Добірка наукової літератури з теми "Geoid"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Geoid".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Geoid"

1

IBRAHIM YAHAYA, Salissou, El Hassan EL BRIRCHI, and Driss EL AZZAB. "IMPACT OF DATUM TRANSFORMATION ON LOCAL VARIATIONS OF GEOMETRIC GEOID IN NIGER." Geodesy and cartography 43, no. 4 (December 21, 2017): 147–57. http://dx.doi.org/10.3846/20296991.2017.1412615.

Повний текст джерела
Анотація:
In this study, we have conducted an investigation on the impact of the coordinates’ transformation on local variations of geometric geoid. The study area is limited by 1°43′12″ to 4°00′37″ East and 13°01′57″ to 14°31′20″ North in the southwest of the Niger Republic. We used 39 network GPS/levelling points es­tablished by the Japan International Cooperation Agency (JICA) and the National Geographic Institute of Niger (IGNN), including the DOPPLER point ANG302/no.65. Using other coordinates of point no. 65 pro­vided by IGNN, we transformed the points into WGS84 and computed a new geometric geoid model. The comparison of the new model with EGM2008 geoid up to d/o 2160 gives the STD of 15 cm and the RMS of 16cm. Local variations of the geometric geoids, were compared to that of EGM2008 geoid. The comparison through basic statistics, trend lines and 3D overlaps, showed a similar trend between the geometric geoid from the transformed coordinates and that of EGM2008. On the contrary, the JICA-IGNN geometric geoid generated an opposite and exaggerated trend. The Jarque-Bera test confirms that the three samples follow a normal distribution at the significance level α = 5%. The equality of variances between EGM2008 and JICA-IGNN geoids has been rejected by the Fisher’s F-Test/two-tailed at α = 10%. However the test confirms the variances equality between EGM2008 and the transformed geometric geoid at α = 5% and α = 10%. The two-tailed Student’s T-Test at α = 5% also confirms the equality of means between EGM2008 geoid and transformed geometric geoid samples.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Marques, Éder Teixeira, William Rodrigo Dal Poz, and Gabriel Do Nascimento Guimarães. "GEOID MODELLING USING INTEGRATION AND FFT ASSOCIATED WITH DIFFERENT GRAVIMETRIC REDUCTION METHODS." Revista Brasileira de Geofísica 36, no. 1 (March 20, 2018): 81. http://dx.doi.org/10.22564/rbgf.v36i1.909.

Повний текст джерела
Анотація:
ABSTRACT. A vertical reference system is characterized by a vertical datum and a set of scientific altitudes. In the case of orthometric altitudes, the geoid is used as a reference surface, equipotential surface of the gravity field of the Earth that better fits, in the sense of the Least Square Method, to the mean sea level. This study aimed to determine the geoid by applying two processes for calculation of residual ondulation, the integration and the Fast Fourier Transform. These techniques were applied to the values of the residual anomalies obtained from different methods of gravimetric reduction, the Helmert’s Second Method of Condensation, Bouguer and Rudzki. Two test areas were used. For area 1, the best gravimetric geoid was obtained by applying 1D planar FFT with the Helmert’s SecondMethod of Condensation. For area 2, the best gravimetric geoid was obtained through the application of integration and the Rudzki’s reduction. It can be concluded that the physical characteristics of both areas are relevant in the determination of the geoid and that additional procedures must be applied to improve the geoid determination, mainly, in area 2 whose physical characteristics are more heterogeneous than in area 1.Keywords: Geoid, GeoFis 1.0, Gravimetric Reduction, FFT, Stokes Integral. RESUMO. Um sistema vertical de referência é caracterizado por um datum vertical e pelo conjunto de altitudes científicas. No caso das altitudes científicas adotadas serem as ortométricas utiliza-se como superfície de referência o geoide, superfície equipotencial do campo da gravidade da Terra que melhor se ajusta, no sentido do método dos mínimos quadrados, ao nível médio do mar. O objetivo desse trabalho foi determinar o geoide aplicando dois processos de cálculo da ondulação residual, a integração e a Transformada Rápida de Fourier. Essas técnicas foram empregadas aos valores de anomalias residuais obtidas a partir de diferentes métodos de redução gravimétrica, Segundo Método de Condensação de Helmert, Bouguer e Rudzki. Foram utilizadas duas áreas de teste. Verificou-se que para a área 1 o melhor geoide gravimétrico foi obtido pela aplicação da FFT planar 1D juntamente com o Segundo Método de Condensação de Helmert. Para a área 2 o melhor geoide gravimétrico foi obtido pela aplicação da integração e da redução de Rudzki. Conclui-se que as características físicas das duas áreas são relevantes na determinação do geoide e que procedimentos complementares devem ser aplicados para melhorar a determinação do geoide, principalmente, na área 2 cujas características físicas são mais heterogêneas do que da área 1. Palavras-chave: Geoide, GeoFis 1.0, Redução gravimétrica, FFT, Integral de Stokes.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Buczyńska, Anna. "Precision study of satellite levelling with using various models of geoid." E3S Web of Conferences 71 (2018): 00015. http://dx.doi.org/10.1051/e3sconf/20187100015.

