Статті в журналах з теми "Fused polymer extrusion"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Fused polymer extrusion.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Fused polymer extrusion".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Singamneni, Sarat, Dawn Smith, Marie-Joo LeGuen, and Derryn Truong. "Extrusion 3D Printing of Polybutyrate-Adipate-Terephthalate-Polymer Composites in the Pellet Form." Polymers 10, no. 8 (August 17, 2018): 922. http://dx.doi.org/10.3390/polym10080922.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fused deposition modelling is a common 3D printing technique used for the freeform fabrication of complex shapes based on polymers. Acrylonitrile butadiene styrene (ABS) is the common material option, though polylactide (PLA) has also proved to be a successful candidate. There is an ever increasing demand to harness new materials as possible candidates for fused deposition. The current research is focused on evaluating polybutyrate-adipate-terephthalate–polymer (PBAT) for fused deposition modelling. Both neat and composite PBAT filled with varying wood flour fillers were experimentally analyzed for 3D printing by extrusion from the pellet forms. The results are positive and the addition of small quantities of the wood flour filler material was found to improve the thixotropic nature of the polymer composite and consequently the inter-strand and inter-layer coalescence.
2

Ramanath, H. S., M. Chandrasekaran, Chee Kai Chua, Kah Fai Leong, and Ketan D. Shah. "Modelling of Extrusion Behaviour of Biopolymer and Composites in Fused Deposition Modelling." Key Engineering Materials 334-335 (March 2007): 1241–44. http://dx.doi.org/10.4028/www.scientific.net/kem.334-335.1241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Processing of polymers plays an important role in application of polymers in biomedical engineering, for instance in manufacture of scaffolds for tissue engineering applications. Rapid prototyping technologies like fused deposition modeling (FDM) has been widely used in processing polymers for biomedical applications. The present work is focused on modeling of flow behavior in the extrusion liquefier in FDM. A finite element (FE) model of extrusion liquefier was constructed on ANSYS after verification of internal geometry using X-ray imaging. Polycaprolactone (PCL) is used as the base bio polymer for analysis. Experiments were carried out to characterize the physical properties like thermal conductivity, specific heat, viscosity and shear thinning property of PCL. These values were used for behavior modeling in the extrusion liquefier. The thermal and flow behavior in the extrusion liquefier is studied by varying input conditions and analyzing the velocity, pressure drop profiles at various zones of extrusion liquefier. Experimental values of parameters and the simulated flow model showed good correlation. The current model can be extended to predict the flow behavior of PCL/ Hydroxyapatite composites in a FDM head which in turn will reflect on the quality of scaffold constructed using the Biocomposite.
3

Badarinath, Rakshith, and Vittaldas Prabhu. "Real-Time Sensing of Output Polymer Flow Temperature and Volumetric Flowrate in Fused Filament Fabrication Process." Materials 15, no. 2 (January 14, 2022): 618. http://dx.doi.org/10.3390/ma15020618.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper we addressed key challenges in engineering an instrumentation system for sensing and signal processing for real-time estimation of two main process variables in the Fused-Filament-Fabrication process: (i) temperature of the polymer melt exiting the nozzle using a thermocouple; and (ii) polymer flowrate using extrusion width measurements in real-time, in-situ, using a microscope camera. We used a design of experiments approach to develop response surface models for two materials that enable accurate estimation of the polymer exit temperature as a function of polymer flowrate and liquefier temperature with a fit of R2=99.96% and 99.39%. The live video stream of the deposition process was used to compute the flowrate based on a road geometry model. Specifically, a robust extrusion width recognizer REXR algorithm was developed to identify edges of the deposited road and for real-time computation of extrusion width, which was found to be robust to filament colors and materials. The extrusion width measurement was found to be within 0.08 mm of caliper measurements with an R2 value of 99.91% and was found to closely track the requested flowrate from the slicer. This opens new avenues for advancing the engineering science for process monitoring and control of FFF.
4

Azad, Mohammad A., Deborah Olawuni, Georgia Kimbell, Abu Zayed Md Badruddoza, Md Shahadat Hossain, and Tasnim Sultana. "Polymers for Extrusion-Based 3D Printing of Pharmaceuticals: A Holistic Materials–Process Perspective." Pharmaceutics 12, no. 2 (February 3, 2020): 124. http://dx.doi.org/10.3390/pharmaceutics12020124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Three dimensional (3D) printing as an advanced manufacturing technology is progressing to be established in the pharmaceutical industry to overcome the traditional manufacturing regime of 'one size fits for all'. Using 3D printing, it is possible to design and develop complex dosage forms that can be suitable for tuning drug release. Polymers are the key materials that are necessary for 3D printing. Among all 3D printing processes, extrusion-based (both fused deposition modeling (FDM) and pressure-assisted microsyringe (PAM)) 3D printing is well researched for pharmaceutical manufacturing. It is important to understand which polymers are suitable for extrusion-based 3D printing of pharmaceuticals and how their properties, as well as the behavior of polymer–active pharmaceutical ingredient (API) combinations, impact the printing process. Especially, understanding the rheology of the polymer and API–polymer mixtures is necessary for successful 3D printing of dosage forms or printed structures. This review has summarized a holistic materials–process perspective for polymers on extrusion-based 3D printing. The main focus herein will be both FDM and PAM 3D printing processes. It elaborates the discussion on the comparison of 3D printing with the traditional direct compression process, the necessity of rheology, and the characterization techniques required for the printed structure, drug, and excipients. The current technological challenges, regulatory aspects, and the direction toward which the technology is moving, especially for personalized pharmaceuticals and multi-drug printing, are also briefly discussed.
5

Bartolai, Joseph, Timothy W. Simpson, and Renxuan Xie. "Predicting strength of additively manufactured thermoplastic polymer parts produced using material extrusion." Rapid Prototyping Journal 24, no. 2 (March 12, 2018): 321–32. http://dx.doi.org/10.1108/rpj-02-2017-0026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Purpose The weakest point in additively manufactured polymer parts produced by material extrusion additive manufacturing (MEAM) is the interface between adjacent layers and deposition toolpaths or “roads”. This study aims to predict the mechanical strength of parts by utilizing a novel analytical approach. Strength predictions are made using the temperature history of these interfaces, polymer rheological data, and polymer weld theory. Design/methodology/approach The approach is validated using experimental data for two common 3D-printed polymers: polycarbonate (PC) and acrylonitrile butadiene styrene (ABS). Interface temperature history data are collected in situ using infrared imaging. Rheological data of the polycarbonate and acrylonitrile butadiene styrene used to fabricate the fused filament fabrication parts in this study have been determined experimentally. Findings The strength of the interfaces has been predicted, to within 10% of experimental strength, using polymer weld theory from the literature adapted to the specific properties of the polycarbonate and acrylonitrile butadiene styrene feedstock used in this study. Originality/value This paper introduces a novel approach for predicting the strength of parts produced by MEAM based on the strength of interfaces using polymer weld theory, polymer rheology, temperature history of the interface and the forces applied to the interface. Unlike methods that require experimental strength data as a prediction input, the proposed approach is material and build orientation agnostic once fundamental parameters related to material composition have been determined.
6

Prusinowski, Artur, and Roman Kaczyński. "Simulation of Processes Occurring in the Extrusion Head Used in Additive Manufacturing Technology." Acta Mechanica et Automatica 11, no. 4 (December 1, 2017): 317–21. http://dx.doi.org/10.1515/ama-2017-0049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe purpose of this research is unsatisfactory state of knowledge of the abrasive wear of composites with thermoplastic polymer as matrix material and reinforcing material in the form of short and focused carbon fibers that can be used in additive manufacturing technologies. The paper presents a conceptual design of an extrusion head used in Fused Deposition Technology, which allows for the implementation of appropriately stacked fibers at the level of detail production. Finite element simulation was performed to simulate the thermal effect of the system to demonstrate the effect of head cooling on the system. The assumed extrusion temperature of the material was obtained at a uniform nozzle temperature and stable temperature of the entire system. Flow simulation of thermoplastic polymer was carried out in the designed extrusion nozzle. By supplying 0.5 mm wire of 1.75 mm diameter thermoplastic material to the nozzle, the extrusion rate was 0.192 m/s. The proper design of the extrusion head for the intended applications has been demonstrated and the purpose of further research in this field has been confirmed.
7

Sa'ude, Nasuha, Mustaffa Ibrahim, and Mohd Halim Irwan Ibrahim. "Melt Flow Behavior of Polymer Matrix Extrusion for Fused Deposition Modeling (FDM)." Applied Mechanics and Materials 660 (October 2014): 89–93. http://dx.doi.org/10.4028/www.scientific.net/amm.660.89.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper presents the melt flow behavior (MFB) of an acrylonitrile butadiene styrene (ABS), High Density Polyethlene (HDPE), Polyproplene (PP) and a combination of ABS-Iron in the extrusion process. In this study, the effect MFB of variety's polymers and ABS mix with 10% Iron material was investigated based on the viscosity, density, thermal conductivity, melting temperature and specific heat material properties. The MFB of FDM system was investigated using Finite-Element Analysis (FEA) by ANSYS CFX 12. Based on the result obtained, it was found that, the material velocity increase when the nozzle diameter is smaller than the entrance diameter. The higher temperature distribution along the MFB of ABS mix with 10% Iron is 43.15 K compared with original ABS, which is 539.15K.
8

