Зміст
Добірка наукової літератури з теми "Gels supramoléculaire"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Gels supramoléculaire".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Дисертації з теми "Gels supramoléculaire"
Baillet, Julie. "Gels supramoléculaires stimulables à base de Glyconucléobolaamphiphiles." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0399.
Повний текст джерелаStimuli responsive gels, also known as smart materials, have emerged as powerful platforms thanks to their unique property to sense their surroundings and to change their macroscopic behavior in time and space for a wide range of applications from biomedicine to environmental chemistry. In this context, this dissertation is devoted to the design and the study of physico-chemical properties of novel responsive systems by chemical modifications of low molecular weight gelators(GlycoNucleoBolaAmphiphiles or GNBAs) sensitive to specific triggers: light, enzymes and pH. First, light sensitive GNBAs featuring a photoresponsive stilbene unit have been synthetized using a stereoselective metathesis reaction. The trans isomers exhibited strong and thixotropic gels inwater/ethanol mixtures. Photo-isomerization under UV-light led to the formation of the bended cis derivatives resulting in the 3D network destruction. The reversibility of this phenomenon was however partly limited owing to the cis isomer thermodynamic stability and the formation of by-product. Next, hydrophilic GNBAs displaying lactose moieties sensitive to ß-galactosidase have been synthetized. According to their structure, different gelation kinetics observed after cleavage highlighted that gelation ability was impacted in complex media. Similarly, ester-linked fatty acids GNBAs sensitive to esterase have been designed to expand the scope of the enzyme responsive set of gelators. Finally, pH-sensitive GNBAs containing an orthoester moiety were synthesized. Subjected to different pH values found in vivo they showed around 50 % of cleavage and the slow formation of high viscous material. Previously described ester based GNBAs have also been investigated in acidic or basic pH
Gallonde, William. "Synthèses et étude de nouveaux polymères supramoléculaires organiques et organométalliques." Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS105.
Повний текст джерелаThis thesis is dedicated to the synthesis and study of organic and organometallic compounds capable of making supramolecular polymers by using weak interactions. After a non-exhaustive literature review introducing supramolecular chemistry, the application of supramolecular materials in organic eletronics and more specifically in charge transport ; the characterization methods of these self-assembled polymers in solution and in solid state are also introduced. The approach strategy to begin with was to develop derived structures of TBA and TUA capable of selfassembly and providing an opportunity for functionalisation. Then by modifying the structure, we managed to control the self-assembly properties. They have shown capabilities of forming supramolecular polymers that can trap solvents in a 3D network and to self-assemble as well in a solid state. These self-assembly properties were exploited in the second part of this work to synthetize redox active ruthenium acetylides complexes using TBA and TUA derivatives as acetylides ligands. This allowed to form supramolecular metallopolymers and metallomesogenes in some cases. The third part of this work is dedicated to the development of a new family of compounds bearing the redox active s-tetrazine core that can self-assemble. This core allows to use donnor-acceptor interactions among others to form the self-assembly
Daou, Dania. "Intégration de moteurs moléculaires photoactivables dans des gels supramoléculaires." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAF021.
Повний текст джерелаThis thesis explored the integration of light-driven synthetic molecular motors in supramolecular gel networks. The main goal was to achieve reversible macroscopic motion by exploiting both the unidirectional rotation of molecular motors and the reversible nature of supramolecular interactions. Highly functionalized molecular motors have been synthesized and integrated as crosslinking units in supramolecular gel networks of diphenylalanine and poly(γ- benzyl-L-glutamate) peptides, as well as DNA oligonucleotides. Activation of the unidirectional rotation of molecular motors by light, allowed the production of nanomechanical work which is sufficient to disrupt supramolecular interactions in peptide-based gel networks leading to contraction or melting of the gel material at the macroscopic scale. Thanks to the reversible supramolecular interactions, the initial gel material was recovered in the dark, either spontaneously or by applying a thermal stimulus. The systems studied in this thesis represent a novel class of materials operating in dissipative out-of-equilibrium conditions, holding promise of applications in various fields such as biology, medicine and material science
Travelet, Christophe. "Supramolecular systems based on α-cyclodextrins and poly(ethylene oxide) : structure and properties of pseudo-polyrotaxanes, polyrotaxanes and sliding gels". Strasbourg, 2009. http://www.theses.fr/2009STRA6033.
Повний текст джерелаWe studied the threading process between α-cyclodextrins (α-CDs) and poly(ethylene oxide) (PEO° in water, thus leading to the formation of inclusion complexes called pseudo-polyrotaxanes (PPRs). At 30°C, we established that, in a first step, α-CDs thread onto PEO chains, forming PPR molecules. At a higher length-scale, rapid aggregation of the PPR molecules occurs and threaded α-CD-based nano-cylinders form. A higher length-scale, α-CD_based nano-cylinders associate in a Gaussian way engendering the formation of precited domains. Then, in a second step, the system undergoes its reorganization characterized by a compacity increase of the precipitated domains and forms a physical gel. Then, we studied chemical gels obtained by cross-linking PRs via their α-CDs. The chemical cross-linking reaction with divinym sulfone (DVS) does not occur in soft conditions so that highly cross-linked domains cohabit with less cross-linked ones
Fleury, Guillaume. "Des polyrotaxanes de haute masse moléculaire au réseau topologique : Les gels à points de réticulation glissants." Université Louis Pasteur (Strasbourg) (1971-2008), 2005. https://publication-theses.unistra.fr/public/theses_doctorat/2005/FLEURY_Guillaume_2005.pdf.