Повний текст джерела
Анотація:
The main purpose of this study is comparison of orthometric heights of measuring points and the accuracy of these heights depending on selected geoid model and measurement method. In addition, for better understanding of the essence of conducted research, paper provides information about: geoid and other surfaces used in geodesy to describe the terrestrial globe, modelling methods of equipotential surfaces and data that can be used to develop them, the most important geoid models developed for the area of Poland and the world, the technique of determining the orthometric heights using various measuring methods. Heights of two measuring points, located on the premises of Wrocław University of Science and Technology, were determined to achieve thesis statement. The scope of the study is limited to determining the orthometric heights of points for three global geoid models and four geoid models developed for the area of Poland. Among the selected equipotential surfaces were: geoida niwelacyjna 2000, GUGiK 2001, GEOIDPOL 2008A/C/CN, PL-GEOID-2011, OSU91, EGM96 and EGM2008.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Udama, Zahroh Arsy, Ira Mutiara Anjasmara, Arisauna Maulidyan Pahlevi, and Anas Sharafeldin Mohamed Osman. "Geoid Modelling of Kalimantan Island using Airborne Gravity Data and Global Geoid Model (EGM2008)." IOP Conference Series: Earth and Environmental Science 936, no. 1 (December 1, 2021): 012029. http://dx.doi.org/10.1088/1755-1315/936/1/012029.

Повний текст джерела
Анотація:
Abstract The availability of geoids, especially in survey and mapping activities, is useful for transforming the geometric heights obtained from observations of the Global Navigation Satellite System (GNSS) into orthometric heights that have real physical meanings such as those obtained from waterpass measurements. If a geoid is available, the orthometric heights of points on earth can be determined using the GNSS heighting method. The use of modern survey and mapping instruments based on satellite observations such as GNSS is more efficient in terms of time, effort, and cost compared to the accurate waterpass method. According to the Indonesian Geospatial Information Agency (BIG) it is stated that the application of geoid as a national Vertical Geospatial Reference System has an adequate and ideal category if the accuracy is higher than 15 cm. Recent studies have shown that it is possible to generate local geoid models with centimetre accuracy by utilizing airborne gravity data. We calculate free-air gravity anomaly data is calculated by processing airborne gravity and GNSS data using the Stokes Integral method on AGR software. Next a geoid model is created by calculating the contribution of three components, namely the long wave component represented by the EGM2008 global geoid data model, the shortwave component represented by the Shuttle Radar Topography Mission (SRTM) data and the medium wave component represented by the free-air gravity anomaly data. The geoid model validation was carried out using the geoid fitting method for geoid accuracy by calculating the difference between the gravimetric geoid and the geometric geoid and comparing it with the global geoid model EGM2008 degrees 2190. As a result, the total geoid model accuracy value was determined to be 49.4 cm on gravimetric geoid undulations with a standard deviation of 7.1 cm. Meanwhile, the results of the EGM2008 geoid undulation accuracy test at 2190 degrees resulted in an accuracy of 51.9 cm with a standard deviation of 9.9 cm. These results indicate that the local geoid model from airborne gravity measurement data produces a geoid model with a higher accuracy than the global geoid model EGM2008 degrees 2190. However, the accuracy of the resulting data is still below the BIG standard of 15 cm, so further research is needed to produce a geoid model which conforms to the standard.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Isik, Mustafa Serkan, Muhammed Raşit Çevikalp, Bihter Erol, and Serdar Erol. "Improvement of GOCE-Based Global Geopotential Models for Gravimetric Geoid Modeling in Turkey." Geosciences 12, no. 12 (November 23, 2022): 432. http://dx.doi.org/10.3390/geosciences12120432.

Повний текст джерела
Анотація:
This study investigates the contribution of global geopotential models which are calculated with GOCE satellite mission data to the improvement of gravimetric geoid models in Turkey. In this context, direct (DIR), time-wise (TIM), space-wise (SPW), and GOCO satellite-only model series were considered. The research was carried out in two parts. The first part includes the validation of models in each series at 100 homogeneously distributed GNSS/leveling stations over the country utilizing spectrally enhanced geoid heights to determine the best performing model and its optimal expansion degree. According to obtained statistics, the TIM-R6 model was selected as the best model with an optimal expansion degree of 204. In the second part, the TIM-R6 model up to 204 degree/order was linearly blended with EGM2008 to obtain an improved version up to 360 degree/order of expansion. To clarify the contribution of the linearly blended model to the improvement of the regional geoid model, the gravimetric geoid models were computed adopting TIM-R6 up to 204 degree/order and its improved version up to 360 degree/order as reference models. To further emphasize the contribution of the GOCE mission’s data, the gravimetric geoid computations were repeated relying on EGM2008 up to 204 and 360 degrees of expansions, since EGM2008 does not contain GOCE data. In addition, we computed gravimetric geoids based on another combined model that includes GOCE mission data, the EIGEN-6C4 model. The calculated regional geoids were compared to each other and validated using GNSS/leveling data set. The obtained results revealed a ∼23% improvement in regional geoid model accuracy when the blended GOCE-based geopotential model was used as a reference. In addition, the results of this study presented the significance of GOCE contribution to mapping the gravity field in Turkey. The best accuracy obtained from this study was 7.7 cm for the Turkey geoid.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Stammer, Detlef, Armin Köhl, and Carl Wunsch. "Impact of Accurate Geoid Fields on Estimates of the Ocean Circulation." Journal of Atmospheric and Oceanic Technology 24, no. 8 (August 1, 2007): 1464–78. http://dx.doi.org/10.1175/jtech2044.1.

