Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Generalized Nash equilibrium problems.

Статті в журналах з теми "Generalized Nash equilibrium problems"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Generalized Nash equilibrium problems".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Facchinei, Francisco, and Christian Kanzow. "Generalized Nash Equilibrium Problems." Annals of Operations Research 175, no. 1 (2009): 177–211. http://dx.doi.org/10.1007/s10479-009-0653-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Facchinei, Francisco, and Christian Kanzow. "Generalized Nash equilibrium problems." 4OR 5, no. 3 (2007): 173–210. http://dx.doi.org/10.1007/s10288-007-0054-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nie, Jiawang, Xindong Tang, and Suhan Zhong. "Rational Generalized Nash Equilibrium Problems." SIAM Journal on Optimization 33, no. 3 (2023): 1587–620. http://dx.doi.org/10.1137/21m1456285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pan, Chengqing, and Haishu Lu. "On the existence of solutions for systems of generalized vector quasi-variational equilibrium problems in abstract convex spaces with applications." AIMS Mathematics 9, no. 11 (2024): 29942–73. http://dx.doi.org/10.3934/math.20241447.

Повний текст джерела
Анотація:
<p>In this paper, we first introduced systems of generalized vector quasi-variational equilibrium problems as well as systems of vector quasi-variational equilibrium problems as their special cases in abstract convex spaces. Next, we established some existence theorems of solutions for systems of generalized vector quasi-variational equilibrium problems and systems of vector quasi-variational equilibrium problems in non-compact abstract convex spaces. Furthermore, we applied the obtained existence theorem of solutions for systems of vector quasi-variational equilibrium problems to solve the existence problem of Nash equilibria for noncooperative games. Then, as applications of the existence result of Nash equilibria for noncooperative games, we studied the existence of weighted Nash equilibria and Pareto Nash equilibria for multi-objective games. The results derived in this paper extended and unified the primary findings presented by some authors in the literature.</p>
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nasri, Mostafa, and Wilfredo Sosa. "Equilibrium problems and generalized Nash games." Optimization 60, no. 8-9 (2011): 1161–70. http://dx.doi.org/10.1080/02331934.2010.527341.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Singh, Shipra, Aviv Gibali, and Simeon Reich. "Multi-Time Generalized Nash Equilibria with Dynamic Flow Applications." Mathematics 9, no. 14 (2021): 1658. http://dx.doi.org/10.3390/math9141658.

Повний текст джерела
Анотація:
We propose a multi-time generalized Nash equilibrium problem and prove its equivalence with a multi-time quasi-variational inequality problem. Then, we establish the existence of equilibria. Furthermore, we demonstrate that our multi-time generalized Nash equilibrium problem can be applied to solving traffic network problems, the aim of which is to minimize the traffic cost of each route and to solving a river basin pollution problem. Moreover, we also study the proposed multi-time generalized Nash equilibrium problem as a projected dynamical system and numerically illustrate our theoretical results.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

YANG, ZHE. "Existence of solutions for a system of quasi-variational relation problems and some applications." Carpathian Journal of Mathematics 31, no. 1 (2015): 135–42. http://dx.doi.org/10.37193/cjm.2015.01.16.

