Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Galactic cosmic ray modulation.

Статті в журналах з теми "Galactic cosmic ray modulation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Galactic cosmic ray modulation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Starodubtsev, Sergei. "Shape of spectrum of galactic cosmic ray intensity fluctuations." Solar-Terrestrial Physics 8, no. 2 (2022): 71–75. http://dx.doi.org/10.12737/stp-82202211.

Повний текст джерела
Анотація:
The impact of solar wind plasma on fluxes of galactic cosmic rays (CR) penetrating from the outside into the heliosphere with energies above ~1 GeV leads to temporal variations in the CR intensity in a wide frequency range. Cosmic rays being charged particles, their modulation occurs mainly under impacts of the interplanetary magnetic field.
 It is well known that the observed spectrum of interplanetary magnetic field (IMF) fluctuations in a wide frequency range ν from ~10–7 to ~10 Hz has a pronounced falling character and consists of three sections: energy, inertial, and dissipative. Eac
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Florinski, V., W. I. Axford, and G. P. Zank. "The Cosmic Ray Increases At 35 and 60 Kyr BP." Radiocarbon 46, no. 2 (2004): 683–90. http://dx.doi.org/10.1017/s0033822200035736.

Повний текст джерела
Анотація:
Concentrations of 10Be in ice cores and marine sediments exhibit 2 peaks with significant enhancements at 35,000 and 60,000 BP. This radioisotope is produced in the upper atmosphere by spallation of cosmic-ray protons and secondary neutrons on atmospheric nitrogen and oxygen. Previously suggested explanations for the increases include geomagnetic field reversals, a decrease in solar activity, and a supernova explosion. We propose an alternative explanation which involves a change in the galactic environment of the solar system. The structure of the heliosphere is investigated for a period when
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Agarwal, R., and R. Mishra. "Galactic Cosmic Ray Modulation Up to Recent Solar Cycles." Latvian Journal of Physics and Technical Sciences 48, no. 4 (2011): 66–70. http://dx.doi.org/10.2478/v10047-011-0029-2.

Повний текст джерела
Анотація:
Galactic Cosmic Ray Modulation Up to Recent Solar Cycles Cosmic ray neutron monitor counts obtained by different ground-based detectors have been used to study the galactic cosmic ray modulation during the last four solar activity cycles. Since long, systematic correlative studies have been per-formed to establish a significant relationship between the cosmic ray intensity and different helio-spheric activity parameters, and the study is extended to a recent solar cycle (23). In the present work, the yearly average of 10.7 cm solar radio flux and the interplanetary magnetic field strength (IMF
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Guo, X., and V. Florinski. "GALACTIC COSMIC-RAY MODULATION NEAR THE HELIOPAUSE." Astrophysical Journal 793, no. 1 (2014): 18. http://dx.doi.org/10.1088/0004-637x/793/1/18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ahluwalia, H. S. "IMF intensity and galactic cosmic ray modulation." Advances in Space Research 29, no. 3 (2002): 439–44. http://dx.doi.org/10.1016/s0273-1177(01)00609-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Jung-Tsung, John F. Beacom, and Annika H. G. Peter. "Galactic Cosmic-Ray Propagation in the Inner Heliosphere: Improved Force-field Model." Astrophysical Journal 937, no. 1 (2022): 27. http://dx.doi.org/10.3847/1538-4357/ac8cf3.

Повний текст джерела
Анотація:
Abstract A key goal of heliophysics is to understand how cosmic rays propagate in the solar system’s complex, dynamic environment. One observable is solar modulation, i.e., how the flux and spectrum of cosmic rays change as they propagate inward. We construct an improved force-field model, taking advantage of new measurements of magnetic power spectral density by Parker Solar Probe to predict solar modulation within the Earth’s orbit. We find that modulation of cosmic rays between the Earth and Sun is modest, at least at solar minimum and in the ecliptic plane. Our results agree much better wi
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Langner, U. W., and M. S. Potgieter. "Effects of the solar wind termination shock and heliosheath on theheliospheric modulation of galactic and anomalous Helium." Annales Geophysicae 22, no. 8 (2004): 3063–72. http://dx.doi.org/10.5194/angeo-22-3063-2004.