Повний текст джерела
Анотація:
Abstract The impact of new geoid height models on estimates of the ocean circulation, now available from the Gravity Recovery and Climate Experiment (GRACE) spacecraft, is assessed, and the implications of far more accurate geoids, anticipated from the European Space Agency’s (ESA) Gravity and Ocean Circulation Explorer (GOCE) mission, are explored. The study is based on several circulation estimates obtained over the period 1992–2002 by combining most of the available ocean datasets with a global general circulation model on a 1° horizontal grid and by exchanging only the EGM96 geoid model with two different geoid models available from GRACE. As compared to the EGM96-based solution, the GRACE geoid leads to an estimate of the ocean circulation that is more consistent with the Levitus temperature and salinity climatology. While not a formal proof, this finding supports the inference of a substantially improved GRACE geoid skill. However, oceanographic implications of the GRACE model are only modest compared to what can be obtained from ocean observations alone. To understand the extent to which this is merely a consequence of a not-optimally converged solution or if a much more accurate geoid field could in principle play a profound role in the ocean estimation procedure, an additional experiment was performed in which the geoid error was artificially reduced relative to all other datasets. Adjustments occur then in all elements of the ocean circulation, including 10% changes in the meridional overturning circulation and the corresponding meridional heat transport in the Atlantic. For an optimal use of new geoid fields, improved error information is required. The error budget of existing time-mean dynamic topography estimates may now be dominated by residual errors in time-mean altimetric corrections. Both these and the model errors need to be better understood before improved geoid estimates can be fully exploited. As is commonly found, the Southern Ocean is of particular concern.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Balodis, Janis, Katerina Morozova, Gunars Silabriedis, Maris Kalinka, Kriss Balodis, Ingus Mitrofanovs, Irina Baltmane, and Izolde Jumare. "CHANGING THE NATIONAL HEIGHT SYSTEM AND GEOID MODEL IN LATVIA." Geodesy and cartography 42, no. 1 (April 8, 2016): 20–24. http://dx.doi.org/10.3846/20296991.2016.1168009.

Повний текст джерела
Анотація:
According to the decision of IAG Reference Frame Sub-commission for Europe (EUREF) the EVRF2007 solution as the vertical reference has to be deployed in EU countries.The new height system LAS-2000,5 had been enacted as the European Vertical Reference System‘s EVRF2007 realization in Latvia and the new geoid model LV‘14 had been introduced by Latvian authority Latvian Geospatial Information Agency. However, the appreciation of the quality of quasi-geoid model LV‘14 is rather contradictious among the users in Latvia. The independent estimate and comparison of the two Latvian geoid models developed till now has been performed by the Institute of Geodesy and Geoinformatics. Previous geoid model LV98 which was developed for Baltic-1977 height system almost 20 years ago is outdated now. Preparatory actions described in order to fulfil the task of comparison the geoids in two different height systems. The equations and transformation parameters are presented in this article for the normal height conversion from Baltic-1977 height system to the Latvian realization named LAS-2000,5. The comparison is performed of both Latvian quasigeoid models – the new one LV‘14 and previous LV98. The quality of both models estimated by controlling the geoid heights at the properly densified GNSS/levelling network sites. The distribution of discrepancies in comparison with normal distribution N(x,μ,s) is depicted in corresponding figures. For LV‘14 quasi-geoid model the standard deviation of discrepancies is 3.2 cm, 75% of discrepancies x ≤ 3.2 cm. For LV98 quasigeoid model the standard deviation of discrepancies is 4.7 cm, 80% of discrepancies x ≤ 6 cm. Without doubt, the newly developed LV‘14 quasi-geoid model is of higher quality.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Doganalp, Serkan. "An Evaluation of Recent Global Geopotential Models for Strip Area Project in Turkey." Earth Sciences Research Journal 20, no. 3 (December 1, 2016): 1. http://dx.doi.org/10.15446/esrj.v20n3.55440.