Hanemann, Thomas, Diana Syperek, and Dorit Nötzel. "3D Printing of ABS Barium Ferrite Composites." Materials 13, no. 6 (March 24, 2020): 1481. http://dx.doi.org/10.3390/ma13061481.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this work, a process for the realization of new polymer matrix composites with nanosized barium ferrite (BaFe12O19) as ferrimagnetic filler, acryl butadiene styrene (ABS) as polymer matrix and an extrusion-based method, namely fused filament fabrication (FFF), as 3D printing method will be described comprehensively. The whole process consists of the individual steps material compounding, rheological testing, filament extrusion, 3D-printing via FFF and finally a widespread specimen characterization regarding to appearance, mechanical properties like tensile and bending behavior as well as the aspired magnetic properties. Increasing ferrite amounts up to 40 vol.% (equal 76 wt.%) cause a reduction of the ultimate stress and an increase of the magnetic polarization as well as of the energy product (BH)max in comparison to the pure polymer matrix. In addition, an extensive discussion of typical printing defects and their consequences on the device properties will be undertaken.
9

Pereira, Gabriela G., Sara Figueiredo, Ana Isabel Fernandes, and João F. Pinto. "Polymer Selection for Hot-Melt Extrusion Coupled to Fused Deposition Modelling in Pharmaceutics." Pharmaceutics 12, no. 9 (August 22, 2020): 795. http://dx.doi.org/10.3390/pharmaceutics12090795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Three-dimensional (3D) printing offers the greatest potential to revolutionize the future of pharmaceutical manufacturing by overcoming challenges of conventional pharmaceutical operations and focusing design and production of dosage forms on the patient’s needs. Of the many technologies available, fusion deposition modelling (FDM) is considered of the lowest cost and higher reproducibility and accessibility, offering clear advantages in drug delivery. FDM requires in-house production of filaments of drug-containing thermoplastic polymers by hot-melt extrusion (HME), and the prospect of connecting the two technologies has been under investigation. The ability to integrate HME and FDM and predict and tailor the filaments’ properties will extend the range of printable polymers/formulations. Hence, this work revises the properties of the most common pharmaceutical-grade polymers used and their effect on extrudability, printability, and printing outcome, providing suitable processing windows for different raw materials. As a result, formulation selection will be more straightforward (considering the characteristics of drug and desired dosage form or release profile) and the processes setup will be more expedite (avoiding or mitigating typical processing issues), thus guaranteeing the success of both HME and FDM. Relevant techniques used to characterize filaments and 3D-printed dosage forms as an essential component for the evaluation of the quality output are also presented.
10

Villacres, Jorge, David Nobes, and Cagri Ayranci. "Additive manufacturing of shape memory polymers: effects of print orientation and infill percentage on mechanical properties." Rapid Prototyping Journal 24, no. 4 (May 14, 2018): 744–51. http://dx.doi.org/10.1108/rpj-03-2017-0043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Purpose Material extrusion additive manufacturing, also known as fused deposition modeling, is a manufacturing technique in which objects are built by depositing molten materials layer-by-layer through a nozzle. The use and application of this technique has risen dramatically over the past decade. This paper aims to first, report on the production and characterization of a shape memory polymer material filament that was manufactured to print shape memory polymer objects using material extrusion additive manufacturing. Additionally, it aims to investigate and outline the effects of major printing parameters, such as print orientation and infill percentage, on the elastic and mechanical properties of printed shape memory polymer samples. Design/methodology/approach Infill percentage was tested at three levels, 50, 75 and 100 per cent, while print orientation was tested at four different angles with respect to the longitudinal axis of the specimens at 0°, 30°, 60° and 90°. The properties examined were elastic modulus, ultimate tensile strength and maximum strain. Findings Results showed that print angle and infill percentage do have a significant impact on the manufactured test samples. Originality/value Findings can significantly influence the tailored design and manufacturing of smart structures using shape memory polymer and material extrusion additive manufacturing.
11

Singh, Rupinder, and Sunpreet Singh. "INVESTIGATIONS FOR ENHANCING THE APPLICATION DOMAIN OF FUSED DEPOSITION MODELLING PROCESS." Journal of Mechanical Engineering 46, no. 1 (May 11, 2017): 36–40. http://dx.doi.org/10.3329/jme.v46i1.32521.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the recent past, various studies have been reported on the development of in-house fused deposition modelling (FDM) filament, in order to increase the application domain of the process. But hitherto very less have reported on the effect of reinforcement type (such as: SiC, Al2O3 and Fe powder etc.) on the melt flow index (MFI) of the polymer matrix composite (PMC) to be used as FDM filament. In the present research work, an effort has beenmade to investigate the effect of selected proportions of filler, matrix (nylon-6) and extrusion load on the MFI of reinforced FDM filament. Experimental study was conducted on melt flow indexer (MFIer) as per ASTM-D1238-95 standard and signal to noise ratio was calculated to find out the effect of input process parameters on MFI of hybrid filament. It has been found that proportion of filler in matrix, type of filler material and extrusion load contributed about 16.62%, 1.23% and 76.72% respectively.
12

Vinegrad, Adi, Heftsi Ragones, Nishani Jayakody, Gilat Ardel, Meital Goor, Yossi Kamir, Moty Marcos Dorfman, et al. "Plasticized 3D-Printed Polymer Electrolytes for Lithium-Ion Batteries." Journal of The Electrochemical Society 168, no. 11 (November 1, 2021): 110549. http://dx.doi.org/10.1149/1945-7111/ac39d5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the current research, we developed and printed by fused-filament fabrication polylactide-polyethylene-oxide blended membranes. The influence of relative content of polymers on the ease of extrusion and printing processes was studied. Ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethane-sulfonyl)imide (Pyr14TFSI) with dissolved LiTFSI salt was infused into the membranes to produce free-standing films of quasi-solid polymer electrolytes. The printed membranes were characterized by ESEM, DSC, XPS, NMR and EIS methods. Neat-printed PLA (polylactide) membrane exhibited poor wetting and low uptake of ionic liquid. However, the XPS tests of 3D-printed PLA-PEO membrane infused with LiTFSI solvated ionic liquid show evidence of the interaction between lithium cations with both, PEO (polyethylene oxide) and PLA. The measurements of diffusion coefficients by PGSE-NMR suggest that the Li+ ions are coordinated by the PEO segments in the polymer blend. Increase of the PEO content at the expense of PLA polymer, leads to more than one order of magnitude improvement of bulk conductivity, approaching 0.2 mS cm−1 at 60 ° C .
13

Palacios-Ibáñez, Belén, José J. Relinque, Daniel Moreno-Sánchez, Alberto S. de León, Francisco J. Delgado, Ramón Escobar-Galindo, and Sergio I. Molina. "Synthesis and Characterisation of ASA-PEEK Composites for Fused Filament Fabrication." Polymers 14, no. 3 (January 26, 2022): 496. http://dx.doi.org/10.3390/polym14030496.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, a series of polymer composites made from acrylonitrile-styrene-acrylate (ASA) and poly (ether ether ketone) (PEEK) were manufactured. ASA acts as a polymer matrix while PEEK is loaded in the form of micro-particles that act as a reinforcing filler. The composites were compounded by single screw extrusion and then, different specimens were manufactured either via injection moulding (IM) or fused filament fabrication (FFF). Two different types of PEEK (commercial and reused) in different concentrations (3 and 6 wt.%) were tested and their influence in the mechanical, structural, and thermal properties were studied. It was observed that reused PEEK enhanced the stiffness and tensile strength and thermal stability of the composites both, for injected and printed specimens. This evidences the suitability of these composites as potential candidates as novel materials with enhanced properties following an approach of circular economy.
14

Chen, Jian-Ming, Demei Lee, Jheng-Wei Yang, Sheng-Han Lin, Yu-Ting Lin, and Shih-Jung Liu. "Solution Extrusion Additive Manufacturing of Biodegradable Polycaprolactone." Applied Sciences 10, no. 9 (May 3, 2020): 3189. http://dx.doi.org/10.3390/app10093189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Polycaprolactone (PCL) is a resorbable semicrystalline polymer that degrades slowly via hydrolysis and has applications in medical implants and drug delivery. As a result of its low melting point, PCL can be processed easily by conventional polymer processing techniques. However, the additive manufacturing of PCL remains a challenge, mainly due to the fact that there are no commercially available filaments for traditional fused deposition modeling (FDM). Furthermore, when the materials are fabricated via FDM for drug delivery applications, the high temperature may deactivate the incorporated drugs/biomolecules. This study investigates the solution extrusion additive manufacturing of PCL using a lab-developed solution-type device. The device comprises a solution extrusion feeder, driving stepper motors, a power source, a syringe equipped with a dispensing tip, an accumulation platform, and a control interface. The influences of different manufacturing parameters on part quality were evaluated. The experimental results suggest that the tensile strength of the additively manufactured parts increases with fill density but decreases with the ratio of PCL to dichloromethane (DCM) and moving speed of the dispensing tip. Parts fabricated by 90° print orientation of infill exhibited the greatest mechanical strength. The fabricated parts tend to heal the gaps among strips after additive manufacturing, but tiny pores can still be seen on the surfaces.
15