Повний текст джерела
Анотація:
In this paper, we study the existence of solutions for a new class of systems of quasi-variational relation problems on different domains. As applications, we obtain existence theorems of solutions for systems of quasi-variational inclusions, systems of quasi-equilibrium problems, systems of generalized maximal element problems, systems of generalized KKM problems and systems of generalized quasi-Nash equilibrium problems on different domains. The results of this paper improve and generalize several known results on variational relation problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Facchinei, Francisco, Andreas Fischer, and Veronica Piccialli. "Generalized Nash equilibrium problems and Newton methods." Mathematical Programming 117, no. 1-2 (2007): 163–94. http://dx.doi.org/10.1007/s10107-007-0160-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Dreves, Axel, and Nathan Sudermann-Merx. "Solving linear generalized Nash equilibrium problems numerically." Optimization Methods and Software 31, no. 5 (2016): 1036–63. http://dx.doi.org/10.1080/10556788.2016.1165676.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dreves, Axel. "An algorithm for equilibrium selection in generalized Nash equilibrium problems." Computational Optimization and Applications 73, no. 3 (2019): 821–37. http://dx.doi.org/10.1007/s10589-019-00086-w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Fischer, Andreas, Markus Herrich, and Klaus Schönefeld. "GENERALIZED NASH EQUILIBRIUM PROBLEMS - RECENT ADVANCES AND CHALLENGES." Pesquisa Operacional 34, no. 3 (2014): 521–58. http://dx.doi.org/10.1590/0101-7438.2014.034.03.0521.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Yuan, Yanhong, Hongwei Zhang, and Liwei Zhang. "A penalty method for generalized Nash equilibrium problems." Journal of Industrial & Management Optimization 8, no. 1 (2012): 51–65. http://dx.doi.org/10.3934/jimo.2012.8.51.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Yu, Chung-Kai, Mihaela van der Schaar, and Ali H. Sayed. "Distributed Learning for Stochastic Generalized Nash Equilibrium Problems." IEEE Transactions on Signal Processing 65, no. 15 (2017): 3893–908. http://dx.doi.org/10.1109/tsp.2017.2695451.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Panicucci, Barbara, Massimo Pappalardo, and Mauro Passacantando. "On solving generalized Nash equilibrium problems via optimization." Optimization Letters 3, no. 3 (2009): 419–35. http://dx.doi.org/10.1007/s11590-009-0122-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Shan, Shu-qiang, Yu Han, and Nan-jing Huang. "Upper Semicontinuity of Solution Mappings to Parametric Generalized Vector Quasiequilibrium Problems." Journal of Function Spaces 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/764187.

Повний текст джерела
Анотація:
We establish the upper semicontinuity of solution mappings for a class of parametric generalized vector quasiequilibrium problems. As applications, we obtain the upper semicontinuity of solution mappings to several problems, such as parametric optimization problem, parametric saddle point problem, parametric Nash equilibria problem, parametric variational inequality, and parametric equilibrium problem.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Couellan, Nicolas. "A note on supervised classification and Nash-equilibrium problems." RAIRO - Operations Research 51, no. 2 (2017): 329–41. http://dx.doi.org/10.1051/ro/2016024.

Повний текст джерела
Анотація:
In this note, we investigate connections between supervised classification and (Generalized) Nash equilibrium problems (NEP & GNEP). For the specific case of support vector machines (SVM), we exploit the geometric properties of class separation in the dual space to formulate a non-cooperative game. NEP and Generalized NEP formulations are proposed for both binary and multi-class SVM problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Hou, Jian, and Liwei Zhang. "A barrier function method for generalized Nash equilibrium problems." Journal of Industrial & Management Optimization 10, no. 4 (2014): 1091–108. http://dx.doi.org/10.3934/jimo.2014.10.1091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Dreves, Axel. "Computing all solutions of linear generalized Nash equilibrium problems." Mathematical Methods of Operations Research 85, no. 2 (2016): 207–21. http://dx.doi.org/10.1007/s00186-016-0562-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