Повний текст джерела
Анотація:
The aim of this study is to present the evaluations based on comparisons of geoid heights that are computed from several global geopotential models (GGMs) and the GNSS/levelling data. In this application framework, differences between geoid heights obtained by GGMs and GNSS/levelling were computed. Then, the availability of geoid heights calculated by GGMs for engineering applications were investigated. The Konya-Polatli (Ankara) Express Train Project as a strip area project was chosen as the study area. The length of the project is approximately 210 km and consists of 110 benchmarks that belong to the Turkish National Triangulation Network. In this study a total of 69 GGMs were compared. In order to examine more detail, these models were classified as three groups based on CHAMP, GRACE and GOCE. Each group was evaluated separately and the results were obtained. According to results, the best five models were detected for geoid height differences (NGNSS/lev-Nggm) in terms of standard deviation. These are EIGEN-6c4, EIGEN-GRACE01s, EGM2008, EIGEN-6c3stat and EIGEN-6c2, respectively. Also, geoid heights were obtained using different parametric models. These parametric models were used in order to minimize the impact of the terms of bias, tilt etc. Generally, three, four, five and seven parametric models are used for the least-squares adjustment of the geoid height differences in the literature. Therefore, in this study the geoid heights were calculated for such different parametric models. After the geoid height values were computed from the parametric models, the best global geopotential models in terms of standard deviation were obtained as EIGEN-6c2, EIGEN-6c3stat, EGM2008, EIGEN-6c4 and EIGEN-GRACE01s, respectively. Evaluación de modelos geopotenciales globales recientes para un proyecto de área lineal en Turquía ResumenEl propósito de este estudio es presentar las evaluaciones comparativas de alturas geoidales que fueron computadas a partir de varios Modelos Geopotenciales Globales (GGM, del inglés Global Geopotential Models) y la nivelación de información del Sistema Global de Navegación por Satélite. Luego se investigó la disposición para aplicaciones de ingeniería de las alturas geoidales calculadas por los modelos GGM. Se seleccionó el proyecto del Tren Expreso Konya-Polatli (Ankara) como el área de estudio por ser un terreno lineal. La longitud del proyecto es de 210 kilómetros y consiste de 110 puntos de referencia que pertenecen a la Red de Triangulación Nacional de Turquía. En este estudio se compararon 69 modelos GGM. Para un mejor examen, estos modelos se clasificaron en tres grupos basados en CHAMP (CHAllenging Minisatellite Payload), GRACE (Gravity Recovery and Climate Experiment) y GOCE (Gravity field and steady-state Ocean Circulation Explorer). Cada grupo se evaluó por separado. De acuerdo con los resultados, se detectaron los cinco modelos mejores para las diferencias de alturas geoidales (NGNSS/LEV-NGGM) en términos de desviación estándar. Estos son EIGEN-6c4, EIGENGRACE01s, EGM2008, EIGEN-6c3stat, y EIGEN-6c2. También se obtuvieron las alturas geoide a través de diferentes modelos paramétricos. Este mecanismo se utilizo para minimizar el impacto en términos de inclinación y declive. Generalmente, se utilizan tres, cuatro, cinco, y siete modelos paramétricos para el ajuste por mínimos cuadrados de las diferencias de alturas geoide, según la literatura. Por lo tanto, en este estudio se calcularon las alturas geoide con estos modelos paramétricos. Después de que se computaron los valores de altura geoide desde los modelos paramétricos, se obtuvieron los mejores modelos geopotenciales globales en términos de desviación estándar, estos son el EIGEN-6c2, EIGEN-6c3stat, EGM2008, EIGEN-6c4 y EIGEN-GRACE01s, respectivamente.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Osman, Anas Sharafeldin Mohamed, and Ira Mutiara Anjasmara. "Determination of a new gravimetric geoid modelling for Sudan using the least-squares collocation technique." IOP Conference Series: Earth and Environmental Science 1127, no. 1 (January 1, 2023): 012014. http://dx.doi.org/10.1088/1755-1315/1127/1/012014.

Повний текст джерела
Анотація:
Abstract The main purpose of this study is to compute a new gravimetric geoid model for Sudan by using the least-square collocation technique (LSC method) and applying the remove-compute-restore (RCR) technique. The computation of the model contains different datasets which are the gravity contribution of the model GO_CONS_GCF_2_TIM_R6e degree/order 300, BGI free-air gravity dataset in Sudan, GPS/levelling data, and high-resolution topographic information from ASTER digital elevation model. The “residual gravity anomalies” were run through the GEOCOL program using the GRAVSOFT software package, and the effects were restored to calculate the quasi-geoid surface (height anomalies). The gravimetric geoid was computed by adding the (N − 𝜁 h ) separation term to the quasi-geoid and was fitted to the GPS and levelling data provided by Sudan. The accuracy of our gravimetric geoid model SDN-LSC-G22 of the area of Sudan and some areas of bordering countries has been investigated by using geoid undulations computed from GPS and levelling data and by investigating the differences between the geoids of the GGM models which are EGM2008 and SGG-UGM-2. Our gravimetric geoid model (SDN-LSC-G22) has indicated an accuracy of 17.4 cm, in terms of a standard deviation compared with 66 GPS and Leveling data distributed in the area of Khartoum (most of these points are control points and benchmarks). Also, we evaluated our gravimetric geoid model by using 19 points distributed in the area of Sudan, and they indicated a standard deviation of 51.3 cm. The overall accuracy of SDN-LSC-G22 compared with the geoid undulation of all GPS and levelling has indicated an STD of 34.1 cm. The model SDN-LSC-G22 has shown better accuracy and significant differences compared with the GGM models EGM2008 and SGG-UGM-2 in terms of the differences with the available GPS and levelling data which have shown ~17 cm differences using (Abdalla, 2009) GPS and levelling data. It has demonstrated STD of ~17 cm differences by using 66 GPS and levelling data. Therefore, the model SDN-LSC-G22 provided better improvements and reliable geoid heights over Sudan compared to EGM2008 and SGG-UGM-2 gravity field models.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Oltean, Marius, Richard J. Epp, Paul L. McGrath, and Robert B. Mann. "Geoids in general relativity: geoid quasilocal frames." Classical and Quantum Gravity 33, no. 10 (April 15, 2016): 105001. http://dx.doi.org/10.1088/0264-9381/33/10/105001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Geoid"

1

Boener, Joseph H. "Monterey Bay geoid." Thesis, Monterey, California. Naval Postgraduate School, 1994. http://hdl.handle.net/10945/30875.