Tan, Deck, Mohammed Maniruzzaman, and Ali Nokhodchi. "Advanced Pharmaceutical Applications of Hot-Melt Extrusion Coupled with Fused Deposition Modelling (FDM) 3D Printing for Personalised Drug Delivery." Pharmaceutics 10, no. 4 (October 24, 2018): 203. http://dx.doi.org/10.3390/pharmaceutics10040203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Three-dimensional printing, also known as additive manufacturing, is a fabrication process whereby a 3D object is created layer-by-layer by depositing a feedstock material such as thermoplastic polymer. The 3D printing technology has been widely used for rapid prototyping and its interest as a fabrication method has grown significantly across many disciplines. The most common 3D printing technology is called the Fused Deposition Modelling (FDM) which utilises thermoplastic filaments as a starting material, then extrudes the material in sequential layers above its melting temperature to create a 3D object. These filaments can be fabricated using the Hot-Melt Extrusion (HME) technology. The advantage of using HME to manufacture polymer filaments for FDM printing is that a homogenous solid dispersion of two or more pharmaceutical excipients i.e., polymers can be made and a thermostable drug can even be introduced in the filament composition, which is otherwise impractical with any other techniques. By introducing HME techniques for 3D printing filament development can improve the bioavailability and solubility of drugs as well as sustain the drug release for a prolonged period of time. The latter is of particular interest when medical implants are considered via 3D printing. In recent years, there has been increasing interest in implementing a continuous manufacturing method on pharmaceutical products development and manufacture, in order to ensure high quality and efficacy with less batch-to-batch variations of the pharmaceutical products. The HME and FDM technology can be combined into one integrated continuous processing platform. This article reviews the working principle of Hot Melt Extrusion and Fused Deposition Modelling, and how these two technologies can be combined for the use of advanced pharmaceutical applications.
16

Singh, Rupinder, and Nishant Ranjan. "Experimental investigations for preparation of biocompatible feedstock filament of fused deposition modeling (FDM) using twin screw extrusion process." Journal of Thermoplastic Composite Materials 31, no. 11 (October 31, 2017): 1455–69. http://dx.doi.org/10.1177/0892705717738297.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Twin screw extrusion (TSE) is one of the commercially established processes for reinforcement of metallic/nonmetallic/ceramic fillers in polymer matrix for tailor-made applications. In this study, biocompatible feedstock filament has been prepared (in-house) for commercial fused deposition modeling (FDM) setup with biocompatible grade polymers, namely polyvinyl chloride and polypropylene which was reinforced with the hydroxyapatite particles. The process parameters (namely, material composition, rotational speed of TSE, die temperature of TSE, HAp particle grain size, and applied load on TSE) were optimized using Taguchi L18 orthogonal array. In this study, mechanical, thermal, and metallurgical properties have been established, and best-feedstock filament wire for development of partial/complete denture on the FDM with functionally graded surfaces properties has been recommended for future applications.
17

Liu, Jikai, Jingjing Yan, and Huangchao Yu. "Stress-constrained topology optimization for material extrusion polymer additive manufacturing." Journal of Computational Design and Engineering 8, no. 3 (May 29, 2021): 979–93. http://dx.doi.org/10.1093/jcde/qwab028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This paper presents a comprehensive numerical and experimental study on stress-constrained topology optimization for Fused Deposition Modeling (FDM) additive manufacturing. The qp method is employed to avoid the singularity issue of stress-constrained problems. The P-norm function with stability transformation is adopted to build the global stress constraint with iterative corrections to eliminate the gap between the maximum local stress and the P-norm stress. The Heaviside projection is employed to generate clear-cut 0–1 designs. Two benchmark examples have been studied with the numerical algorithm. Experiments are performed on the topologically optimized MBB beam to investigate the impact of the FDM process parameters, including deposition path direction, building direction, and slicing layer height, on the resulted structural strength. The stress-constrained designs without and with Heaviside projection are comparatively tested with experiments. The stress-minimization designs subject to different P-norm parameters are compared both numerically and experimentally. Experiments show that the deposition path direction and the building direction evidently affect the derived structural strength. Moreover, overthin structural members may severely degrade the structural strength due to manufacturing and loading uncertainties.
18

Mathew, Essyrose, Juan Domínguez-Robles, Eneko Larrañeta, and Dimitrios A. Lamprou. "Fused Deposition Modelling as a Potential Tool for Antimicrobial Dialysis Catheters Manufacturing: New Trends vs. Conventional Approaches." Coatings 9, no. 8 (August 14, 2019): 515. http://dx.doi.org/10.3390/coatings9080515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The rising rate of individuals with chronic kidney disease (CKD) and ineffective treatment methods for catheter-associated infections in dialysis patients has led to the need for a novel approach to the manufacturing of catheters. The current process requires moulding, which is time consuming, and coated catheters used currently increase the risk of bacterial resistance, toxicity, and added expense. Three-dimensional (3D) printing has gained a lot of attention in recent years and offers the opportunity to rapidly manufacture catheters, matched to patients through imaging and at a lower cost. Fused deposition modelling (FDM) in particular allows thermoplastic polymers to be printed into the desired devices from a model made using computer aided design (CAD). Limitations to FDM include the small range of thermoplastic polymers that are compatible with this form of printing and the high degradation temperature required for drugs to be extruded with the polymer. Hot-melt extrusion (HME) allows the potential for antimicrobial drugs to be added to the polymer to create catheters with antimicrobial activity, therefore being able to overcome the issue of increased rates of infection. This review will cover the area of dialysis and catheter-related infections, current manufacturing processes of catheters and methods to prevent infection, limitations of current processes of catheter manufacture, future directions into the manufacture of catheters, and how drugs can be incorporated into the polymers to help prevent infection.
19

Turner, Brian N., and Scott A. Gold. "A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness." Rapid Prototyping Journal 21, no. 3 (April 20, 2015): 250–61. http://dx.doi.org/10.1108/rpj-02-2013-0017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Purpose – The purpose of this paper is to critically review the literature related to dimensional accuracy and surface roughness for fused deposition modeling and similar extrusion-based additive manufacturing or rapid prototyping processes. Design/methodology/approach – A systematic review of the literature was carried out by focusing on the relationship between process and product design parameters and the dimensional and surface properties of finished parts. Methods for evaluating these performance parameters are also reviewed. Findings – Fused deposition modeling® and related processes are the most widely used polymer rapid prototyping processes. For many applications, resolution, dimensional accuracy and surface roughness are among the most important properties in final parts. The influence of feedstock properties and system design on dimensional accuracy and resolution is reviewed. Thermal warping and shrinkage are often major sources of dimensional error in finished parts. This phenomenon is explored along with various approaches for evaluating dimensional accuracy. Product design parameters, in particular, slice height, strongly impact surface roughness. A geometric model for surface roughness is also reviewed. Originality/value – This represents the first review of extrusion AM processes focusing on dimensional accuracy and surface roughness. Understanding and improving relationships between materials, design parameters and the ultimate properties of finished parts will be key to improving extrusion AM processes and expanding their applications.
20

Terenteva, O. A., K. A. Gusev, V. V. Tikhonova, D. N. Maimistov, G. A. Shandryuk, and E. V. Flisyuk. "Three-dimensional printing of ramipril tablets by fused deposition modeling." Drug development & registration 10, no. 4 (December 24, 2021): 79–87. http://dx.doi.org/10.33380/2305-2066-2021-10-4(1)-79-87.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Introduction. Arterial hypertension is one of the main risk factors for the development of cardiovascular diseases. Drug treatment of arterial hypertension is associated with a number of difficulties: often requires combination therapy, also a possible change in either dosages or drugs during treatment during the patient's life. Three-dimensional printing allows to create individual medicines on-demand.Aim. Study suitability of Kollidon® VA 64 as a matrix-polymer for the preparation of immediate release ramipril printing tablets.Materials and methods. Substance: ramipril; excipients: Kollidon® VA 64, Kollidon® CL-F, Soluplus®, PEG 1500, sodium carbonate anhydrous, Poloxamer 188, sodium stearyl fumarate, mannitol; reagents: hydrochloric acid, acetonitrile for ultra-HPLC, sodium octanesulfonate for HPLC, orthophosphoric acid 85 %, sodium perchlorate analytical grade, triethylamine, standard: ramipril USP (№1598303). Ramipril filaments were prepared by hot melt extrusion on the extruder Haake™ miniCTW (Thermo Fisher Scientific). The tablets were printed on a hand-made 3D printer. The printlets were studied for friability and hardness. Uniformity and quantitative determination of ramipril and impurities in tablets and filaments were determined by high performance liquid chromatography on a Shimadzu Prominence LC liquid chromatograph. Stability of ramipril was studied on a DSC 3+ Mettler Toledo by differential scanning calorimetry. Also, the stability of ramipril was determined by the Raman spectroscopy on an analytical system ORTES-785TRS-2700.Results and discussion. Ramipril filaments with a diameter of 1.75 mm were obtained by melt extrusion at a temperature of 105 °C. They were homogeneous in quantitative content of the active substance. From the resulting filaments, tablets were printed in five configurations with three filling densities: 30 %, 50 % and 100 %. Degradation of ramipril in filaments and tablets is not observed. The melting point of the selected mixture is lower than the melting point of matrix-polymer. It makes possible to lower the processing temperature. Tablets with 100 % filling provide an immediate release of ramipril.Conclusion. Kollidon® VA 64 is suitable as a matrix-polymer for the development of immediate release ramipril printlets. Kollidon® VA 64 provides the necessary physical and processing properties of the filament required for FDM printing.
21