Повний текст джерела
Анотація:
Abstract. The interest in the role of the solar wind termination shock and heliosheath in cosmic ray modulation studies has increased significantly as the Voyager 1 and 2 spacecraft approach the estimated position of the solar wind termination shock. The effect of the solar wind termination shock on charge-sign dependent modulation, as is experienced by galactic cosmic ray Helium (He++) and anomalous Helium (He+), is the main topic of this work, and is complementary to the previous work on protons, anti-protons, electrons, and positrons. The modulation of galactic and anomalous Helium is studi
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rodgers-Lee, D., A. A. Vidotto, A. M. Taylor, P. B. Rimmer, and T. P. Downes. "The Galactic cosmic ray intensity at the evolving Earth and young exoplanets." Monthly Notices of the Royal Astronomical Society 499, no. 2 (2020): 2124–37. http://dx.doi.org/10.1093/mnras/staa2737.

Повний текст джерела
Анотація:
ABSTRACT Cosmic rays may have contributed to the start of life on the Earth. Here, we investigate the evolution of the Galactic cosmic ray spectrum at the Earth from ages t = 0.6−6.0 Gyr. We use a 1D cosmic ray transport model and a 1.5D stellar wind model to derive the evolving wind properties of a solar-type star. At $t=1\,$ Gyr, approximately when life is thought to have begun on the Earth, we find that the intensity of ∼GeV Galactic cosmic rays would have been ∼10 times smaller than the present-day value. At lower kinetic energies, Galactic cosmic ray modulation would have been even more s
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gololobov, Peter, Prokopy Krivoshapkin, Germogen Krymsky, and Sardaana Gerasimova. "INVESTIGATING THE INFLUENCE OF GEOMETRY OF THE HELIOSPHERIC NEUTRAL CURRENT SHEET AND SOLAR ACTIVITY ON MODULATION OF GALACTIC COSMIC RAYS WITH A METHOD OF MAIN COMPONENTS." Solar-Terrestrial Physics 6, no. 1 (2020): 24–28. http://dx.doi.org/10.12737/stp-61202002.

Повний текст джерела
Анотація:
The work studies the cumulative modulating effect of the geometry of the interplanetary magnetic field's neutral current sheet and solar activity on propagation of galactic cosmic rays in the heliosphere. The role of each factor on the modulation of cosmic rays is estimated using a method of main components. The application of the method to experimental data on solar activity, to the tilt angle of the neutral sheet, and cosmic ray intensity for a long period from 1980 to 2018 allows us to reveal the temporal dynamics of roles of these factors in the modulation. The modulation character is show
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Buchvarova, M., and P. Velinov. "Cosmic ray spectra in planetary atmospheres." Proceedings of the International Astronomical Union 4, S257 (2008): 471–73. http://dx.doi.org/10.1017/s1743921309029718.