Повний текст джерела
Анотація:
A high resolution local geoid was calculated for the Monterey Bay, CA using local gravimetry data, digital elevation data and The Ohio State University OSU91A global geopotential model. The theoretical accuracy of the calculated local geoid is 3.5 cm or better over 5 km. Local gravity data came from three sources: 1,549 land observations from the Defense Mapping Agency, 179 bottom gravity observations from two Naval Postgraduate School gravity surveys of Monterey Bay and 17,098 National Geodetic Survey land and ship gravity observations from the National Geophysical Data Center's Gravity CD-ROM. Digital terrain elevation data came from the Rocky Mountain Communication Inc. 3 Arc Second Digital Terrain Elevation CD-ROM. A GPS sea surface topography experiment conducted in October, 1993, had indicated an anomalous sea slope across the bay from Santa Cruz, California to Monterey, California. Comparisons between the calculated local geoid and the regional geoid for The United States, the National Geodetic Survey's GEOID93 indicated a possible explanation for the anomalous sea slope being a local slope in the geoid. Geoid, Monterey Bay, Sea surface.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guimarães, Gabriel do Nascimento. "A altimetria e o modelo geoidal no Estado de São Paulo." Universidade de São Paulo, 2010. http://www.teses.usp.br/teses/disponiveis/3/3138/tde-20102010-170156/.

Повний текст джерела
Анотація:
Esta dissertação tem como objetivo o estudo da altimetria e do modelo geoidal no Estado de São Paulo. Para isso, uma abordagem detalhada do Problema de Valor de Contorno da Geodésia foi realizada. Além disso, são apresentados conceitos relacionados ao sistema de altitudes e a determinação das ondulações geoidais. Uma investigação do movimento e deslocamento vertical da crosta terrestre por meio do processamento preciso por ponto de duas estações de monitoramento contínuo (Cananeia NEIA e Ubatuba UBAT), localizadas no litoral paulista, foi efetuada. Constatou-se uma similaridade nos resultados por meio da comparação com o processamento feito pelo IBGE. A comparação envolvendo o Nível Médio dos Mares de duas estações maregráficas com relação ao nivelamento advindo de Imbituba foi outro estudo executado, onde a diferença após algumas correções foi de 0,34 cm. Uma análise a partir de 199 estações GPS sobre nivelamento foi realizada para comparação da ondulação geoidal com as anomalias de altura. As anomalias foram calculadas a partir dos modelos do geopotencial (EIGEN-GL04, EIGEN-5C e EGM08 para diferentes valores de grau e ordem). Os modelos que apresentaram melhor consistência com as estações GPS sobre nivelamento foram o EIGEN-GL04C e EIGEN-5C grau e ordem 360 e o EGM08 grau e ordem 360 e 2160. O modelo geoidal do Estado de São Paulo foi gerado para um modelo digital de 5. Utilizou-se a integral modificada de Stokes a partir do pacote computacional canadense SHGEO para o cálculo da componente de curto comprimento de onda. Foram empregados dados gravimétricos já existentes e dados advindos dos trabalhos de campo referentes ao Projeto Temático da FAPESP. No cálculo da componente de médio e longo comprimento de onda foi utilizado o modelo do geopotencial EGM08 (grau e ordem 150). A comparação com os dados GPS sobre nivelamento apresentou média de -0,22 m e RMSD 0,21 m. A escolha do Estado de São Paulo está relacionada à grande quantidade de trabalhos geodésicos e atividades na área da engenharia e que necessitam da utilização de um sistema altimétrico. Além disso, a grande quantidade de dados gravimétricos e de estações GPS/RN é mais uma justificativa para a realização do trabalho no Estado.
The investigation of the altimetry and the geoid model in São Paulo state is the aim of this dissertation. A detailed study concerning the Geodetic Boundary Value Problem was carried out. Moreover, the concepts related to the height system are presented. The analysis of the crust vertical displacement involving two continuous monitoring GPS stations (Cananeia NEIA and Ubatuba UBAT) in the coast of the state was performed. It was detected similar results between the comparison involved IBGE processing. A comparison involving the mean sea level of two tide gauge stations with respect to levelling from Imbituba was carried out. After some corrections the difference found was 0.34 m. A comparison between height anomalies by the Global Geopotential Models (EIGEN-GL04, EIGEN-5C and EGM08 for different degree and order) and 199 GPS observations on Bench Marks of the spirit leveling network was performed. The Global Geopotential Models that presented consistency with GPS on Bench Marks were: EIGEN-GL04C and EIGEN- 5C degree and order 360 and EGM08 degree and order 2160. São Paulo state geoid model was computed in 5 digital model. The modified Stokes integral by the Canadian package SHGEO to compute the short wavelength component was used, from Helmert gravity anomalies derived. Existing gravity data and data from FAPESP Thematic Project was processed. EGM08 model was used as a reference field restricted to degree and order 150 to obtain the long and medium wavelength components. The comparison with GPS on Bench Marks presented mean -0.22 m and RMSD 0.21 m. The reason for the choice of São Paulo state is that there are a lot of geodetic activities and important engineering works that require the use of a height system. Furthermore, there are a lot of gravimetric and GPS/BM data all around the state.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Yecai. "Airborne gravimetry for geoid determination." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0018/NQ54797.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gerrard, Sara Margaret Elizabeth. "The geoid, GPS and levelling." Thesis, University of Nottingham, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.278288.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Guimarães, Gabriel do Nascimento. "A geoid model in the state of São Paulo: an attempt for the evaluation of different methodologies." Universidade de São Paulo, 2013. http://www.teses.usp.br/teses/disponiveis/3/3138/tde-30072013-234021/.