Singh, Rupinder, Ranvijay Kumar, and IPS Ahuja. "Mechanical, thermal and melt flow of aluminum-reinforced PA6/ABS blend feedstock filament for fused deposition modeling." Rapid Prototyping Journal 24, no. 9 (November 12, 2018): 1455–68. http://dx.doi.org/10.1108/rpj-05-2017-0094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Purpose This study aims to highlights the mechanical, thermal and melting behavior compatibility of aluminum (Al)-reinforced polyamide (PA) 6/acrylonitrile butadiene styrene (ABS)-based functional prototypes prepared using fused deposition modeling (FDM) from the friction welding point of view. Previous studies have highlighted the use of metallic/non-metallic fillers in polymer matrix for preparations of mechanically improved FDM feedstock filaments and functional prototypes. But hitherto, very less has been reported on fabrication of functional prototypes which fulfill the compatibility of two polymers for joining/welding-based applications. The compatibility of two dissimilar polymers enables the friction welding for maintenance applications. Design/methodology/approach The twin screw extrusion process has been used for mechanical mixing of metallic reinforcement in polymer matrix, and final blend of reinforced polymers in the form of extruded feed stock filament has been used on FDM for printing of functional prototypes (for friction welding). The methodology involves melt flow index (MFI) investigations, differential scanning calorimetry (DSC) investigations for thermal properties, tensile and hardness testing for mechanical properties and photo micrographic investigations for metallurgical properties on extruded samples. Findings It was observed that the reinforced ABS and PA6 polymers have better compatibility in the terms of similar melt flow, thermal properties and can lead to the better joint efficiency with friction welding. Originality/value In the present work composite feed stock filament composed of ABS and PA6 with reinforcement of Al powder has been successfully developed for preparation of functional prototype in friction welding applications.
22

Baca Lopez, David Moises, and Rafiq Ahmad. "Tensile Mechanical Behaviour of Multi-Polymer Sandwich Structures via Fused Deposition Modelling." Polymers 12, no. 3 (March 12, 2020): 651. http://dx.doi.org/10.3390/polym12030651.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The application of single homogeneous materials produced through the fused deposition modelling (FDM) technology restricts the production of high-level multi-material components. The fabrication of a sandwich-structured specimen with different material combinations using conventional thermoplastics such as poly (lactic acid) (PLA), acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) through the filament-based extrusion process can demonstrate an improvement on its properties. This paper aims to assess among these materials, the best material sandwich-structured arrangement design, to enhance the mechanical properties of a part and to compare the results with the homogeneous materials selected. The samples were subjected to tensile testing to identify the tensile strength, elongation at break and Young’s modulus of each material combination. The experimental results demonstrate that applying the PLA-ABS-PLA sandwich arrangement leads to the best mechanical properties between these materials. This study enables users to consider sandwich structure designs as an alternative to manufacturing multi-material components using conventional and low-cost materials. Future work will consider the flexural tests to identify the maximum stresses and bending forces under pressure.
23

Mora-Castaño, Gloria, Mónica Millán-Jiménez, Vicente Linares, and Isidoro Caraballo. "Assessment of the Extrusion Process and Printability of Suspension-Type Drug-Loaded AffinisolTM Filaments for 3D Printing." Pharmaceutics 14, no. 4 (April 15, 2022): 871. http://dx.doi.org/10.3390/pharmaceutics14040871.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Three-dimensional (3D) printing technology enables the design of new drug delivery systems for personalised medicine. Polymers that can be molten are needed to obtain extruded filaments for Fused Deposition Modelling (FDM), one of the most frequently employed techniques for 3D printing. The aim of this work was to evaluate the extrusion process and the physical appearance of filaments made of a hydrophilic polymer and a non-molten model drug. Metformin was used as model drug and Affinisol™ 15LV as the main carrier. Drug-loaded filaments were obtained by using a single-screw extruder and, subsequently, their printability was tested. Blends containing up to a 60% and 50% drug load with 5% and 7.5% of auxiliary excipients, respectively, were successfully extruded. Between the obtained filaments, those containing up to 50% of the drug were suitable for use in FDM 3D printing. The studied parameters, including residence time, flow speed, brittleness, and fractal dimension, reflect a critical point in the extrusion process at between 30–40% drug load. This finding could be essential for understanding the behaviour of filaments containing a non-molten component.
24

Patterson, Albert E., Charul Chadha, and Iwona M. Jasiuk. "Manufacturing process-driven structured materials (MPDSMs): design and fabrication for extrusion-based additive manufacturing." Rapid Prototyping Journal 28, no. 4 (October 25, 2021): 716–31. http://dx.doi.org/10.1108/rpj-04-2021-0072.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Purpose This paper aims to explore the design and fabrication of meso-scale Manufacturing Process-Driven Structured Materials (MPDSMs). These are designed, architected materials where the prime design requirement is manufacturability. The concepts are applied to those fabricated using fused deposition modeling or fused filament fabrication (FDM/FFF), a thermoplastic polymer additive manufacturing (AM) process. Three case studies were presented to demonstrate the approach. Design/methodology/approach The paper consists of four main sections; the first developed the MPDSMs concept, the second explored manufacturability requirements for FDM/FFF in terms of MPDSMs, the third presented a practical application framework and the final sections provided some case studies and closing remarks. Findings The main contributions of this study were the definition and development of the MDPSMs concept, the application framework and the original case studies. While it is most practical to use a well-defined AM process to first explore the concepts, the MPDSMs approach is neither limited to AM nor thermoplastic polymer materials nor meso-scale material structures. Future research should focus on applications in other areas. Originality/value The MPDSMs approach as presented in this concept paper is a novel method for the design of structured materials where manufacturability is the prime requirement. It is distinct from classic design-for-manufacturability concepts in that the design space is limited to manufacturable design candidates before the other requirements are satisfied. This removes a significant amount of schedule and costs risk from the design process, as all the designs produced are manufacturable within the problem tolerance.
25

Striemann, Patrick, Daniel Hülsbusch, Michael Niedermeier, and Frank Walther. "Quasi-Static Characterization of Polyamide-Based Discontinuous CFRP Manufactured by Additive Manufacturing and Injection Molding." Key Engineering Materials 809 (June 2019): 386–91. http://dx.doi.org/10.4028/www.scientific.net/kem.809.386.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Generating serial components via additive manufacturing (AM) a deep understanding of process-related characteristics is necessary. The extrusion-based AM called fused layer manufacturing (FLM), also known as fused deposition modeling (FDM™) or fused filament fabrication (FFF) is an AM process for producing serial components. Improving mechanical properties of AM parts is done by adding fibers in the raw material to reinforce the polymer. The study aims to create a more detailed comprehension of FLM and process-related characteristics with their influence on the composite.Thereby, a short carbon fiber-reinforced polyamide (CarbonX™ Nylon, 3DXTECH, USA) with 12.5 wt.‑% fiber content, 7 μm fiber diameter, and 150 to 400 µm fiber length distribution was investigated. To separate process-related characteristics of FLM, reference specimens were fabricated via injection molding (IM) with single-batch material. For the mechanical characterization, quasi-static tensile tests were carried out in accordance to DIN 527‑2. Quality assessment including void content and void distribution was performed via micro-computed tomography (CT).The mechanical characterization clarifies effects on mechanical properties depending on process-related characteristics of FLM. CT scans show higher void contents of FLM specimens compared to IM specimens and void orientation dependent on printing direction. FLM shows process-related characteristics which generally strengthen mechanical properties of polymers. Nevertheless, tensile strength of FLM specimens decrease by more than 28% compared to quasi-homogenous IM specimens.
26

Singh, Narinder, Rupinder Singh, and IPS Ahuja. "Thermomechanical investigations of SiC and Al2O3–reinforced HDPE." Journal of Thermoplastic Composite Materials 32, no. 10 (September 5, 2018): 1347–60. http://dx.doi.org/10.1177/0892705718796544.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This research work highlights the thermomechanical investigations of silicon carbide (SiC) and aluminum oxide (Al2O3)–reinforced high-density polyethylene (HDPE)–based feed stock filament of commercial fused deposition modeling (FDM) setup. The recycled HDPE waste was collected (from domestic waste) and washed with water jet for removal of contamination in the first stage. After contamination removal, rheological and thermal behavior (melt flow index, melting temperature, decomposition and enthalpy, etc.) of the unreinforced and reinforced polymer matrix was observed. The SiC and Al2O3 reinforcements in the HDPE matrix have been controlled by twin-screw extrusion process, followed by its processing on single-screw extrusion for preparation of FDM feed stock filament. The feed stock filament prepared by single-screw extruder was subjected to tensile test for mechanical properties (such as peak strength, peak load, and Young’s modulus). After ascertaining mechanical properties, multifactor optimization has been performed. Finally, scanning electron micrographs were obtained to understand the distribution of ceramic particles. This study highlights the detailed procedure for managing the polymer waste with improved mechanical properties by considering multifactor optimization. This will enhance the sustainability and also helps to develop low-cost, in-house FDM filament for possible applications as rapid tooling.
27