Повний текст джерела
Анотація:
AbstractOur model generalizes the differential D(E) and integral D(>E) spectra of cosmic rays (CR) during the 11-year solar cycle. The empirical model takes into account galactic (GCR) and anomalous cosmic rays (ACR) heliospheric modulation by four coefficients. The calculated integral spectra in the outer planets are on the basis of mean gradients: for GCR – 3%/AU and 7%/AU for anomalous protons. The obtained integral proton spectra are compared with experimental data, the CRÈME96 model for the Earth and theoretical results of 2D stochastic model. The proposed analytical model gives practi
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Lara, A., N. Gopalswamy, R. A. Caballero‐Lopez, S. Yashiro, H. Xie, and J. F. Valdes‐Galicia. "Coronal Mass Ejections and Galactic Cosmic‐Ray Modulation." Astrophysical Journal 625, no. 1 (2005): 441–50. http://dx.doi.org/10.1086/428565.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Laurenza, M., A. Vecchio, M. Storini, and V. Carbone. "DRIFT EFFECTS ON THE GALACTIC COSMIC RAY MODULATION." Astrophysical Journal 781, no. 2 (2014): 71. http://dx.doi.org/10.1088/0004-637x/781/2/71.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Ahluwalia, H. S., C. Lopate, R. C. Ygbuhay, and M. L. Duldig. "Galactic cosmic ray modulation for sunspot cycle 23." Advances in Space Research 46, no. 7 (2010): 934–41. http://dx.doi.org/10.1016/j.asr.2010.04.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Storini, M. "Galactic cosmic-ray modulation and solar-terrestrial relationships." Il Nuovo Cimento C 13, no. 1 (1990): 103–24. http://dx.doi.org/10.1007/bf02515780.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Malandraki, Olga. "Heliospheric Energetic Particles and Galactic Cosmic Ray Modulation." Journal of Physics: Conference Series 632 (August 13, 2015): 012070. http://dx.doi.org/10.1088/1742-6596/632/1/012070.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Storini, M. "Galactic cosmic-ray modulation and solar-terrestrial relationships." Il Nuovo Cimento C 14, no. 2 (1991): 211. http://dx.doi.org/10.1007/bf02509400.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Starodubtsev, Sergei. "Shape of spectrum of galactic cosmic ray intensity fluctuations." Solnechno-Zemnaya Fizika 8, no. 2 (2022): 78–83. http://dx.doi.org/10.12737/szf-82202211.

Повний текст джерела
Анотація:
The impact of solar wind plasma on fluxes of galactic cosmic rays (CR) penetrating from the outside into the heliosphere with energies above ~1 GeV leads to temporal variations in the CR intensity in a wide frequency range. Cosmic rays being charged particles, their modulation occurs mainly under impacts of the interplanetary magnetic field.
 It is well known that the observed spectrum of interplanetary magnetic field (IMF) fluctuations in a wide frequency range ν from ~10–7 to ~10 Hz has a pronounced falling character and consists of three sections: energy, inertial, and dissipative. Eac
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Gololobov, Peter, Prokopy Krivoshapkin, Germogen Krymsky, and Sardaana Gerasimova. "INVESTIGATING THE INFLUENCE OF GEOMETRY OF THE HELIOSPHERIC NEUTRAL CURRENT SHEET AND SOLAR ACTIVITY ON MODULATION OF GALACTIC COSMIC RAYS WITH A METHOD OF MAIN COMPONENTS." Solnechno-Zemnaya Fizika 6, no. 1 (2020): 30–35. http://dx.doi.org/10.12737/szf-61202002.

Повний текст джерела
Анотація:
The work studies the cumulative modulating effect of the geometry of the interplanetary magnetic field's neutral current sheet and solar activity on propagation of galactic cosmic rays in the heliosphere. The role of each factor on the modulation of cosmic rays is estimated using a method of main components. The application of the method to experimental data on solar activity, to the tilt angle of the neutral sheet, and cosmic ray intensity for a long period from 1980 to 2018 allows us to reveal the temporal dynamics of roles of these factors in the modulation. The modulation character is show
Стилі APA, Harvard, Vancouver, ISO та ін.
19

El-Borie, M. A. "Galactic cosmic-ray modulation effect by solar-wind streams." Canadian Journal of Physics 73, no. 9-10 (1995): 642–46. http://dx.doi.org/10.1139/p95-094.