e Oliveira, Hime Aguiar, and Antonio Petraglia. "Solving generalized Nash equilibrium problems through stochastic global optimization." Applied Soft Computing 39 (February 2016): 21–35. http://dx.doi.org/10.1016/j.asoc.2015.10.058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Harms, Nadja, Christian Kanzow, and Oliver Stein. "On differentiability properties of player convex generalized Nash equilibrium problems." Optimization 64, no. 2 (2013): 365–88. http://dx.doi.org/10.1080/02331934.2012.752822.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Facchinei, Francisco, and Christian Kanzow. "Penalty Methods for the Solution of Generalized Nash Equilibrium Problems." SIAM Journal on Optimization 20, no. 5 (2010): 2228–53. http://dx.doi.org/10.1137/090749499.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Facchinei, Francisco, and Lorenzo Lampariello. "Partial penalization for the solution of generalized Nash equilibrium problems." Journal of Global Optimization 50, no. 1 (2010): 39–57. http://dx.doi.org/10.1007/s10898-010-9579-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Georgiev, P. G., and P. M. Pardalos. "Generalized Nash equilibrium problems for lower semi-continuous strategy maps." Journal of Global Optimization 50, no. 1 (2011): 119–25. http://dx.doi.org/10.1007/s10898-011-9670-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Dreves, Axel, Christian Kanzow, and Oliver Stein. "Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems." Journal of Global Optimization 53, no. 4 (2011): 587–614. http://dx.doi.org/10.1007/s10898-011-9727-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Altangerel, L., and G. Battur. "Perturbation approach to generalized Nash equilibrium problems with shared constraints." Optimization Letters 6, no. 7 (2012): 1379–91. http://dx.doi.org/10.1007/s11590-012-0510-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Aussel, D., R. Correa, and M. Marechal. "Gap Functions for Quasivariational Inequalities and Generalized Nash Equilibrium Problems." Journal of Optimization Theory and Applications 151, no. 3 (2011): 474–88. http://dx.doi.org/10.1007/s10957-011-9898-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Dreves, Axel. "How to Select a Solution in Generalized Nash Equilibrium Problems." Journal of Optimization Theory and Applications 178, no. 3 (2018): 973–97. http://dx.doi.org/10.1007/s10957-018-1327-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Lisboa, Adriano C., Fellipe F. G. Santos, Douglas A. G. Vieira, Rodney R. Saldanha, and Felipe A. C. Pereira. "An Enhanced Gradient Algorithm for Computing Generalized Nash Equilibrium Applied to Electricity Market Games." Energies 18, no. 3 (2025): 727. https://doi.org/10.3390/en18030727.

Повний текст джерела
Анотація:
This paper introduces an enhanced algorithm for computing generalized Nash equilibria for multiple player nonlinear games, which degenerates in a gradient algorithm for single player games (i.e., optimization problems) or potential games (i.e., equivalent to minimizing the respective potential function), based on the Rosen gradient algorithm. Analytical examples show that it has similar theoretical guarantees of finding a generalized Nash equilibrium when compared to the relaxation algorithm, while numerical examples show that it is faster. Furthermore, the proposed algorithm is as fast as, but more stable than, the Rosen gradient algorithm, especially when dealing with constraints and non-convex games. The algorithm is applied to an electricity market game representing the current electricity market model in Brazil.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

CHAIPUNYA, PARIN, NANTAPORN CHUENSUPANTHARAT, and PRINTAPORN SANGUANSUTTIGUL. "Graphical Ekeland's variational principle with a generalized $w$-distance and a new approach to quasi-equilibrium problems." Carpathian Journal of Mathematics 39, no. 1 (2022): 95–107. http://dx.doi.org/10.37193/cjm.2023.01.06.

Повний текст джерела
Анотація:
In this paper, we introduce the generalized Ekeland's variational principle in several forms. The general setting of our results includes a graphical metric structure and also employs a generalized $w$-distance. We then applied the proposed variational principles to obtain existence theorems for a class of quasi-equilibrium problems whose constraint maps are induced from the graphical structure. The conditions used in our existence results are based on a very general concept called a convergence class. Finally, we deduce the existence of a generalized Nash equilibrium via its quasi-equilibrium reformulation. A validating example is also presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Li, Xingchang. "Existence of Generalized Nash Equilibrium in n-Person Noncooperative Games under Incomplete Preference." Journal of Function Spaces 2018 (October 9, 2018): 1–5. http://dx.doi.org/10.1155/2018/3737253.

Повний текст джерела
Анотація:
To prove the existence of Nash equilibrium by traditional ways, a common condition that the preference of players must be complete has to be considered. This paper presents a new method to improve it. Based on the incomplete preference corresponding to equivalence class set being a partial order set, we translate the incomplete preference problems into the partial order problems. Using the famous Zorn lemma, we get the existence theorems of fixed point for noncontinuous operators in incomplete preference sets. These new fixed point theorems provide a new way to break through the limitation. Finally, the existence of generalized Nash equilibrium is strictly proved in the n-person noncooperative games under incomplete preference.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Huang, Young-Ye, and Chung-Chien Hong. "A Unified Iterative Treatment for Solutions of Problems of Split Feasibility and Equilibrium in Hilbert Spaces." Abstract and Applied Analysis 2013 (2013): 1–13. http://dx.doi.org/10.1155/2013/613928.