Turek, Paweł, and Grzegorz Budzik. "Estimating the Accuracy of Mandible Anatomical Models Manufactured Using Material Extrusion Methods." Polymers 13, no. 14 (July 11, 2021): 2271. http://dx.doi.org/10.3390/polym13142271.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The development of new solutions in craniofacial surgery brings the need to increase the accuracy of 3D printing models. The accuracy of the manufactured models is most often verified using optical coordinate measuring systems. However, so far, no decision has been taken regarding which type of system would allow for a reliable estimation of the geometrical accuracy of the anatomical models. Three types of optical measurement systems (Atos III Triple Scan, articulated arm (MCA-II) with a laser head (MMD × 100), and Benchtop CT160Xi) were used to verify the accuracy of 12 polymer anatomical models of the left side of the mandible. The models were manufactured using fused deposition modeling (FDM), melted and extruded modeling (MEM), and fused filament fabrication (FFF) techniques. The obtained results indicate that the Atos III Triple Scan allows for the most accurate estimation of errors in model manufacturing. Using the FDM technique obtained the best accuracy in models manufactured (0.008 ± 0.118 mm for ABS0-M30 and 0.016 ± 0.178 mm for PC-10 material). A very similar value of the standard deviation of PLA and PET material was observed (about 0.180 mm). The worst results were observed in the MEM technique (0.012 mm ± 0.308 mm). The knowledge regarding the precisely evaluated errors in manufactured models within the mandibular area will help in the controlled preparation of templates regarding the expected accuracy of surgical operations.
28

Luo, Cheng, Manjarik Mrinal, Xiang Wang, and Ye Hong. "Bonding widths of Deposited Polymer Strands in Additive Manufacturing." Materials 14, no. 4 (February 11, 2021): 871. http://dx.doi.org/10.3390/ma14040871.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, we explore the deformation of a polymer extrudate upon the deposition on a build platform, to determine the bonding widths between stacked strands in fused-filament fabrication. The considered polymer melt has an extremely high viscosity, which dominates in its deformation. Mainly considering the viscous effect, we derive analytical expressions of the flat width, compressed depth, bonding width and cross-sectional profile of the filament in four special cases, which have different combinations of extrusion speed, print speed and nozzle height. We further validate the derived relations, using our experimental results on acrylonitrile butadiene styrene (ABS), as well as existing experimental and numerical results on ABS and polylactic acid (PLA). Compared with existing theoretical and numerical results, our derived analytic relations are simple, which need less calculations. They can be used to quickly predict the geometries of the deposited strands, including the bonding widths.
29

Singh, Rupinder, Inderpreet Singh, and Ranvijay Kumar. "Mechanical and morphological investigations of 3D printed recycled ABS reinforced with bakelite–SiC–Al2O3." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233, no. 17 (June 27, 2019): 5933–44. http://dx.doi.org/10.1177/0954406219860163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The utilization of thermosetting waste is a serious issue as it is not recycled commercially due to inherent molecular properties and high technology cost. This research details the study of the mechanical behavior and surface analysis with energy-dispersive X-ray spectroscopy and scanning electron microscope of three-dimensional printed parts of the waste thermosetting polymer, bakelite (BAK) as the reinforcement along with ceramic particles (SiC and Al2O3) in recycled thermoplastic acrylonitrile butadiene styrene matrix for sustainability. The process involves twin-screw extrusion for the preparation of filament, followed by 3D printing of functional prototypes on fused deposition modeling setup. The 3D printed parts prepared with fused deposition modeling were used for the testing of mechanical, thermal, and morphological properties. The results of the present study suggests that for commercial applications recycling of thermoplastic up to 10 wt% can be easily performed without a change in any hardware/ software configuration of the fused deposition modeling setup and the ceramic concentration in thermoplastic-thermosetting blends further led to better mechanical and surface properties.
30

Kazberov, Roman Ya. "Application of Polymer Materials and Additive Technologies in Electrical Equipment of the Agro-Industrial Complex." Elektrotekhnologii i elektrooborudovanie v APK 48, no. 4 (December 2021): 51–55. http://dx.doi.org/10.22314/2658-4859-2021-68-4-51-55.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Additive polymer technologies are widely used in the agro-industrial complex. Modeling by the method of layer-by-layer deposition is in demand today. The most popular polymer materials for FDM (Fused Deposition Modeling) / FFF (Fused Filament Fabrication) printing are acrylonitrile butadiene styrene, polycarbonate, polymethylmethacrylate, polyamide PA-6 and polymer composites based on them. (Research purpose) The research purpose is in studying the prospects of using additive polymer technologies in agriculture, taking real cases as a basis. (Materials and methods). The article presents the analyze of open information sources. Author used methods of collecting, studying and comparative analysis of information, considered real cases carried out with the use of the material and technical base of the FNAC VIM. (Results and discussion) The domestic market of polymer materials and composites based on them for 3D printing using FDM/FFF technology is not as diverse as similar for traditional methods of processing plastics and composite materials (injection molding, extrusion, pressing and others). The reason for this is the lack of knowledge of 3D printing technologies, in particular, FDM/FFF technology, as a method of plastics processing. The main factor in the development of additive polymer technologies in the agro- industrial complex is the growing demand for the use of 3D printing. The article proves the effectiveness of the application with real cases made as a result of the close work of several research laboratories of FNAC VIM. (Conclusions) Additive manufacturing has great potential for further development, including within the agro-industrial complex. FDM/FFF technology and additive polymer technologies in general perfectly complement traditional production technologies.
31

Ecco, Luiz, Sithiprumnea Dul, Débora Schmitz, Guilherme Barra, Bluma Soares, Luca Fambri, and Alessandro Pegoretti. "Rapid Prototyping of Efficient Electromagnetic Interference Shielding Polymer Composites via Fused Deposition Modeling." Applied Sciences 9, no. 1 (December 22, 2018): 37. http://dx.doi.org/10.3390/app9010037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Acrylonitrile–butadiene–styrene (ABS) filled with 6 wt.% of multi-walled carbon nanotubes and graphene nanoplatelets was extruded in filaments and additively manufactured via fused deposition modeling (FDM). The electrical conductivity and electromagnetic interference shielding efficiency (EMI SE) in the frequency range between 8.2 and 12.4 GHz of the resulting 3D samples were assessed. For comparison purposes, compression molded samples of the same composition were investigated. Electrical conductivity of about 10−4 S·cm−1 and attenuations of the incident EM wave near 99.9% were achieved for the 3D components loaded with multi-walled carbon nanotubes, almost similar to the correspondent compression molded samples. Transmission electron microscopy (TEM) images of ABS composite filaments show that graphene nanoplatelets were oriented along the polymer flow whereas multi-walled carbon nanotubes were randomly distributed after the extrusion process. The electrical conductivity and electromagnetic interference (EMI) shielding properties of compression molded and FDM manufactured samples were compared and discussed in terms of type of fillers and processing parameters adopted in the FDM process, such as building directions and printing patterns. In view of the experimental findings, the role of the FDM processing parameters were found to play a major role in the development of components with enhanced EMI shielding efficiency.
32

Eutionnat-Diffo, Prisca Aude, Aurélie Cayla, Yan Chen, Jinping Guan, Vincent Nierstrasz, and Christine Campagne. "Development of Flexible and Conductive Immiscible Thermoplastic/Elastomer Monofilament for Smart Textiles Applications Using 3D Printing." Polymers 12, no. 10 (October 8, 2020): 2300. http://dx.doi.org/10.3390/polym12102300.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
3D printing utilized as a direct deposition of conductive polymeric materials onto textiles reveals to be an attractive technique in the development of functional textiles. However, the conductive fillers—filled thermoplastic polymers commonly used in the development of functional textiles through 3D printing technology and most specifically through Fused Deposition Modeling (FDM) process—are not appropriate for textile applications as they are excessively brittle and fragile at room temperature. Indeed, a large amount of fillers is incorporated into the polymers to attain the percolation threshold increasing their viscosity and stiffness. For this reason, this study focuses on enhancing the flexibility, stress and strain at rupture and electrical conductivity of 3D-printed conductive polymer onto textiles by developing various immiscible polymer blends. A phase is composed of a conductive polymer composite (CPC) made of a carbon nanotubes (CNT) and highly structured carbon black (KB)- filled low-density polyethylene (LDPE) and another one of propylene-based elastomer (PBE) blends. Two requirements are essential to create flexible and highly conductive monofilaments for 3D-printed polymers onto textile materials applications. First, the co-continuity of both the thermoplastic and the elastomer phases and the location of the conductive fillers in the thermoplastic phase or at the interface of the two immiscible polymers are necessary to preserve the flexibility of the elastomer while decreasing the global amount of charges in the blends. In the present work based on theoretical models, when using a two-step melt process, the KB and CNT particles are found to be both preferentially located at the LDPE/PBE interface. Moreover, in the case of the two-step extrusion, SEM characterization showed that the KB particles were located in the LDPE while the CNT were mainly at the LDPE/PBE interface and TEM analysis demonstrated that KB and CNT nanoparticles were in LDPE and at the interface. For one-step extrusion, it was found that both KB and CNT are in the PBE and LDPE phases. These selective locations play a key role in extending the co-continuity of the LDPE and PBE phases over a much larger composition range. Therefore, the melt flow index and the electrical conductivity of monofilament, the deformation under compression, the strain and stress and the electrical conductivity of the 3D-printed conducting polymer composite onto textiles were significantly improved with KB and CNT-filled LDPE/PBE blends compared to KB and CNT-filled LDPE separately. The two-step extrusion processed 60%(LDPE16.7% KB + 4.2% CNT)/40 PBE blends presented the best properties and almost similar to the ones of the textile materials and henceforth, could be a better material for functional textile development through 3D printing onto textiles.
33