Повний текст джерела
Анотація:
Data, from the worldwide network of neutron monitors, recorded at Deep River, Hermanus, Rome, Tokyo, and Huancayo, over two solar cycles (Nos. 20 and 21) are analyzed to study the long-term variations of the solar diurnal variations as they relate to solar-wind speed. The median primary rigidities of response (Rm) for these detectors cover the range 16 GV ≤ Rm ≤ 33 GV. We discuss the solar diurnal variations (amplitude and phase) of cosmic rays as a function of solar activity. The behavior of solar diurnal phases is completely different for the two epochs of high-wind speed. Data of solar-wind
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Oh, S. Y., Y. Yi, and J. W. Bieber. "Modulation Cycles of Galactic Cosmic Ray Diurnal Anisotropy Variation." Solar Physics 262, no. 1 (2010): 199–212. http://dx.doi.org/10.1007/s11207-009-9504-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Paouris, E., H. Mavromichalaki, A. Belov, R. Gushchina, and V. Yanke. "Galactic Cosmic Ray Modulation and the Last Solar Minimum." Solar Physics 280, no. 1 (2012): 255–71. http://dx.doi.org/10.1007/s11207-012-0051-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Thomas, S. R., M. J. Owens, M. Lockwood, and C. J. Scott. "Galactic Cosmic Ray Modulation near the Heliospheric Current Sheet." Solar Physics 289, no. 7 (2014): 2653–68. http://dx.doi.org/10.1007/s11207-014-0493-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Song, Xiaojian, Xi Luo, and Zhaomin Wang. "Inspect the Time Lag in Galactic Cosmic-Ray Solar Modulation." Astrophysical Journal 975, no. 2 (2024): 273. http://dx.doi.org/10.3847/1538-4357/ad8443.

Повний текст джерела
Анотація:
Abstract It is well known that there is a time lag between the solar activity and the galactic cosmic-ray flux. How to accurately describe this delay is the key problem in making precise predictions of cosmic-ray flux. In this work, a response function in convolution is first used to describe the relative contribution of the solar wind blowout at earlier times to the current flux (the origin of time lag), and its explicit profile is obtained by our 3D time-dependent numerical model. It is found that our response function is superior to other functions in accounting for the time lag effect, and
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Jacklyn, R. M. "Galactic Cosmic Ray Anisotropies in the Energy Range 1011 – 1014eV." Publications of the Astronomical Society of Australia 6, no. 4 (1986): 425–36. http://dx.doi.org/10.1017/s1323358000018312.

Повний текст джерела
Анотація:
AbstractA review is presented of the evidence for anisotropies of galactic origin in the charged cosmic ray particle intensity at median primary energies of detection in the range 1011 – 1014eV. It concerns the period from 1958, when the first substantial long-term observations at energies of solar and sidereal modulation near 1011eV commenced underground, until 1984, by which time results were available from a number of years of accurate observations with detectors of small air showers at energies near 1014eV, too high for complicating effects of solar origin to be present. There is evidence
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Kumar, Adarsh, and H. P. Singh. "Impact of High Energy Cosmic Rays on Global Atmospheric Electrical Parameters over Different Orographically Important Places of India." ISRN High Energy Physics 2013 (June 19, 2013): 1–7. http://dx.doi.org/10.1155/2013/831431.

Повний текст джерела
Анотація:
Global atmospheric electrical parameters such as atmospheric conductivity, air-earth current density, atmospheric electric field, and atmospheric potential have been calculated for eighty different orographically important places of India under the influence of cosmic ray modulation factor due to Forbush decrease assuming fair weather conditions. The results have been compared with the earlier work of Kumar et al. (1998) and show that the correlation between cosmic rays and global atmospheric electrical parameters near the earth surface depends upon the relative magnitudes of galactic cosmic r
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Okpala, Kingsley Chukwudi, Francisca Nneka Okeke, and Anselem Ikechukwu Ugwuoke. "Cosmic ray modulation in high and middle latitudes during solar cycles 22 and 23." Canadian Journal of Physics 93, no. 1 (2015): 100–104. http://dx.doi.org/10.1139/cjp-2014-0290.

Повний текст джерела
Анотація:
Galactic cosmic rays are modulated in the heliosphere primarily by the global merged interaction regions with intense magnetic fields, which leads to a decrease in galactic cosmic rays throughout the heliosphere. Using long-term averages of solar wind (SW) component parameters in addition to cosmic ray count rates of four neutron monitors with different rigidity cutoffs, we analyzed the effect of these SW components on the count rates under different interplanetary magnetic field (IMF) disturbance levels. From first-order partial correlation, we found that the IMF-B was the most dominant modul
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Chernyshov, D. O., A. V. Ivlev, and E. A. Kulik. "Effects of cosmic rays’ self-modulation on the galactic diffuse gamma-ray emission." Известия Российской академии наук. Серия физическая 87, no. 7 (2023): 947–50. http://dx.doi.org/10.31857/s036767652370165x.

