знайти повний текст джерелаDeimling, Klaus. Nonlinear functional analysis. Mineola, N.Y: Dover Publications, 2010.
Знайти повний текст джерелаDeimling, Klaus. Nonlinear functional analysis. Mineola, N.Y: Dover Publications, 2010.
Знайти повний текст джерелаЧастини книг з теми "Functional analyse"
Spirgi-Gantert, Irene, and Markus Oehl. "Das Analyse-Konzept." In FBL Klein-Vogelbach Functional Kinetics, 11–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54102-9_2.
Повний текст джерелаSpirgi-Gantert, Irene, and Barbara Suppé. "Das Analyse-Konzept." In FBL Klein-Vogelbach Functional Kinetics: Therapeutische Übungen, 13–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-20813-3_2.
Повний текст джерелаFaure, Robert. "Oscillations et Analyse Non Lineaire: Proprietes Des Pulsations Des Solutions Periodiques (Cycles) De Certaines Equation Differentielles Autonomes Non Lineaires. Application De La Theorie DU Degre De Leray Schauder." In Nonlinear Functional Analysis and Its Applications, 217–21. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4632-3_14.
Повний текст джерелаManfrino, Radmila Bulajich, José Antonio Gómez Ortega, and Rogelio Valdez Delgado. "Functions and Functional Equations." In Topics in Algebra and Analysis, 89–114. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11946-5_6.
Повний текст джерелаSljoka, Adnan. "Structural and Functional Analysis of Proteins Using Rigidity Theory." In Sublinear Computation Paradigm, 337–67. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-4095-7_14.
Повний текст джерелаLeutgeb, Lorenz, Georg Moser, and Florian Zuleger. "Automated Expected Amortised Cost Analysis of Probabilistic Data Structures." In Computer Aided Verification, 70–91. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-13188-2_4.
Повний текст джерелаBorgonovo, Emanuele. "Multilinear Functions: Taylor Versus Functional ANOVA Expansions." In Sensitivity Analysis, 79–88. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52259-3_9.
Повний текст джерелаSilverman, Bernard W. "Function Estimation and Functional Data Analysis." In Progress in Mathematics, 407–27. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-9112-7_17.
Повний текст джерелаYosida, Kôsaku. "Preliminaries." In Functional Analysis, 1–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-61859-8_1.
Повний текст джерелаYosida, Kôsaku. "Analytical Theory of Semi-groups." In Functional Analysis, 231–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-61859-8_10.
Повний текст джерелаТези доповідей конференцій з теми "Functional analyse"
Laurent, C., M. Baragatti, J. Taylor, T. Scholasch, A. Metay, and B. Tisseyre. "Evaluation of a functional Bayesian method to analyse time series data in precision viticulture." In 12th European Conference on Precision Agriculture. The Netherlands: Wageningen Academic Publishers, 2019. http://dx.doi.org/10.3920/978-90-8686-888-9_7.
Повний текст джерелаOrakov, Askarbek, Nazgul Sakenova, Igor Goraynin, and Anatoly Sorokin. "A novel computational method to analyse metagenome for understanding of microbial community composition and functional potential." In 2017 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS). IEEE, 2017. http://dx.doi.org/10.1109/iciibms.2017.8279735.
Повний текст джерелаWen, Gaojie, Xiaocui Li, Li Tian, and Jun Ren. "Dynamic current monitoring and probe laser simulation strategy to analyse complicated functional failure on mixed signal integrated circuit." In 2017 IEEE 24th International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). IEEE, 2017. http://dx.doi.org/10.1109/ipfa.2017.8060073.
Повний текст джерелаEsat, Volkan, and Memis Acar. "Biomechanical Response of a Functional Spine Unit Under Various Loading Conditions: A Viscoelastic Finite Element Approach." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61728.
Повний текст джерелаSargautis, Darius, Tatjana Kince, and Vanda Sargautiene. "Review: current trends in oat protein recovery and utilization in aqueous food systems." In Research for Rural Development 2021 : annual 27th International scientific conference proceedings. Latvia University of Life Sciences and Technologies, 2021. http://dx.doi.org/10.22616/rrd.27.2021.011.