Повний текст джерелаA new class of supramolecular networks, where the crosslink points are not fixed but sliding, has been recently proposed and developed by Okumura and Ito. Their structure is based on intermoleculary crosslinked α-cyclodextrins / poly(ethylene-glycol) precursor polyrotaxanes. The intermolecular crosslinking between the polyrotaxane precursors leads to the formation of a supramolecular sliding network, the sliding gel. These specific networks are synthesized in two main steps: i) the formation of polyrotaxane precursors where the macrocycles are threaded along a template polymer chain; ii) the intermolecular crosslinking of some macrocycles. The sliding gels are expected to have very unusual physical / mechanical properties due to the theoretical ability of the crosslink points to slide along the polymer chain. The aim of this PhD work is to have more insight into the original properties of the sliding gels. For this purpose a controlled synthesis of the topological networks have been carried out and leads to a control of the complexation degree of the polyrotaxanes and of the crosslinking density of the topological network. The characterization of the sliding gels was carried out In order to explain the structure / properties relationships and to highlight on the sliding motion of the crosslink points. In particular the viscoelastic behaviour of the sliding gels in DMSO at low frequencies has revealed all the potential of the sliding crosslink points and underlines the high ability to relax with very low viscous dissipation of this material
Brandão, Ferreira de Moraes Thaísa. "Photophysical and electrochemical study of organic semiconductor gels." Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0060.
Повний текст джерелаThe objective of this thesis was to develop multi-responsive materials based on electro- and/or photoactive molecules. During this project, we synthesized and characterized three different π-conjugated molecules: naphthalene diimide-bridged silsesquioxane (NDI-PS), viologen-bridged silsesquioxane (VG-PS), and cationic naphthalene diimide (DaO). Organic/inorganic hybrid materials were obtained by polycondensation of organo-bridged trialkoxysilanes incorporating naphthalene diimide bridges (NDI-PS) and viologen bridges (VG-PS). The organo-bridged polysilsesquioxane gels exhibit interesting characteristics for numerous applications, particularly in photo-/electrochromic properties due to the presence of electroactive centers. To understand their properties and their relation to the structure of the 3D network, we explored different orthogonal synthetic routes to these gels, studying their influence on the organization of organic motifs within the network. Additionally, we investigated the photoinduced processes of discrete NDI-based derivatives, which were found to be associated with aggregation and/or radical generation depending on the NDI-based derivative and experimental conditions. VG-PS was utilized to prepare electrochromic films via electrodeposition. Furthermore, we demonstrated the incorporation of guest species of catalytic interest, such as iron(III) tetrasulfonate porphyrins, within these films
O objetivo desta tese foi desenvolver materiais multirresponsivos baseados em moléculas eletro- e/ou fotoativas. Durante este projeto, sintetizamos e caracterizamos três moléculas π-conjugadas diferentes: silsesquioxano ponteado por naftaleno-diimida (NDI-PS), silsesquioxano ponteado por viologênio (VG-PS) e naftaleno-diimida catiônica (DaO). Materiais híbridos orgânicos/inorgânicos foram obtidos por policondensação de silanos trialcoolados ponteados por grupos orgânicos incorporando pontes de naftaleno-diimida (NDI-PS) e pontes de viologênio (VG-PS). Estes géis de polisilsesquioxano com pontes orgânicas apresentam características interessantes para diversas aplicações, especialmente em propriedades foto-/eletrocrômicas devido à presença de centros foto- e eletroativos. Para entender suas propriedades e sua relação com a estrutura da rede tridimensional, exploramos diferentes rotas sintéticas ortogonais para os géis, estudando sua influência na organização de motivos orgânicos dentro da rede. Além disso, investigamos os processos fotoinduzidos de derivados discretos baseados em NDI, que foram associados à agregação e/ou geração de radicais, dependendo do derivado de NDI e das condições experimentais. O VG-PS foi utilizado para preparar filmes eletrocrômicos por eletrodeposição. Além disso, demonstramos a incorporação de espécies de hóspedes de interesse catalítico, como porfirinas de ferro(III) tetrasulfonadas, dentro desses filmes
Pasco, Hélène. "When 19th century painters prepared organic-inorganic hybrid gels : physico-chemical study of « gumtions »." Electronic Thesis or Diss., Sorbonne université, 2019. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2019SORUS296.pdf.