Повний текст джерела
Анотація:
We studied how the process of self-modulation of cosmic rays, occurring upon their penetration into dense molecular clouds, affects the total gamma-ray emission of the Galaxy. We estimated how the self-modulation modifies the emission from each individual cloud and integrate the results along the line of sight for a given area in the sky. Our calculations show that the self-modulation reduces the total intensity of gamma-ray emission below 1 GeV by about 10–30%. Even though the magnitude of the effect is not large, it still can substantially affect the background gamma-ray emission at low ener
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Fedorov, Yu I. "Modulation of galactic cosmic ray intensity in the turbulent heliosphere." Kinematics and Physics of Celestial Bodies 31, no. 3 (2015): 105–18. http://dx.doi.org/10.3103/s0884591315030034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Luo, Xi, Ming Zhang, Hamid K. Rassoul, Nikolai V. Pogorelov, and Jacob Heerikhuisen. "GALACTIC COSMIC-RAY MODULATION IN A REALISTIC GLOBAL MAGNETOHYDRODYNAMIC HELIOSPHERE." Astrophysical Journal 764, no. 1 (2013): 85. http://dx.doi.org/10.1088/0004-637x/764/1/85.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Starodubtsev, S. A., and I. G. Usoskin. "Long-term modulation of the Galactic cosmic-ray fluctuation spectrum." Astronomy Letters 29, no. 9 (2003): 594–98. http://dx.doi.org/10.1134/1.1607497.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Caballero-Lopez, R. A., H. Moraal, and F. B. McDonald. "THE MODULATION OF GALACTIC COSMIC-RAY ELECTRONS IN THE HELIOSHEATH." Astrophysical Journal 725, no. 1 (2010): 121–27. http://dx.doi.org/10.1088/0004-637x/725/1/121.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Dorman, L. I. "Prediction of galactic cosmic ray intensity variation for a few (up to 10-12) years ahead on the basis of convection-diffusion and drift model." Annales Geophysicae 23, no. 9 (2005): 3003–7. http://dx.doi.org/10.5194/angeo-23-3003-2005.

Повний текст джерела
Анотація:
Abstract. We determine the dimension of the Heliosphere (modulation region), radial diffusion coefficient and other parameters of convection-diffusion and drift mechanisms of cosmic ray (CR) long-term variation, depending on particle energy, the level of solar activity (SA) and general solar magnetic field. This important information we obtain on the basis of CR and SA data in the past, taking into account the theory of convection-diffusion and drift global modulation of galactic CR in the Heliosphere. By using these results and the predictions which are regularly published elsewhere of expect
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Starodubtsev, S. A., I. G. Usoskin, A. V. Grigoryev, and K. Mursula. "Long-term modulation of the cosmic ray fluctuation spectrum." Annales Geophysicae 24, no. 2 (2006): 779–83. http://dx.doi.org/10.5194/angeo-24-779-2006.

Повний текст джерела
Анотація:
Abstract. Here we study the power level of rapid cosmic ray fluctuations in the frequency range of 10-4-1.67·10-3 Hz (periods from 10 min to about 3 h), using measurements by space-borne instruments for the period since 1974. We find that the power level of these fluctuations varies over the solar cycle, but the phase of this variation depends on the energy of cosmic ray particles. While the power level of these fluctuations in the higher energy channels (corresponding to galactic cosmic rays) changes in phase with the solar cycle, the fluctuation level for lower energy channels (predominantly
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Potgieter, M. S., and U. W. Langner. "The heliospheric modulation of cosmic ray boron and carbon." Annales Geophysicae 22, no. 10 (2004): 3729–40. http://dx.doi.org/10.5194/angeo-22-3729-2004.