Повний текст джерела
Анотація:
We at first raise the so called split feasibility fixed point problem which covers the problems of split feasibility, convex feasibility, and equilibrium as special cases and then give two types of algorithms for finding solutions of this problem and establish the corresponding strong convergence theorems for the sequences generated by our algorithms. As a consequence, we apply them to study the split feasibility problem, the zero point problem of maximal monotone operators, and the equilibrium problem and to show that the unique minimum norm solutions of these problems can be obtained through our algorithms. Since the variational inequalities, convex differentiable optimization, and Nash equilibria in noncooperative games can be formulated as equilibrium problems, each type of our algorithms can be considered as a generalized methodology for solving the aforementioned problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Börgens, Eike, and Christian Kanzow. "ADMM-Type Methods for Generalized Nash Equilibrium Problems in Hilbert Spaces." SIAM Journal on Optimization 31, no. 1 (2021): 377–403. http://dx.doi.org/10.1137/19m1284336.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Martyr, Randall, and John Moriarty. "Nonzero-Sum Games of Optimal Stopping and Generalized Nash Equilibrium Problems." SIAM Journal on Control and Optimization 59, no. 2 (2021): 1443–65. http://dx.doi.org/10.1137/18m119803x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Kanzow, Christian, and Daniel Steck. "Augmented Lagrangian Methods for the Solution of Generalized Nash Equilibrium Problems." SIAM Journal on Optimization 26, no. 4 (2016): 2034–58. http://dx.doi.org/10.1137/16m1068256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Ye, Minglu. "A half-space projection method for solving generalized Nash equilibrium problems." Optimization 66, no. 7 (2017): 1119–34. http://dx.doi.org/10.1080/02331934.2017.1326045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

von Heusinger, A., and C. Kanzow. "Relaxation Methods for Generalized Nash Equilibrium Problems with Inexact Line Search." Journal of Optimization Theory and Applications 143, no. 1 (2009): 159–83. http://dx.doi.org/10.1007/s10957-009-9553-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Guo, Lei. "Mathematical programs with multiobjective generalized Nash equilibrium problems in the constraints." Operations Research Letters 49, no. 1 (2021): 11–16. http://dx.doi.org/10.1016/j.orl.2020.11.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Han, Deren, Hongchao Zhang, Gang Qian, and Lingling Xu. "An improved two-step method for solving generalized Nash equilibrium problems." European Journal of Operational Research 216, no. 3 (2012): 613–23. http://dx.doi.org/10.1016/j.ejor.2011.08.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Lampariello, Lorenzo, Simone Sagratella, and Valerio Giuseppe Sasso. "Addressing Hierarchical Jointly Convex Generalized Nash Equilibrium Problems with Nonsmooth Payoffs." SIAM Journal on Optimization 35, no. 1 (2025): 445–75. https://doi.org/10.1137/23m1574026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Dreves, Axel. "A best-response approach for equilibrium selection in two-player generalized Nash equilibrium problems." Optimization 68, no. 12 (2019): 2269–95. http://dx.doi.org/10.1080/02331934.2019.1646743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Li, Xun, Jingtao Shi, and Jiongmin Yong. "Mean-field linear-quadratic stochastic differential games in an infinite horizon." ESAIM: Control, Optimisation and Calculus of Variations 27 (2021): 81. http://dx.doi.org/10.1051/cocv/2021078.