Lam, Quoc, Dhiraj Patil, Thao Le, Trevor Eppley, Ziyad Salti, Derek Goss, Alex Grishin, and Dhruv Bhate. "An Examination of the Low Strain Rate Sensitivity of Additively Manufactured Polymer, Composite and Metallic Honeycomb Structures." Materials 12, no. 20 (October 22, 2019): 3455. http://dx.doi.org/10.3390/ma12203455.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The characterization of additively manufactured cellular materials, such as honeycombs and lattices, is crucial to enabling their implementation in functional parts. One of the characterization methods commonly employed is mechanical testing under compression. This work focuses specifically on the dependence of these tests to the applied strain rate during the test over low strain rate regimes (considered here as 10−6 to 10−1 s−1). The paper is limited to the study of strain the rate dependence of hexagonal honeycomb structures manufactured with four different additive manufacturing processes: one polymer (fused deposition modeling, or material extrusion with ABS), one composite (nylon and continuous carbon fiber extrusion) and two metallic (laser powder bed fusion of Inconel 718 and electron beam melting of Ti6Al4V). The strain rate sensitivities of the effective elastic moduli, and the peak loads for all four processes were compared. Results show significant sensitivity to strain rate in the polymer and composite process for both these metrics, and mild sensitivity for the metallic honeycombs for the peak load. This study has implications for the characterization and modeling of all mechanical cellular materials and makes the case for evaluation and if appropriate, inclusion, of strain rate effects in all cellular material modeling.
34

Endo, Hiroki, and Takashi Umeno. "Study on the Influence of Temperature of Extruder Head on the Strength of the FDM 3D Printing Model." Journal of Robotics and Mechatronics 29, no. 4 (August 20, 2017): 767–71. http://dx.doi.org/10.20965/jrm.2017.p0767.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper reported the tensile strength of the difference of modeling condition on the FDM (Fused Deposition Modeling) 3D printer. The FDM 3D printer is rapidly spread with the end of patent protection in 2009. The FDM models mainly use the prototyping part and art, because that models have low strength. This time we paid attention to that actual models weight is lighter than designing models weight to conduct study on strength. And we investigated the cause of the phenomenon of decrease of polymer extrusion by replacing with the injection molding method. The tensile test proved that the strength of model can be improved by the kind of extruder head. This paper reported influence of the cooling in the supply part of extruder head and temperature of the polymer on the strength of FDM 3D models.
35

de Jager, Benjamin, Thomas Moxham, Cyril Besnard, Enrico Salvati, Jingwei Chen, Igor P. Dolbnya, and Alexander M. Korsunsky. "Synchrotron X-ray Scattering Analysis of Nylon-12 Crystallisation Variation Depending on 3D Printing Conditions." Polymers 12, no. 5 (May 20, 2020): 1169. http://dx.doi.org/10.3390/polym12051169.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nylon-12 is an important structural polymer in wide use in the form of fibres and bulk structures. Fused filament fabrication (FFF) is an extrusion-based additive manufacturing (AM) method for rapid prototyping and final product manufacturing of thermoplastic polymer objects. The resultant microstructure of FFF-produced samples is strongly affected by the cooling rates and thermal gradients experienced across the part. The crystallisation behaviour during cooling and solidification influences the micro- and nano-structure, and deserves detailed investigation. A commercial Nylon-12 filament and FFF-produced Nylon-12 parts were studied by differential scanning calorimetry (DSC) and wide-angle X-ray scattering (WAXS) to examine the effect of cooling rates under non-isothermal crystallisation conditions on the microstructure and properties. Slower cooling rates caused more perfect crystallite formation, as well as alteration to the thermal properties.
36

Calcagnile, Paola, Gabriele Cacciatore, Christian Demitri, Francesco Montagna, and Carola Esposito Corcione. "A Feasibility Study of Processing Polydimethylsiloxane–Sodium Carboxymethylcellulose Composites by a Low-Cost Fused Deposition Modeling 3D Printer." Materials 11, no. 9 (September 1, 2018): 1578. http://dx.doi.org/10.3390/ma11091578.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Additive manufacturing (AM) techniques allow the construction of complex physical models reproducing the content of a specific CAD file, and, among them, Fused Deposition Molding (FDM) stands out for its many advantages. The aim of the present work is to perform a feasibility study of 3D printing of a model of human heart to be used to simulate surgical operations or for training through a two-step method based on extrusion and FDM processes. To this purpose, typical extrusion instrumentation and a simple and low-cost FDM printer are employed, in combination with a thermoplastic polydimethylsiloxane (PDMS), chosen for its transparency, flexibility, and high resistance to multiple agents and aging. To improve its tactile properties and mimic the slimy effect of living organs, sodium carboxymethylcellulose (Na–CMC) fibrils are added to it. The starting materials, the neat PDMS filament and the composite one, are deeply characterized in terms of structural, thermal, and rheological properties in order to fix the most suitable extrusion and FDM parameters. The composite filaments show larger diameter and roughness, which cause undesirable effects during 3D printing, such as episodic nozzle obstruction, and exhibit a faster degradation, making the FDM step difficult. Nevertheless, the major issues are related to the low crystallinity degree of the employed polymer. The feasibility study carried out leads to the printing of composite layers, even though far from the desired final target. Possible solutions to print the fully characterized Na–CMC/PDMS composite are addressed in the conclusion of this work.
37

Vidakis, Nectarios, Markos Petousis, Emmanouil Velidakis, Mariza Spiridaki, and John D. Kechagias. "Mechanical Performance of Fused Filament Fabricated and 3D-Printed Polycarbonate Polymer and Polycarbonate/Cellulose Nanofiber Nanocomposites." Fibers 9, no. 11 (November 18, 2021): 74. http://dx.doi.org/10.3390/fib9110074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this study, nanocomposites were fabricated with polycarbonate (PC) as the matrix material. Cellulose Nanofiber (CNF) at low filler loadings (0.5 wt.% and 1.0 wt.%) was used as the filler. Samples were produced using melt mixing extrusion with the Fused Filament Fabrication (FFF) process. The optimum 3D-printing parameters were experimentally determined and the required specimens for each tested material were manufactured using FFF 3D printing. Tests conducted for mechanical performance were tensile, flexural, impact, and Dynamic Mechanical Analysis (DMA) tests, while images of the side and the fracture area of the specimens were acquired using Scanning Electron Microscopy (SEM), aiming to determine the morphology of the specimens and the fracture mechanism. It was concluded that the filler’s ratio addition of 0.5 wt.% created the optimum performance when compared to pure PC and PC CNF 1.0 wt.% nanocomposite material.
38

Vidakis, Nectarios, Markos Petousis, Emmanouil Velidakis, Lazaros Tzounis, Nikolaos Mountakis, Apostolos Korlos, Peder Erik Fischer-Griffiths, and Sotirios Grammatikos. "On the Mechanical Response of Silicon Dioxide Nanofiller Concentration on Fused Filament Fabrication 3D Printed Isotactic Polypropylene Nanocomposites." Polymers 13, no. 12 (June 21, 2021): 2029. http://dx.doi.org/10.3390/polym13122029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Utilization of advanced engineering thermoplastic materials in fused filament fabrication (FFF) 3D printing process is critical in expanding additive manufacturing (AM) applications. Polypropylene (PP) is a widely used thermoplastic material, while silicon dioxide (SiO2) nanoparticles (NPs), which can be found in many living organisms, are commonly employed as fillers in polymers to improve their mechanical properties and processability. In this work, PP/SiO2 nanocomposite filaments at various concentrations were developed following a melt mixing extrusion process, and used for FFF 3D printing of specimens’ characterization according to international standards. Tensile, flexural, impact, microhardness, and dynamic mechanical analysis (DMA) tests were conducted to determine the effect of the nanofiller loading on the mechanical and viscoelastic properties of the polymer matrix. Scanning electron microscopy (SEM), Raman spectroscopy and atomic force microscopy (AFM) were performed for microstructural analysis, and finally melt flow index (MFI) tests were conducted to assess the melt rheological properties. An improvement in the mechanical performance was observed for silica loading up to 2.0 wt.%, while 4.0 wt.% was a potential threshold revealing processability challenges. Overall, PP/SiO2 nanocomposites could be ideal candidates for advanced 3D printing engineering applications towards structural plastic components with enhanced mechanical performance.
39