Повний текст джерела
Анотація:
Abstract. The observed boron to carbon ratio (B/C) at Earth provides a good measure of the overall secondary to primary ratio of galactic cosmic rays. This makes B/C an important constraint and test for the validity and general applicability of theoretical and numerical models of galactic propagation and heliospheric modulation. For this purpose, the modulation of boron and carbon in the heliosphere must be understood in greater detail. The latest approach to heliospheric modulation, using a numerical model containing a termination shock, a heliosheath and particle drifts, is used to the study
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Yanke, V. G., A. V. Belov, R. T. Gushchina, P. G. Kobelev, and L. A. Trefilova. "Forecast of Modulation of Cosmic Rays with Rigidity of 10 GV in the 25th Solar Activity Cycle." Геомагнетизм и аэрономия 64, no. 2 (2024): 230–39. http://dx.doi.org/10.31857/s0016794024020064.

Повний текст джерела
Анотація:
Based on a forecast of solar activity parameters and the model developed by the authors for modulation of Galactic cosmic rays, we forecasted cosmic ray variations in the 25th solar activity cycle. The cosmic ray flux forecast is based on correlation with the number of sunspots (single-parameter model) or with a set of solar (mainly magnetic) parameters (multiparameter model). The forecast for the number of sunspots was taken from published data; the forecast for other solar parameters was done in the study. It is shown that variations in cosmic rays over three years of the current 25th cycle,
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Yasue, S., I. Morishita, and K. Nagashima. "Modulation of galactic cosmic ray anisotropy in heliomagnetosphere: Influence of cosmic ray scattering on sidereal daily variation." Planetary and Space Science 33, no. 9 (1985): 1057–68. http://dx.doi.org/10.1016/0032-0633(85)90024-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Kalinin, M. S., G. A. Bazilevskaya, M. B. Krainev, A. K. Svirzhevskaya, and N. S. Svirzhevsky. "Structure of the Heliospheric Magnetic Field and Galactic Cosmic Ray Modulation." Bulletin of the Russian Academy of Sciences: Physics 85, no. 10 (2021): 1176–78. http://dx.doi.org/10.3103/s106287382110018x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Ahluwalia, H. S., and R. C. Ygbuhay. "The onset of sunspot cycle 24 and galactic cosmic ray modulation." Advances in Space Research 48, no. 1 (2011): 61–64. http://dx.doi.org/10.1016/j.asr.2011.01.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

HEBER, BERND. "ENERGETIC PARTICLES IN THE HELIOSPHERE." International Journal of Modern Physics A 20, no. 29 (2005): 6621–32. http://dx.doi.org/10.1142/s0217751x05029654.

Повний текст джерела
Анотація:
The heliosphere is the region around the Sun that is filled by the solar wind and its embedded magnetic field. The interaction of the supersonic solar wind with the local interstellar medium leads to a transition from supersonic to subsonic speeds at the heliospheric termination shock. The latter is regarded to be the source of the anomalous component of cosmic rays. Within the heliosphere "local" energetic particle sources, like the Sun and interplanetary shock waves contribute to the cosmic ray flux, too. At energies below a few GeV the observed galactic and anomalous cosmic ray intensities
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Tibolla, Omar, Sarah Kaufmann, and Paula Chadwick. "Pulsar Wind Nebulae and Unidentified Galactic Very High Energy Sources." J 5, no. 3 (2022): 318–33. http://dx.doi.org/10.3390/j5030022.

Повний текст джерела
Анотація:
The riddle of the origin of Cosmic Rays (CR) has been an open question for over a century. Gamma ray observations above 100 MeV reveal the sites of cosmic ray acceleration to energies where they are unaffected by solar modulation; recent evidence supports the existence of hadronic acceleration in Supernova Remnants (SNR), as expected in the standard model of cosmic ray acceleration. Nevertheless, the results raise new questions, and no final answer has been provided thus far. Among the suggested possible alternative accelerators in the Very High Energy (VHE) gamma ray sky, pulsar wind nebulae
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Antalová, A., K. Kudela, D. Venkatesan, and J. Rybák. "Long Duration Solar Flare Events and Cosmic Ray Modulation (1969-1992)." International Astronomical Union Colloquium 144 (1994): 499–502. http://dx.doi.org/10.1017/s0252921100025914.