Повний текст джерела
Анотація:
This paper is concerned with two-person mean-field linear-quadratic non-zero sum stochastic differential games in an infinite horizon. Both open-loop and closed-loop Nash equilibria are introduced. The existence of an open-loop Nash equilibrium is characterized by the solvability of a system of mean-field forward-backward stochastic differential equations in an infinite horizon and the convexity of the cost functionals, and the closed-loop representation of an open-loop Nash equilibrium is given through the solution to a system of two coupled non-symmetric algebraic Riccati equations. The existence of a closed-loop Nash equilibrium is characterized by the solvability of a system of two coupled symmetric algebraic Riccati equations. Two-person mean-field linear-quadratic zero-sum stochastic differential games in an infinite horizon are also considered. Both the existence of open-loop and closed-loop saddle points are characterized by the solvability of a system of two coupled generalized algebraic Riccati equations with static stabilizing solutions. Mean-field linear-quadratic stochastic optimal control problems in an infinite horizon are discussed as well, for which it is proved that the open-loop solvability and closed-loop solvability are equivalent.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Passacantando, Mauro, and Fabio Raciti. "Lipschitz Continuity Results for a Class of Parametric Variational Inequalities and Applications to Network Games." Algorithms 16, no. 10 (2023): 458. http://dx.doi.org/10.3390/a16100458.

Повний текст джерела
Анотація:
We consider a class of finite-dimensional variational inequalities where both the operator and the constraint set can depend on a parameter. Under suitable assumptions, we provide new estimates for the Lipschitz constant of the solution, which considerably improve previous ones. We then consider the problem of computing the mean value of the solution with respect to the parameter and, to this end, adapt an algorithm devised to approximate a Lipschitz function whose analytic expression is unknown, but can be evaluated in arbitrarily chosen sample points. Finally, we apply our results to a class of Nash equilibrium problems, and generalized Nash equilibrium problems on networks.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Lu, Haishu, Kai Zhang, and Rong Li. "Collectively fixed point theorems in noncompact abstract convex spaces with applications." AIMS Mathematics 6, no. 11 (2021): 12422–59. http://dx.doi.org/10.3934/math.2021718.

Повний текст джерела
Анотація:
<abstract><p>In this paper, by using the KKM theory and the properties of $ \Gamma $-convexity and $ {\frak{RC}} $-mapping, we investigate the existence of collectively fixed points for a family with a finite number of set-valued mappings on the product space of noncompact abstract convex spaces. Consequently, as applications, some existence theorems of generalized weighted Nash equilibria and generalized Pareto Nash equilibria for constrained multiobjective games, some nonempty intersection theorems with applications to the Fan analytic alternative formulation and the existence of Nash equilibria, and some existence theorems of solutions for generalized weak implicit inclusion problems in noncompact abstract convex spaces are given. The results obtained in this paper extend and generalize many corresponding results of the existing literature.</p></abstract>
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Dreves, Axel, Francisco Facchinei, Christian Kanzow, and Simone Sagratella. "On the solution of the KKT conditions of generalized Nash equilibrium problems." SIAM Journal on Optimization 21, no. 3 (2011): 1082–108. http://dx.doi.org/10.1137/100817000.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

WEI, YingYing, LingLing XU, and DeRen HAN. "A decomposition method based on penalization for solving generalized Nash equilibrium problems." SCIENTIA SINICA Mathematica 44, no. 3 (2014): 295–305. http://dx.doi.org/10.1360/012012-563.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Kanzow, C., V. Karl, D. Steck, and D. Wachsmuth. "The Multiplier-Penalty Method for Generalized Nash Equilibrium Problems in Banach Spaces." SIAM Journal on Optimization 29, no. 1 (2019): 767–93. http://dx.doi.org/10.1137/17m114114x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Nabetani, Koichi, Paul Tseng, and Masao Fukushima. "Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints." Computational Optimization and Applications 48, no. 3 (2009): 423–52. http://dx.doi.org/10.1007/s10589-009-9256-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Izmailov, Alexey F., and Mikhail V. Solodov. "On error bounds and Newton-type methods for generalized Nash equilibrium problems." Computational Optimization and Applications 59, no. 1-2 (2013): 201–18. http://dx.doi.org/10.1007/s10589-013-9595-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Dreves, Axel. "Improved error bound and a hybrid method for generalized Nash equilibrium problems." Computational Optimization and Applications 65, no. 2 (2014): 431–48. http://dx.doi.org/10.1007/s10589-014-9699-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Dreves, Axel, and Matthias Gerdts. "A generalized Nash equilibrium approach for optimal control problems of autonomous cars." Optimal Control Applications and Methods 39, no. 1 (2017): 326–42. http://dx.doi.org/10.1002/oca.2348.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!