Baran, Eda, and H. Erbil. "Surface Modification of 3D Printed PLA Objects by Fused Deposition Modeling: A Review." Colloids and Interfaces 3, no. 2 (March 29, 2019): 43. http://dx.doi.org/10.3390/colloids3020043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Polylactic acid (PLA) filaments are very popular as a thermoplastic source used in the 3D printing field by the “Fused Deposition Modeling” method in the last decade. The PLA market is expected to reach 5.2 billion US dollars in 2020 for all of its industrial uses. On the other hand, 3D printing is an expanding technology that has a large economic potential in many industries where PLA is one of the main choices as the source polymer due to its ease of printing, environmentally friendly nature, glossiness and multicolor appearance properties. In this review, we first reported the chemical structure, production methods, general properties, and present market of the PLA. Then, the chemical modification possibilities of PLA and its use in 3D printers, present drawbacks, and the surface modification methods of PLA polymers in many different fields were discussed. Specifically, the 3D printing method where the PLA filaments are used in the extrusion-based 3D printing technologies is reviewed in this article. Many methods have been proposed for the permanent surface modifications of the PLA where covalent attachments were formed such as alkaline surface hydrolysis, atom transfer polymerization, photografting by UV light, plasma treatment, and chemical reactions after plasma treatment. Some of these methods can be applied for surface modifications of PLA objects obtained by 3D printing for better performance in biomedical uses and other fields. Some recent publications reporting the surface modification of 3D printed PLA objects were also discussed.
40

Vidakis, Nectarios, Markos Petousis, Emmanouil Velidakis, Lazaros Tzounis, Nikolaos Mountakis, John Kechagias, and Sotirios Grammatikos. "Optimization of the Filler Concentration on Fused Filament Fabrication 3D Printed Polypropylene with Titanium Dioxide Nanocomposites." Materials 14, no. 11 (June 4, 2021): 3076. http://dx.doi.org/10.3390/ma14113076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Polypropylene (PP) is an engineered thermoplastic polymer widely used in various applications. This work aims to enhance the properties of PP with the introduction of titanium dioxide (TiO2) nanoparticles (NPs) as nanofillers. Novel nanocomposite filaments were produced at 0.5, 1, 2, and 4 wt.% filler concentrations, following a melt mixing extrusion process. These filaments were then fed to a commercially available fused filament fabrication (FFF) 3D printer for the preparation of specimens, to be assessed for their mechanical, viscoelastic, physicochemical, and fractographic properties, according to international standards. Tensile, flexural, impact, and microhardness tests, as well as dynamic mechanical analysis (DMA), Raman, scanning electron microscopy (SEM), melt flow volume index (MVR), and atomic force microscopy (AFM), were conducted, to fully characterize the filler concentration effect on the 3D printed nanocomposite material properties. The results revealed an improvement in the nanocomposites properties, with the increase of the filler amount, while the microstructural effect and processability of the material was not significantly affected, which is important for the possible industrialization of the reported protocol. This work showed that PP/TiO2 can be a novel nanocomposite system in AM applications that the polymer industry can benefit from.
41

Hu, Xiangzhou, Zhijie Yang, Senxian Kang, Man Jiang, Zuowan Zhou, Jihua Gou, David Hui, and Jing He. "Cellulose hydrogel skeleton by extrusion 3D printing of solution." Nanotechnology Reviews 9, no. 1 (June 3, 2020): 345–53. http://dx.doi.org/10.1515/ntrev-2020-0025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractCellulose is the most abundant natural polymer on earth, which has obtained increasing interest in the field of functional materials development for its renewable, high mechanical performance and environmental benign. In this study, the traditional processing method (wet spinning and film production) of cellulose-based materials was applied by using cellulose solution for 3D printing, which can directly build complex 3D patterns. Herein, a natural cellulose is dissolved in an effective mixed aqueous solution of dimethyl sulfoxide (DMSO) and tetrabutylammonium hydroxide (TBAH). The cellulose solution extrusion was controlled by a modified fused deposition modeling (FDM) 3D printer. During the controlled extrusion 3D printing process, the viscous cellulose solution will gelifies and further solidifies into a predetermined 3D pattern at room temperature in air. Subsequently, a cellulose hydrogel skeleton was obtained, when the 3D pattern was solvent-exchanged with deionized water. Finally, the mechanical and swelling performance of the cellulose hydrogel scaffold was improved by a cross-linking agent treatment method. With treatment of the 3D printed scaffolds in 0.8 wt% cross-linking agent solution, the obtained cellulose hydrogel could absorb 28 g/g water, and the compression strength was 96 kPa. This work provided an efficient way to prepare natural cellulose hydrogel by 3D printing under room temperature.
42

R., Mohan Kumar H., Maha Gundappa M. Benal, Pradeep Kumar G. S., Vijay Tambrallimath, Geetha H.R., T. M. Yunus Khan, Ali A. Rajhi, and Maughal Ahmed Ali Baig. "Influence of Short Glass Fibre Reinforcement on Mechanical Properties of 3D Printed ABS-Based Polymer Composites." Polymers 14, no. 6 (March 16, 2022): 1182. http://dx.doi.org/10.3390/polym14061182.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
One of the most promising and widely used additive manufacturing technologies, fused deposition modelling (FDM), is based on material extrusion and is most commonly used for producing thermoplastic parts for functional applications with the objectives of low cost, minimal waste and ease of material conversion. Considering that pure thermoplastic materials have a significantly poor mechanical performance, it is necessary to enhance the mechanical properties of thermoplastic parts generated using FDM technology. One of the conceivable techniques is to incorporate reinforcing materials such as short glass fibre (SGF) into the thermoplastic matrix in order to produce a polymer composite that can be used in engineering applications, such as structural applications. The morphological and mechanical properties of SGF (short glass fibre) reinforced ABS- (Acrylonitrile Butadiene Styrene) based polymer composites created via the method of FDM (fused deposition modelling) were investigated in this work. Properties were evaluated at three different weight percentages (0, 15 and 30 wt%). The composite filaments were developed using the process of twin screw extrusion. The comparison was made between ABS + SGF (short glass fibre) composites and pure ABS of mechanical properties that include surface roughness, tensile strength and low-velocity impact. The tests were carried out to analyze the properties as per ASTM standards. It has been found that the impact strength and tensile strength show an improvement in glass fibre inclusion; moreover, alongside the direction of build, the surface roughness had been reduced. The studies also focused on studying the dispersion characters of SGF in ABS matrix and its impact on the properties. Strength and modulus of SGF reinforced ABS composite has been significantly improved along with reduction of ductility. A 57% increase in tensile strength has been noted for 30 wt% addition of SGF to ABS in comparison to pure ABS. It was also interesting to note the reduction in surface roughness with every incremental addition of SGF to ABS. A 40% reduction in surface roughness has been observed with a 30 wt% addition of SGF to ABS in comparison to pure ABS.
43

Brčić, Marino, Sanjin Kršćanski, and Josip Brnić. "Rotating Bending Fatigue Analysis of Printed Specimens from Assorted Polymer Materials." Polymers 13, no. 7 (March 25, 2021): 1020. http://dx.doi.org/10.3390/polym13071020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fused filament fabrication (FFF), as a form of additive manufacturing (AM), in recent years, has become a popular method to manufacture prototypes, as well as functional parts. FFF is an extrusion process, commonly known as 3D printing, where the object is built by depositing melted material layer by layer. The most common materials, i.e., the materials that are most widely used, are polylactic acid (PLA), acrylonitrile butadiene styrene (ABS) and acrylonitrile styrene acrylate (ASA). Although there are lot of research papers that cover the subject of the determination of mechanical properties and characteristics, theoretically and experimentally, as well as the fatigue characteristics of aforementioned materials, there is a lack of research and scientific papers dealing with the problematics of S–N curves based on the rotating bending fatigue analysis of those materials. Consequently, this paper covers the topic of rotating bending fatigue data for 3D printed specimens of given materials, under different loading values.
44

Šafka, Jiří, Michal Ackermann, Jiří Bobek, Martin Seidl, Jiří Habr, and Luboš Bĕhálek. "Use of Composite Materials for FDM 3D Print Technology." Materials Science Forum 862 (August 2016): 174–81. http://dx.doi.org/10.4028/www.scientific.net/msf.862.174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article deals with specific polymer composites modified for the Fused Deposition Modelling (FDM) which is a 3D print technology. These two phase systems involve thermoplastic matrix filled with natural fibres. The crucial demand of this progressive technology is put on the accuracy of the semi-product formed into the filament shape. To reach the smooth production of 3D prototypes the filament should have a constant diameter. In the article, individual steps of the polymer composite pelletization and following pre-processing and processing activities are described. Among these steps the extrusion of the filaments belongs and subsequent print test on “RepRap” device accompanied by optimization of building parameters. Tensile specimens were chosen for print with regard to maps mechanical properties of this newly developed material which was the final stage of this work. Tensile test curves were then compared with those graphs which can be found for the material produced by conventional technologies such as injection moulding.
45

Mustafa, Muhammad Salman, Muhammad Arslan Muneer, Muhammad Qasim Zafar, Muhammad Arif, Ghulam Hussain, and Farrukh Arsalan Siddiqui. "Process parameter optimization for Fused Filament Fabrication additive manufacturing of PLA/PHA biodegradable polymer blend." International Polymer Processing 37, no. 1 (February 25, 2022): 1–14. http://dx.doi.org/10.1515/ipp-2021-4115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Fused Filament Fabrication (FFF) is a widely embraced material extrusion (MEX) additive manufacturing (AM) process to produce complex three-dimensional structures, and it is typically used in the fabrication of biodegradable polymers for biomedical applications. However, FFF as a fabrication process for blended polymeric materials needs to be optimized for enhanced mechanical properties. In this work, biodegradable polylactic acid (PLA)/polyhydroxyalkanoate (PHA) dog-bone and notched specimens are printed to determine optimum printing parameters for superior mechanical properties in FFF additive manufacturing. The effect of layer thickness, infill density, and printing bed temperature on mechanical properties is investigated by employing a design of experiments (DoE) approach using response surface methodology (RSM). Experimental results showed the significance of the opted parameters for mechanical properties of the PLA/PHA blend. Then, optimum values for layer thickness, infill density, and printing bed temperature are identified for tensile and impact strength and an empirical relationship between parameters is formulated for low density and cost-effective fabrication. Finally, the analysis of variance (ANOVA) is performed to check the adequacy of the model for the influence of process parameters and their mutual interactions. The verification experiments validated the adequacy of the proposed model for PLA/PHA blend in FFF additive manufacturing.
46

Cho, Hui-Won, Seung-Hoon Baek, Beom-Jin Lee, and Hyo-Eon Jin. "Orodispersible Polymer Films with the Poorly Water-Soluble Drug, Olanzapine: Hot-Melt Pneumatic Extrusion for Single-Process 3D Printing." Pharmaceutics 12, no. 8 (July 22, 2020): 692. http://dx.doi.org/10.3390/pharmaceutics12080692.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Amorphous solid dispersions (ASDs) improve the oral delivery of poorly water-soluble drugs. ASDs of olanzapine (OLZ), which have a high melting point and low solubility, are performed using a complicated process. Three-dimensional (3D) printing based on hot-melt pneumatic extrusion (HMPE) is a simplified method for producing ASDs. Unlike general 3D printing, printlet extrusion is possible without the preparation of drug-loaded filaments. By heating powder blends, direct fused deposition modeling (FDM) printing through a nozzle is possible, and this step produces ASDs of drugs. In this study, we developed orodispersible films (ODFs) loaded with OLZ as a poorly water-soluble drug. Various ratios of film-forming polymers and plasticizers were investigated to enhance the printability and optimize the printing temperature. Scanning electron microscopy (SEM) showed the surface morphology of the film for the optimization of the polymer carrier ratios. Differential scanning calorimetry (DSC) was used to evaluate thermal properties. Powder X-ray diffraction (PXRD) confirmed the physical form of the drug during printing. The 3D printed ODF formulations successfully loaded ASDs of OLZ using HMPE. Our ODFs showed fast disintegration patterns within 22 s, and rapidly dissolved and reached up to 88% dissolution within 5 min in the dissolution test. ODFs fabricated using HMPE in a single process of 3D printing increased the dissolution rates of the poorly water-soluble drug, which could be a suitable formulation for fast drug absorption. Moreover, this new technology showed prompt fabrication feasibility of various formulations and ASD formation of poorly water-soluble drugs as a single process. The immediate dissolution within a few minutes of ODFs with OLZ, an atypical antipsychotic, is preferred for drug compliance and administration convenience.
47

Leng, Jie, Junjie Wu, Ning Chen, Xiang Xu, and Jie Zhang. "The development of a conical screw-based extrusion deposition system and its application in fused deposition modeling with thermoplastic polyurethane." Rapid Prototyping Journal 26, no. 2 (November 13, 2019): 409–17. http://dx.doi.org/10.1108/rpj-05-2019-0139.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Purpose This paper aims to develop an integrated and portable desktop 3D printer using direct extruding technology to expand applied material field. Different from conventional fused deposition modeling (FDM) which uses polymer filaments as feedstock, the developed system can fabricate products directly using polymer pellets. And its printing properties are also investigated. Design/methodology/approach A conical screw-based extrusion deposition (CSBED) system was developed with a large taper conical screw to plasticize and extrude fed materials. The 3D printer was developed with assistance of precision positioning and controlling system. Biocompatible thermoplastic polyurethane (TPU) pellets were selected as raw materials for experiments. The influences of four processing parameters: nozzle temperature, fill vector orientation, layer thickness and infill density on the product’s internal structure and tensile properties were investigated. Findings It is concluded that the customized system has a high manufacturing accuracy with a diminutive global size and is suitable for printing soft materials such as TPU. Theoretical calculation shows the developed conical screw is more effective in plasticizing and extruding compared with conventional screw. Printed samples can achieve applicable tensile properties under harmonious parameter cooperation. Deposited materials are found to have voids among adjacent roads under unbefitting parameters. Originality/value The developed system efficiently improves material limitations compared to commercial FDM systems and exhibits great potential in medical field because soft materials such as biocompatible TPU pellets can be directly used.
48

Al-Mazrouei, Noura, Ahmed Ismail, Waleed Ahmed, and Ali H. Al-Marzouqi. "ABS/Silicon Dioxide Micro Particulate Composite from 3D Printing Polymeric Waste." Polymers 14, no. 3 (January 27, 2022): 509. http://dx.doi.org/10.3390/polym14030509.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, Acrylonitrile-Butadiene-Styrene matrix composites reinforced with Nano-silica dioxide particles were examined and prepared to study their mechanical properties. The composite sheets were pre-prepared using the hot extrusion process. Due to its wide characteristics, silica dioxide additions can strengthen the usability and mechanical features of composite thermoplastics and polymers. Furthermore, introducing silica dioxide as a filler in various attributes can help to maintain the smooth flow of sufficient powders, reduce caking, and manage viscoelasticity. Despite its advantages, 3D printing generates a significant amount of waste due to limited prints or destroyed support structures. ABS is an ideal material to use because it is a thermoplastic and amorphous polymer with outstanding thermal properties that is also applicable with the FFF (Fused Filament Fabrication) technique. The findings showed that increasing the silica dioxide content reduces the tensile strength to 22.4 MPa at 10 wt%. Toughness, ductility, and yield stress values of ABS/silica dioxide composites at 15 wt% increased, indicating that the composite material reinforced by the silica dioxide particles improved material characteristics. It is essential to consider the impact of recycling in polymer reinforcement with fillers. Furthermore, the improved mechanical qualities of the composite material encourages successful ABS recycling from 3D printing, as well as the possibility of reusing it in a similar application.
49

Roberson, David, Corey M. Shemelya, Eric MacDonald, and Ryan Wicker. "Expanding the applicability of FDM-type technologies through materials development." Rapid Prototyping Journal 21, no. 2 (March 16, 2015): 137–43. http://dx.doi.org/10.1108/rpj-12-2014-0165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Purpose – The purpose of this paper is to demonstrate the strategy for increasing the applicability of material extrusion additive manufacturing (AM) technologies, based on fused deposition modeling (FDM), through the development of materials with targeted physical properties. Here, the authors demonstrate materials specifically developed for the manufacture of electromechanical and electromagnetic applications, the use of FDM-type processes in austere environments and the application of material extrusion AM. Design/methodology/approach – Using a twin screw polymeric extrusion process, novel polymer matrix composites and blends were created where the base material was a material commonly used in FDM-type processes, namely, acrylonitrile butadiene styrene (ABS) or polycarbonate (PC). Findings – The work presented here demonstrates that, through targeted materials development, the applicability of AM platforms based on FDM technology can be increased. Here, the authors demonstrate that that the physical properties of ABS and PC can be manipulated to be used in several applications such as electromagnetic and X-ray shielding. Other instances of the development of new materials for FDM led to mitigation of problems associated with the process such as surface finish and mechanical property anisotropy based on build orientation. Originality/value – This paper is an overview of a research effort dedicated to increasing the amount of material systems available to material extrusion AM. Here materials development is shown to not only increase the number of suitable applications for FDM-type processes, but to be a pathway toward solving inherent problems associated with FDM such as surface finish and build orientation-caused mechanical property anisotropy.
50

Jiang, Shenglong, Guangxin Liao, Dingding Xu, Fenghua Liu, Wen Li, Yuchuan Cheng, Zhixiang Li, and Gaojie Xu. "Mechanical properties analysis of polyetherimide parts fabricated by fused deposition modeling." High Performance Polymers 31, no. 1 (January 16, 2018): 97–106. http://dx.doi.org/10.1177/0954008317752822.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Polyetherimide (PEI) is a kind of high-performance polymer, which possesses a high glass transition temperature ( Tg), excellent flame retardancy, low smoke generation, and good mechanical properties. In this article, PEI was applied in the fused deposition modeling (FDM)–based 3-D printing for the first time. The entire process from filament extrusion to printing was studied. It was observed that the filament orientation and nozzle temperature were closely related to the mechanical properties of printed samples. When the nozzle temperature is 370°C, the mean tensile strength of FDM printing parts can reach to 104 MPa, which is only 7% lower than that of injection molded parts. It can be seen that the 0° orientation set of samples show the highest storage modulus (2492 MPa) followed by the 45° samples, and the 90° orientation set of samples show the minimum storage modulus (1420 MPa) at room temperature. The above results indicated that this technique allows the production of parts with adequate mechanical performance, which does not need to be restricted to the production of mock-ups and prototypes. Our work broke the limitations of traditional FDM technology and expanded the types of material available for FDM to the high-temperature engineering plastics.

До бібліографії