Повний текст джерела
Анотація:
The purpose of this thesis is to compute and to evaluate the geoid model in the State of São Paulo from two methodologies (Stokes integral through the Fast Fourier Transform - FFT and Least Squares Collocation LSC). Another objective of this study is to verify the potentiality of GOCE-based. Therefore, a brief study about mathematical foundations and fundamentals of Physical Geodesy is carried out. Some features of the Global Geopotential Models (GGMs) are discussed, as well as an overview of the new gravimetric missions. A special attention is given to GOCE mission. The theory related to Stokes integral and Least Squares Collocation is also discussed in this work. The spectral decomposition was employed in the geoid models computation and the long wavelength component was represented by EGM2008 up to degree and order 150 and 360 and GOCE-based models up to 150. The models were compared in terms of geoid height residual and absolute and relative comparisons from GPS/leveling and the results show consistency between them. Also, a comparison in the mountain regions was carried out to verify the methodologies behavior in this area; the results showed that LSC is less consistent than FFT. Regarding GOCE-based models, 13 were tested, besides EGM2008. The evaluation was performed in terms of geoid height comparison obtained by GGMs over GPS/leveling and in terms of gravity disturbance. The evaluation shows that DIR _R3 and TIM_R3 presented more compatible results. The reason for the choice of São Paulo state is that there are a lot of geodetic activities and important engineering works that require the use of a height system. Furthermore, there are a lot of gravity and GPS/leveling data all around the state.
Esta tese tem como propósito o cálculo e a avaliação do modelo geoidal no Estado de São Paulo a partir da aplicação de duas metodologias (integral de Stokes por meio da Transformada Rápida de Fourier FFT e a colocação por mínimos quadrados Least Squares Collocation LSC). Outro objetivo deste trabalho é verificar a potencialidade dos mais recentes Modelos Globais do Geopotential (MGGs) baseados nos dados do satélite GOCE. Para tanto, um breve estudo é realizado sobre os fundamentos matemáticos e os da Geodésia Física. Algumas características dos MGGs são discutidas, bem como uma visão global das novas missões gravimétricas. Uma atenção especial é dada a missão do satélite GOCE. A teoria referente à integral de Stokes e a colocação por mínimos quadrados são outros temas discutidos no trabalho. A decomposição espectral foi empregada no cálculo dos modelos geoidais e a componente de longo comprimento de onda foi representada pelo modelo EGM2008 até grau e ordem 150 e 360 e aqueles baseados na missão GOCE até 150. Os modelos foram comparados entre si em termos do resíduo da altura geoidal e na forma absoluta e relativa por meio das estações GPS/RN. Os resultados apontaram consistência entre os modelos em termos de diferença média quadrática. Também foi realizado um estudo na região montanhosa a fim de verificar o comportamento das metodologias; os resultados mostraram que a LSC é menos consistente do que a FFT. No que diz respeito aos modelos baseados na missão GOCE, 13 foram testados, além do EGM2008. A avaliação foi realizada em termos da comparação da altura geoidal obtidas pelos MGGs com as estações GPS/nivelamento e em termos do distúrbio de gravidade. A avaliação mostra que os modelos DIR_R3 e TIM_R3 apresentaram os resultados mais compatíveis. A escolha do estado de São Paulo está relacionada à grande quantidade de trabalhos geodésicos e atividades na área da engenharia e que necessitam da utilização de um sistema altimétrico. Além disso, a grande quantidade de dados gravimétricos e de estações GPS/RN é mais uma justificativa para a realização do trabalho.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Twigg, D. R. "Finite element interpolation of geoid heights." Thesis, University of Newcastle Upon Tyne, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.355479.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Garcia, Ramon V. "Local geoid determination from GRACE mission /." The Ohio State University, 2001. http://rave.ohiolink.edu/etdc/view?acc_num=osu1486398195325232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lerke, Otto. "GRACE-Eismassenbilanz." Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2007. http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-33282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Ellmann, Artu. "The geoid for the Baltic countries determined by the least squares modification of Stokes´formula." Doctoral thesis, KTH, Infrastructure, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3744.

Повний текст джерела
Анотація:

Precise knowledge of the geoid contributes to the studies ofthe Earth’s interior, the long-term geophysical processesand to oceanography. An accurate regional geoid model, inparticular, enables the user in many cases to replace thetraditional height determination techniques by faster and morecost-effective GPS-levelling.

In regional gravimetric geoid determination, it has becomecustomary to utilize the modified Stokes formula, whichcombines local terrestrial data with a global geopotentialmodel. The Dissertation is devoted to the determination of ahighresolution geoid model for the three Baltic countries–Estonia, Latvia and Lithuania. Six differentdeterministic and stochastic modification methods are tested.These are: Wong and Gore (1969), Vincent and Marsh (1974),Vaníèek and Kleusberg (1987) and the biased, unbiasedand optimum least squares modifications by Sjöberg (1984b,1991, 2003d). Three former methods employ originally theresidual anomaly in Stokes’integral. For the sake ofcomparison these methods are expressed such that the fullgravity anomaly is utilised in all the six methods.

The contribution of different error sources for geoidmodelling is studied by means of the expected global meansquare error (MSE). The least squares methods attempt tominimise all relevant error sources in geoid modelling byspecially determined modification parameters. Part of thepresent study contributes to some important computationalaspects of the least squares parameters sn.

This study employs the new geopotential model GGM01s, whichis compiled from data of the GRACE twin-satellites. Three sets(one from each country) of GPSlevelling points were used for anindependent evaluation of computed geoid models. Generally, thepost-fit residuals from the least squares modifications areslightly smaller (up to 1 cm) than the respective values ofdeterministic methods. This could indicate that the efforts putinto minimization of the global MSE have been advantageous.