Повний текст джерела
Анотація:
AbstractWe present here the results of the correlation analysis between the galactic cosmic ray intensity decrease p (as observed on Calgary neutron monitor station) and the occurence of SXR long-lasting (LDE-type) solar flares, represented by the LDE-type flare index FI. It is shown, that for the solar cycle with the lower monthly values of FI (the 21-st solar cycle) the correlation coefficient is slighter (about 0.4) comparing to the cycles with the higher LDE-type flare activity (about 0.6, in the 20-th and the 22-nd cycles).
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Zhang, Yiran, Siming Liu, and Houdun Zeng. "A three-component model for cosmic ray spectrum and dipole anisotropy." Monthly Notices of the Royal Astronomical Society 511, no. 4 (2022): 6218–24. http://dx.doi.org/10.1093/mnras/stac470.

Повний текст джерела
Анотація:
ABSTRACT Using a three-component, multiscale diffusion model, we show that the cosmic ray (CR) proton and helium spectra and the dipole anisotropy can be explained with reasonable parameters. The model includes a nearby source associated with the supernova remnant (SNR) that gave rise to the Geminga pulsar, a source at the Galactic Centre, and a component associated with the Galactic disc. The CR flux below TeV is dominated by the disc component. The centre source with a continuous injection of CRs starting about 18 Myr ago is needed to explain the anisotropy above 100 TeV. With the assumption
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Fedorov, Y. I., B. O. Shakhov, and Y. L. Kolesnyk. "The modulation of galactic cosmic ray intensity in the small anisotropy approximation." Kinematika i fizika nebesnyh tel (Online) 38, no. 4 (2022): 3–16. http://dx.doi.org/10.15407/kfnt2022.04.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Fedorov, Yu I., B. O. Shakhov, and Yu L. Kolesnyk. "Modulation of Galactic Cosmic Ray Intensity in the Approximation of Small Anisotropy." Kinematics and Physics of Celestial Bodies 38, no. 4 (2022): 181–89. http://dx.doi.org/10.3103/s0884591322040043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

McDonald, F. B., T. T. von Rosenvinge, N. Lal, J. H. Trainor, and P. Schuster. "The recovery phase of galactic cosmic ray modulation in the outer heliosphere." Geophysical Research Letters 13, no. 8 (1986): 785–88. http://dx.doi.org/10.1029/gl013i008p00785.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Qin, G., L. L. Zhao, and H. C. Chen. "DESPIKING OF SPACECRAFT ENERGETIC PROTON FLUX TO STUDY GALACTIC COSMIC-RAY MODULATION." Astrophysical Journal 752, no. 2 (2012): 138. http://dx.doi.org/10.1088/0004-637x/752/2/138.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Mäkelä, P., J. Torsti, M. Teittinen, E. Valtonen, E. Riihonen, and F. Ipavich. "Observations of galactic cosmic ray modulation during Earth-directed coronal mass ejections." Geophysical Research Letters 25, no. 15 (1998): 2951–54. http://dx.doi.org/10.1029/98gl50337.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Engelbrecht, N. E., and R. A. Burger. "AN AB INITIO MODEL FOR THE MODULATION OF GALACTIC COSMIC-RAY ELECTRONS." Astrophysical Journal 779, no. 2 (2013): 158. http://dx.doi.org/10.1088/0004-637x/779/2/158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Alania, M. V., T. B. Bochorishvili, and K. Iskra. "Features of galactic cosmic ray modulation in different epochs of solar activity." Advances in Space Research 19, no. 6 (1997): 925–28. http://dx.doi.org/10.1016/s0273-1177(97)00304-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Nuntiyakul, W., P. Evenson, D. Ruffolo, et al. "LATITUDE SURVEY INVESTIGATION OF GALACTIC COSMIC RAY SOLAR MODULATION DURING 1994-2007." Astrophysical Journal 795, no. 1 (2014): 11. http://dx.doi.org/10.1088/0004-637x/795/1/11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!