Повний текст джерелаVermaas, Pieter E. "On Engineering Meanings and Representations of Technical Functions." In ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49342.
Повний текст джерелаEsat, Volkan, and Memis Acar. "A Finite Element Investigation of a Functional Spine Unit in Conjunction With a Multi-Body Model of the Lumbar Spine for Impact Dynamics." In ASME 7th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2004. http://dx.doi.org/10.1115/esda2004-58527.
Повний текст джерелаBrack, Stefan, and Yannick Muller. "Probabilistic Analysis of the Secondary Air System of a Low-Pressure Turbine." In ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-26184.
Повний текст джерелаRasskazova, Ieva, and Asnate Kirse-Ozolina. "Field pea Pisum Sativum L. as a perspective ingredient for vegan foods: a review." In Research for Rural Development 2020. Latvia University of Life Sciences and Technologies, 2020. http://dx.doi.org/10.22616/rrd.26.2020.019.
Повний текст джерелаGhosh, Gourhari, Ajay Sidpara, and P. P. Bandyopadhyay. "Characterization of Nanofinished WC-Co Coating Using Advanced 3D Surface Texture Parameters." In ASME 2018 13th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/msec2018-6592.
Повний текст джерелаЗвіти організацій з теми "Functional analyse"
Diprose, Rachael, Primatia Wulandari, Elena Williams, and Levriana Yustriani. Bureaucratic Reform in Indonesia: Policy Analyst Experiences. University of Melbourne with Knowledge Sector Initiative (KSI), 2020. http://dx.doi.org/10.46580/124364.
Повний текст джерелаLu, Dengwei, Enjie Tang, Supeng Yin, Yizeng Sun, Yuquan Yuan, Tingjie Yin, Zeyu Yang, and Fan Zhang. Intraoperative strategies in identification and functional protection of parathyroid gland for patients with thyroidectomy: A network meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2022. http://dx.doi.org/10.37766/inplasy2022.11.0109.
Повний текст джерелаNieto-Castanon, Alfonso. CONN functional connectivity toolbox (RRID:SCR_009550), Version 18. Hilbert Press, 2018. http://dx.doi.org/10.56441/hilbertpress.1818.9585.
Повний текст джерелаNieto-Castanon, Alfonso. CONN functional connectivity toolbox (RRID:SCR_009550), Version 20. Hilbert Press, 2020. http://dx.doi.org/10.56441/hilbertpress.2048.3738.
Повний текст джерелаNieto-Castanon, Alfonso. CONN functional connectivity toolbox (RRID:SCR_009550), Version 19. Hilbert Press, 2019. http://dx.doi.org/10.56441/hilbertpress.1927.9364.
Повний текст джерелаLers, Amnon, and Pamela J. Green. LX Senescence-Induced Ribonuclease in Tomato: Function and Regulation. United States Department of Agriculture, September 2003. http://dx.doi.org/10.32747/2003.7586455.bard.
Повний текст джерелаSchalk, Gerwin. Methods for Functional Connectivity Analyses. Fort Belvoir, VA: Defense Technical Information Center, December 2012. http://dx.doi.org/10.21236/ada581750.
Повний текст джерелаMatthews, Lisa, Guanming Wu, Robin Haw, Timothy Brunson, Nasim Sanati, Solomon Shorser, Deidre Beavers, Patrick Conley, Lincoln Stein, and Peter D'Eustachio. Illuminating Dark Proteins using Reactome Pathways. Reactome, October 2022. http://dx.doi.org/10.3180/poster/20221027matthews.
Повний текст джерелаTavares, João, Lígia Passos, Daniela Figueiredo, Larissa Pedreira, Elaine Souza, and Lélia Oliveira. Atypical presentation of COVID-19 in older adults: a scoping review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, October 2021. http://dx.doi.org/10.37766/inplasy2021.10.0103.
Повний текст джерелаBernards, Andre. Functional Analysis of Drosophila NF1. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada444270.
Повний текст джерела