The geoid model computed by the unbiased LS modificationprovides the“best”post-fit statistics and it isthus preferred as the final representation of the joint Balticgeoid. The modification parameters of this model are calculatedfrom the following initial conditions: (1) upper limit of theGGM01s and the modification degree of Stokes’function areboth set to 67, (2) terrestrial anomaly error variance andcorrelation length are set to 1 mGal2 and 0.1°,respectively, (3) integration cap size is 2°. Thisapproximate geoid model is supplemented by separately computedadditive corrections (the combined topographic and atmosphericeffects and ellipsoidal correction), which completes the geoidmodelling procedures. The new geoid model for the Balticcountries is named BALTgeoid-04. The RMS of the GPS-levellingpost-fit residuals are as follows: 5.3 cm for the joint Balticgeoid model and 2.8, 5.6 and 4.2 cm for Estonia, Latvia andLithuania, respectively. This fit indicates the suitability ofthe new geoid model for many practical applications.

Key words: geoid:Stokes’formula, deterministicand stochastic modifications, least squares, additivecorrections, GRACE, Baltic.

Стилі APA, Harvard, Vancouver, ISO та ін.
10

Azmoudeh-Ardalan, Alireza. "High resolution regional geoid computation in the world geodetic datum 2000 based upon collocation of linearized observational functionals of the type GPS, gravity potential and gravity intensity /." [S.l.] : Universität Stuttgart , Fakultät Bauingenieur- und Vermessungswesen , Geodätisches Institut, 1999. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB8733302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Geoid"

1

Sansò, Fernando, and Michael G. Sideris, eds. Geoid Determination. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-74700-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sünkel, Hans, and Iginio Marson, eds. Gravity and Geoid. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79721-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Petr, Vani c. ek, and University of New Brunswick. Department of Surveying Engineering., eds. The Canadian geoid. Fredericton, N.B: University of New Brunswick, Dept. of Surveying Engineering, 1987.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rapp, Richard H., and Fernando Sansò, eds. Determination of the Geoid. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4612-3104-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Marti, Urs. Geoid der Schweiz, 1997. Zürich, Switzerland: Schweizerische Geodätische Kommission, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mertikas, Stelios P., ed. Gravity, Geoid and Earth Observation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10634-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Marti, Urs, ed. Gravity, Geoid and Height Systems. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-10837-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jekeli, Christopher, Luisa Bastos, and Joana Fernandes, eds. Gravity, Geoid and Space Missions. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b138327.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sideris, Michael G., ed. Gravity, Geoid and Geodynamics 2000. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04827-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Segawa, Jiro, Hiromi Fujimoto, and Shuhei Okubo, eds. Gravity, Geoid and Marine Geodesy. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03482-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Geoid"

1

Banerjee, Paramesh. "Geoid." In Encyclopedia of Solid Earth Geophysics, 353–56. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8702-7_101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Banerjee, Paramesh. "Geoid." In Encyclopedia of Solid Earth Geophysics, 465–70. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58631-7_101.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Banerjee, Paramesh. "Geoid." In Encyclopedia of Solid Earth Geophysics, 1–6. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10475-7_101-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tavasci, Luca, Enrica Vecchi, and Stefano Gandolfi. "Definition of the Local Geoid Undulation Using Non-contemporary GNSS-Levelling Data on Subsidence Area: Application on the Adriatic Coastline." In Communications in Computer and Information Science, 259–70. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94426-1_19.

Повний текст джерела
Анотація:
AbstractThe knowledge of the so-called geoid undulation, which represents the height of the geoid above a reference ellipsoid, is a fundamental step to link ellipsoidal heights measured using satellite systems and orthometric heights. Several geoid models are available at the time both at the national or global scale, which can be used for the purpose. Another way to define the geoid undulation is to perform joint measures with GNSS and spirit levelling over common benchmarks. This requires onerous measurements that is seldom possible to perform due to their cost. In this work, we evaluated the possibility to define a local model of the geoid undulation using already available spirit levelling orthometric heights and GNSS ellipsoidal heights measured about 13 years later. The test area is the Emilia-Romagna Adriatic coastline, an area of great interest both from the environmental and economic point of view, which is also undergoing consistent subsidence phenomena.Test results show that the available measurements allow defining a geoid undulation that is coherent with the shape defined by the gravimetric models and also allows to transform ellipsoidal heights into orthometric ones more consistent with the height reference available on the surveyed area. A 7 cm overall bias with respect to the ITALGEO05 was found, whereas ITG2009 and EGM2008 have higher differences. The use of subsidence models to align over time the coordinates used to define the geoid undulation has proven to be a fundamental step. The analysis on the a-priori uncertainty in the geoid height definition shown that the combined use of much more precise GNSS coordinates and contemporary spirit levelling campaign is necessary to significantly improve the resulting geoid height.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vaníček, Petr. "Geoid Undulation, Interpretation." In Encyclopedia of Solid Earth Geophysics, 1–5. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10475-7_86-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sideris, Michael G. "Geoid, Computational Method." In Encyclopedia of Solid Earth Geophysics, 366–71. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8702-7_225.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vaníček, Petr. "Geoid Undulation, Interpretation." In Encyclopedia of Solid Earth Geophysics, 362–66. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-90-481-8702-7_86.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Yan Ming, Jianliang Huang, Tao Jiang, and Michael G. Sideris. "Local Geoid Determination." In Encyclopedia of Geodesy, 1–10. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-02370-0_53-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Vaníček, Petr. "Geoid Undulation, Interpretation." In Encyclopedia of Solid Earth Geophysics, 482–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58631-7_86.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sideris, Michael G. "Geoid Determination, Computational Methods." In Encyclopedia of Solid Earth Geophysics, 1–7. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-10475-7_225-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Geoid"