Повний текст джерелаMediums were used by painters in order to modify the texture and drying properties of their paint. During the 19th century, British artists developed a particular medium made of siccative oil, mastic resin and lead acetate trihydrate. The so-called “gumtions” form gel-like materials in a relatively short time, outperforming the existing paint media. This thesis contributes unveiling the chemical processes involved in the formation and ageing of gumtions. As a first step, we focused on mastic resin since it is a key component for the preparation of gumtion. The triterpenic fraction of the resin was identified and quantified using GC and GC/MS. Moreover, we took advantage of Spectroscopic Ellipsometry so as to study the optical properties of varnish thin films as well as their behaviour (swelling) under various atmospheres. Then, we reproduced historical recipes that helped us afterwards to define simplified formulations to deepen the understanding of the chemical interactions between the gel components, made of oleanolic acid (commercial triterpenoid) and a lead compound (acetate or oxide). They were investigated at dierent scales by spectroscopic (FTIR, MASNMR) and supramolecular analyses (Cryo-TEM, SAXS). The use of these complementary techniques gives an overview of the gel’s structure and formation: rapidly, a coordination complex is formed between lead and the carboxylic acid moieties of the triterpenoids, that organizeinto2Dobjectsleadingtothesolid-likebehaviorofthematerial. After few months ageing, we observed the self-assembly of crystalline nanoparticles into lamellar structures, witnessing the dynamic occurring in the material even after gelation.bly of crystalline nanoparticles into lamellar structures, witnessing the dynamic occurring in the material even after gelation
Aimé, Carole. "Auto-assemblages chiraux d'amphiphiles cationiques : étude de la spécificité du contre anion à travers la formation d'hélices nano et micrométriques par confinement de tartrates et de nucléotides." Bordeaux 1, 2007. http://www.theses.fr/2007BOR13469.
Повний текст джерелаRibeiro, Cédric. "Assemblages (macro) moléculaires à base de complexe intra et/ou intermoléculaire de CBPQT4+, X-." Electronic Thesis or Diss., Centrale Lille Institut, 2023. http://www.theses.fr/2023CLIL0018.
Повний текст джерелаThe combination of polymer science and supramolecular chemistry has led to thedevelopment of supramolecular polymer materials with unusual structural, mechanical,and functional properties. These materials have already been exploited in manyapplications, including self-repairing materials, tissue engineering, and the controlledrelease of active ingredients. Supramolecular chemistry has proved to be a powerful toolfor modulating the properties of materials by controlling the dynamic nature ofsupramolecular interactions using appropriate stimuli. The work carried out within theframework of this thesis falls within this context, and its main objective was to developnew (macro)molecular assemblies based on intra- and inter-molecular CBPQT4+complexes. To this end, a new CBPQT4+-Fu derivative was developed, integrating a furanunit covalently connected to the CBPQT4+ host moiety. This derivative presents itself inaqueous media a self-included conformation in which the furan unit within the cavityexhibits extremely low reactivity (Diels-Alder) towards dienophiles. However, this can bereleased by adding a guest molecule (naphthalene) with a strong affinity for themacrocycle. This synergy, demonstrated at the molecular scale, enabling the Diels-Alderreaction to be triggered by forming an intramolecular complex, was then exploited to design various physical and chemically cross-linked hydrogels
Goujon, Antoine. "Macroscopic amplification of nanoscopic motions induced by molecular machines." Thesis, Strasbourg, 2016. http://www.theses.fr/2016STRAF044/document.
Повний текст джерелаThe last twenty years have seen tremendous progresses in the design and synthesis of complex molecular machines, often inspired by the beauty of the machinery found in biological systems. However, amplification of the molecular machines motion over several orders of magnitude above their typical length scale is still an ambitious challenge. This work describes how self-organization of molecular machines or motors allows for the synthesis of materials translating the motions of their components into a macroscopic response. The three first chapters describe the use of a [c2]daisy chains architecture, a molecule able to perform contraction/extension motions similarly to the sarcomere units of muscles, into systems such as supramolecular polymers and covalent networks. Their inclusion into hydrogen bonding supramolecular polymers based on the uracil:2,6-diacetylaminopyridine recognition motifs combined with lateral interactions such as π-stacking provided micrometric muscle-like fibers contracting and extending upon deprotonation and protonation.The incorporation of ureidopyrimidone moieties as supramolecular connectors yielded highly organized gels, which evolved to a liquidstate upon contraction of the polymer chains. Finally, covalent poly[c2]daisy chains were synthesized and investigated, notably the formation of a 3D network swelling into a gel. This material could contract and extend at the macroscopic scale upon contraction and extension of the molecular machines used as monomers. Finally, a fourth chapter is dedicated to the improvement of contractile chemical gels made by using a molecular motor as reticulating nodes. A modulating unit, able to be switched between a “closed” and an “opened” state, was introduced into the polymer network along with the motor. The locked structure in the “closed” state allowed contraction of the gel upon rotation of the molecular motors, while the “opened” state allowed unwinding of the entangled polymer chains and extension of the gel when the motor is off. Overall, the work presented in this manuscript demonstrates that carefully designed molecular machines can be incorporated into large supramolecular or covalent assemblies, providing materials which collective motions alter their macroscopic properties. These results provide valuable insights for the elaboration of a new class of muscle-like materials based on molecular machines