1

Oltean, Marius, Richard J. Epp, Paul L. McGrath, and Robert B. Mann. "Geoids in general relativity: Geoid quasilocal frames." In Proceedings of the MG14 Meeting on General Relativity. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813226609_0480.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Philipp, Dennis, Volker Perlick, Dirk Puetzfeld, Eva Hackmann, and Claus Lammerzahl. "The relativistic geoid." In 2017 IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace). IEEE, 2017. http://dx.doi.org/10.1109/metroaerospace.2017.7999549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Abdullah, Nurzaitie Aflah, Muhammad Daud Mahdzur, and Saiful Aman Hj Sulaiman. "Numerical Analysis of Gravimetric Geoid and Geometrical Geoid over Peninsular Malaysia." In 2021 IEEE 12th Control and System Graduate Research Colloquium (ICSGRC). IEEE, 2021. http://dx.doi.org/10.1109/icsgrc53186.2021.9515303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dumitru, Paul. "APPROACHES ON GEOID MODELLING." In 13th SGEM GeoConference on INFORMATICS, GEOINFORMATICS AND REMOTE SENSING. Stef92 Technology, 2013. http://dx.doi.org/10.5593/sgem2013/bb2.v2/s09.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kowalczyk, Kamil, and Joanna Kuczynska-Siehien. "Testing Correlation between Vertical Crustal Movements and Geoid Uplift for North Eastern Polish Border Areas." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.206.

Повний текст джерела
Анотація:
Long time span of observations from GNSS permanent stations can be used in the development of models of vertical crustal movements. The absolute vertical crustal movement related to the ellipsoid consists of the observed movement with relation to the mean sea level, the eustatic movement and the geoid uplift. The geoid uplift can be determined from GRACE satellite mission observations. The calculated parameters can be compared with the theoretical ones. The aim of this study is to check the correlation between vertical crustal movements and a geoid height variations determined from satellite data. GNSS data, levelling data and satellite observations for north eastern Polish border areas were used as a case study. Temporal variations of geoid were calculated based on the geopotential models from GRACE satellite observations. The obtained results give an overview of a possibility of the proposed method usage.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sulaiman, S. A. H., K. H. Talib, M. A. M. Wazir, and O. M. Yusof. "Evaluation of geoid height derived by geopotential model and existing regional geoid model." In 2013 IEEE 9th International Colloquium on Signal Processing & its Applications (CSPA). IEEE, 2013. http://dx.doi.org/10.1109/cspa.2013.6530024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shoganbekova, Daniya. "GRAVIMETRIC GEOID MODEL OVER KAZAKHSTAN." In 15th International Multidisciplinary Scientific GeoConference SGEM2015. Stef92 Technology, 2011. http://dx.doi.org/10.5593/sgem2015/b22/s9.035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dumitru, Paul. "GEOID MODELLING FOR GIS APPLICATIONS." In 13th SGEM GeoConference on INFORMATICS, GEOINFORMATICS AND REMOTE SENSING. Stef92 Technology, 2013. http://dx.doi.org/10.5593/sgem2013/bb2.v1/s08.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Birylo, Monika, and Katarzyna Pajak. "Statistical Approach to the Computation of an Influence of the Yangtze Dam on Gravity Fluctuations." In Environmental Engineering. VGTU Technika, 2017. http://dx.doi.org/10.3846/enviro.2017.165.

Повний текст джерела
Анотація:
Due to the realization of the Three Gorges Dam on the Yangtze River and its content of 40 billion tons of water many geodynamical consequences can still be observed. It is obvious that global geodynamical changes are noticeable at whole basin of the Yangtze river. Such changes can be observed by the GRACE (Gravity Recovery and Climate Experiment) gravimetric satellites (Ilk et al. 2005). The GRACE gravity field model data are available in the form of spherical harmonic expansion; by defining a specific filter, one can compute geoid variations at specific locations. As a reference, EGM2008 model was used, on its basis geoid variations were determined. According to the results, geoid variations at the Yangtze river become more stable after filling the Dam. In the article a statistical methods were used for the purpose of the evaluation of a differences EGM08-GRACE time series in the area of the Three Gorges Dam. In the article the authors want to present trend analysis and short-term forecasting with ARIMA model usage.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Asimopolos, N. S., and L. Asimopolos. "Separation Between Geoid And Quasigeoid In Romania." In 9th Congress of the Balkan Geophysical Society. Netherlands: EAGE Publications BV, 2017. http://dx.doi.org/10.3997/2214-4609.201702624.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Geoid"

1

Nagy, D. Gravimetric geoid map of Canada. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1989. http://dx.doi.org/10.4095/127248.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nagy, D. Gravity field representation over Canada for Geoid Computation. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/128048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mate, D., S. Talwar, and S. Sheppard. Climate change visioning in canadian communities (GEOIDE project partnership). Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2012. http://dx.doi.org/10.4095/290175.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії