Добірка наукової літератури з теми "Glacier melting reconstruction"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Glacier melting reconstruction".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Glacier melting reconstruction":

1

XU, XIANGKE, BAOLIN PAN, GUOCHENG DONG, CHAOLU YI, and NEIL F. GLASSER. "Last Glacial climate reconstruction by exploring glacier sensitivity to climate on the southeastern slope of the western Nyaiqentanglha Shan, Tibetan Plateau." Journal of Glaciology 63, no. 238 (January 23, 2017): 361–71. http://dx.doi.org/10.1017/jog.2016.147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACTImprovements in understanding glacial extents and chronologies for the southeastern slope of the western Nyaiqentanglha Shan on the Tibetan Plateau are required to understand regional climate changes during the Last Glacial cycle. A two-dimensional numerical model of mass balance, based on snow–ice melting factors, and of ice flow for mountain glaciers is used to assess the glacier sensitivity to climatic change in a catchment of the region. The model can reproduce valley glaciers, wide-tongued glaciers and a coalescing glacier within step temperature lowering and precipitation increasing experiments. The model sensitivity experiments also indicate that the dependence of glacier growth on temperature and/or precipitation is nonlinear. The model results suggest that the valley glaciers respond more sensitively to an imposed climate change than wide-tongued and coalescing glaciers. Guided by field geological evidence of former glacier extent and other independent paleoclimate reconstructions, the model is also used to constrain the most realistic multi-year mean temperatures to be 2.9–4.6°C and 1.8–2.5°C lower than present in the glacial stages of the Last Glacial Maximum and middle marine oxygen isotope stage 3, respectively.
2

Lüthi, M. P. "Little Ice Age climate reconstruction from ensemble reanalysis of Alpine glacier fluctuations." Cryosphere 8, no. 2 (April 14, 2014): 639–50. http://dx.doi.org/10.5194/tc-8-639-2014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Mountain glaciers sample a combination of climate fields – temperature, precipitation and radiation – by accumulation and melting of ice. Flow dynamics acts as a transfer function that maps volume changes to a length response of the glacier terminus. Long histories of terminus positions have been assembled for several glaciers in the Alps. Here I analyze terminus position histories from an ensemble of seven glaciers in the Alps with a macroscopic model of glacier dynamics to derive a history of glacier equilibrium line altitude (ELA) for the time span 400–2010 C.E. The resulting climatic reconstruction depends only on records of glacier variations. The reconstructed ELA history is similar to recent reconstructions of Alpine summer temperature and Atlantic Multidecadal Oscillation (AMO) index, but bears little resemblance to reconstructed precipitation variations. Most reconstructed low-ELA periods coincide with large explosive volcano eruptions, hinting at a direct effect of volcanic radiative cooling on mass balance. The glacier advances during the LIA, and the retreat after 1860, can thus be mainly attributed to temperature and volcanic radiative cooling.
3

Nagornov, Oleg V., Yuri V. Konovalov, and Vladimir Tchijov. "Reconstruction of past temperatures for Arctic glaciers subjected to intense subsurface melting." Annals of Glaciology 40 (2005): 61–66. http://dx.doi.org/10.3189/172756405781813654.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractMany glaciers are subject to melting due to high summer air temperatures. Here, the presence of meltwater in the subsurface layers of the glacier bulk, and its subsequent percolation and refreezing are implemented in the calibration of a paleothermometer. Accounting for the melt feature index and the measured oxygen-isotope ratio allows for calibration of the paleothermometer and comparison of different climatic proxies. The results of reconstructions agree with previous reconstructions at the depth of attenuation of the seasonal climate signals, which supports the validity of the paleothermometer calibration. The sensitivity of the reconstruction to variations of the model parameters was also studied. It was found that most likely snow–firn sequence and temperature fields were subjected to significant change due to current warming. Temperature changes in the snow–firn thickness of Akademii Nauk (Severnaya Zemlya, Russian High Arctic) and Austfonna (Svalbard) ice caps exceed by ∼6˚C the average Arctic temperature anomalies for the last 150 years. The reconstruction of the past surface temperatures and the parameters of the subsurface heat source due to refreezing of meltwater lead to the conclusion that meltwater spreads inside two to four annual layers for Akademii Nauk and Austfonna ice caps, respectively.
4

Denton, George H., James G. Bockheim, Scott C. Wilson, and Minze Stuiver. "Late Wisconsin and Early Holocene Glacial History, Inner Ross Embayment, Antarctica." Quaternary Research 31, no. 2 (March 1989): 151–82. http://dx.doi.org/10.1016/0033-5894(89)90004-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractLateral drift sheets of outlet glaciers that pass through the Transantarctic Mountains constrain past changes of the huge Ross ice drainage system of the Antarctic Ice Sheet. Drift stratigraphy suggests correlation of Reedy III (Reedy Glacier), Beardmore (Beardmore Glacier), Britannia (Hatherton/Darwin Glaciers), Ross Sea (McMurdo Sound), and “younger” (Terra Nova Bay) drifts; radiocarbon dates place the outer limits of Ross Sea drift in late Wisconsin time at 24,000–13,000 yr B.P. Outlet-glacier profiles from these drifts constrain late Wisconsin ice-sheet surface elevations. Within these constraints, we give two extreme late Wisconsin reconstructions of the Ross ice drainage system. Both show little elevation change of the polar plateau coincident with extensive ice-shelf grounding along the inner Ross Embayment. However, in the central Ross Embayment one reconstruction shows floating shelf ice, whereas the other shows a grounded ice sheet. Massive late Wisconsin/Holocene recession of grounded ice from the western Ross Embayment, which was underway at 13,040 yr B.P. and completed by 6600-6020 yr B.P., was accompanied by little change in plateau ice levels inland of the Transantarctic Mountains. Sea level and basal melting probably controlled the extent of grounded ice in the Ross Embayment. The interplay between the precipitation (low late Wisconsin and high Holocene values) and the influence of grounding on outlet glaciers (late Wisconsin thickening and late Wisconsin/Holocene thinning, with effects dying out inland) probably controlled minor elevation changes of the polar plateau.
5

Brun, F., M. Dumont, P. Wagnon, E. Berthier, M. F. Azam, J. M. Shea, P. Sirguey, A. Rabatel, and Al Ramanathan. "Seasonal changes in surface albedo of Himalayan glaciers from MODIS data and links with the annual mass balance." Cryosphere 9, no. 1 (February 13, 2015): 341–55. http://dx.doi.org/10.5194/tc-9-341-2015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Few glaciological field data are available on glaciers in the Hindu Kush–Karakoram–Himalayan (HKH) region, and remote sensing data are thus critical for glacier studies in this region. The main objectives of this study are to document, using satellite images, the seasonal changes of surface albedo for two Himalayan glaciers, Chhota Shigri Glacier (Himachal Pradesh, India) and Mera Glacier (Everest region, Nepal), and to reconstruct the annual mass balance of these glaciers based on the albedo data. Albedo is retrieved from Moderate Resolution Imaging Spectroradiometer (MODIS) images, and evaluated using ground based measurements. At both sites, we find high coefficients of determination between annual minimum albedo averaged over the glacier (AMAAG) and glacier-wide annual mass balance (Ba) measured with the glaciological method (R2 = 0.75). At Chhota Shigri Glacier, the relation between AMAAG found at the end of the ablation season and Ba suggests that AMAAG can be used as a proxy for the maximum snow line altitude or equilibrium line altitude (ELA) on winter-accumulation-type glaciers in the Himalayas. However, for the summer-accumulation-type Mera Glacier, our approach relied on the hypothesis that ELA information is preserved during the monsoon. At Mera Glacier, cloud obscuration and snow accumulation limits the detection of albedo during the monsoon, but snow redistribution and sublimation in the post-monsoon period allows for the calculation of AMAAG. Reconstructed Ba at Chhota Shigri Glacier agrees with mass balances previously reconstructed using a positive degree-day method. Reconstructed Ba at Mera Glacier is affected by heavy cloud cover during the monsoon, which systematically limited our ability to observe AMAAG at the end of the melting period. In addition, the relation between AMAAG and Ba is constrained over a shorter time period for Mera Glacier (6 years) than for Chhota Shigri Glacier (11 years). Thus the mass balance reconstruction is less robust for Mera Glacier than for Chhota Shigri Glacier. However our method shows promising results and may be used to reconstruct the annual mass balance of glaciers with contrasted seasonal cycles in the western part of the HKH mountain range since the early 2000s when MODIS images became available.
6

Brun, F., M. Dumont, P. Wagnon, E. Berthier, M. F. Azam, J. M. Shea, P. Sirguey, A. Rabatel, and Al Ramanathan. "Seasonal changes in surface albedo of Himalayan glaciers from MODIS data and links with the annual mass balance." Cryosphere Discussions 8, no. 3 (June 27, 2014): 3437–74. http://dx.doi.org/10.5194/tcd-8-3437-2014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Few glaciological field data are available on glaciers in the Hindu Kush – Karakoram – Himalaya (HKH) region, and remote sensing data are thus critical for glacier studies in this region. The main objectives of this study are to document, using satellite images, the seasonal changes of surface albedo for two Himalayan glaciers, Chhota Shigri Glacier (Himachal Pradesh, India) and Mera Glacier (Everest region, Nepal), and to reconstruct the annual mass balance of these glaciers based on the albedo data. Albedo is retrieved from MODerate Imaging Spectroradiometer (MODIS) images, and evaluated using ground based measurements. At both sites, we find high coefficients of determination between annual minimum albedo averaged over the glacier (AMAAG) and glacier-wide annual mass balance (Ba) measured with the glaciological method (R2 = 0.75). At Chhota Shigri Glacier, the relation between AMAAG found at the end of the ablation season and Ba suggests that AMAAG can be used as a proxy for the maximum snowline altitude or equilibrium line altitude (ELA) on winter accumulation-type glaciers in the Himalayas. However, for the summer-accumulation type Mera Glacier our approach relied on the hypothesis that ELA information, mostly not accessible from space during the monsoon, was still preserved later thanks to strong winter winds blowing away snow and in turn exposing again the late monsoon surface. AMAAG was subsequently revealed in the post-monsoon period. Reconstructed Ba at Chhota Shigri Glacier agrees with mass balances previously reconstructed using a positive degree-day method. Reconstructed Ba at Mera Glacier is affected by heavy cloud cover during the monsoon, which systematically limited our ability to observe AMAAG at the end of the melting period. In addition, the relation between AMAAG and Ba is constrained over a shorter time period for Mera Glacier (6 years) than for Chhota Shigri Glacier (11 years). Thus the mass balance reconstruction is less robust for Mera Glacier than for Chhota Shigri Glacier. However our method shows promising results and may be used to reconstruct the annual mass balance of glaciers with contrasted seasonal cycles in the western part of the HKH mountain range since the early 2000s when MODIS images became available.
7

Duan, J., L. Wang, L. Li, and Y. Sun. "Tree-ring inferred glacier mass balance variation in southeastern Tibetan Plateau and its linkage with climate variability." Climate of the Past Discussions 9, no. 4 (July 2, 2013): 3663–80. http://dx.doi.org/10.5194/cpd-9-3663-2013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. A large number of glaciers in the Tibetan Plateau (TP) have experienced wastage in recent decades. And the wastage is different from region to region, even from glacier to glacier. A better understanding of long-term glacier variations and their linkage with climate variability requires extending the presently observed records. Here we present the first tree-ring-based glacier mass balance (MB) reconstruction in the TP, performed at the Hailuogou Glacier in southeastern TP during 1865–2007. The reconstructed MB is characterized mainly by ablation over the past 143 yr, and typical melting periods occurs in 1910s–1920s, 1930s–1960s, 1970s–1980s, and the last 20 yr. After the 1900s, only a few short periods (i.e., 1920s–1930s, the 1960s and the late 1980s) is characterized by accumulation. These variations can be validated by the terminus retreat velocity of the Hailuogou Glacier and the ice-core accumulation rate in Guliya and respond well to regional and Northern Hemisphere temperature anomaly. In addition, the reconstructed MB is significantly and negatively correlated with August-September all-Indian monsoon precipitation (AIR) (r1871–2008= −0.342, p < 0.0001). These results suggest that temperature variability is the dominant factor for the long-term MB variation at the Hailuogou Glacier. Indian summer monsoon precipitation doesn't affect the MB variation, yet the significant negative correlation between the MB and the AIR implies the positive effect of summer heating of the TP on Indian summer monsoon precipitation.
8

Duan, J., L. Wang, L. Li, and Y. Sun. "Tree-ring-inferred glacier mass balance variation in southeastern Tibetan Plateau and its linkage with climate variability." Climate of the Past 9, no. 6 (November 4, 2013): 2451–58. http://dx.doi.org/10.5194/cp-9-2451-2013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. A large number of glaciers in the Tibetan Plateau (TP) have experienced wastage in recent decades. And the wastage is different from region to region, even from glacier to glacier. A better understanding of long-term glacier variations and their linkage with climate variability requires extending the presently observed records. Here we present the first tree-ring-based glacier mass balance (MB) reconstruction in the TP, performed at the Hailuogou Glacier in southeastern TP during 1868–2007. The reconstructed MB is characterized mainly by ablation over the past 140 yr, and typical melting periods occurred in 1910s–1920s, 1930s–1960s, 1970s–1980s, and the last 20 yr. After the 1900s, only a few short periods (i.e., 1920s–1930s, the 1960s and the late 1980s) were characterized by accumulation. These variations can be validated by the terminus retreat velocity of Hailuogou Glacier and the ice-core accumulation rate in Guliya and respond well to regional and Northern Hemisphere temperature anomaly. In addition, the reconstructed MB is significantly and negatively correlated with August–September all-India monsoon rainfall (AIR) (r1871-2008 = −0.342, p < 0.0001). These results suggest that temperature variability is the dominant factor for the long-term MB variation at the Hailuogou Glacier. Indian summer monsoon precipitation does not affect the MB variation, yet the significant negative correlation between the MB and the AIR implies the positive effect of summer heating of the TP on Indian summer monsoon precipitation.
9

Vermassen, Flor, Nanna Andreasen, David J. Wangner, Nicolas Thibault, Marit-Solveig Seidenkrantz, Rebecca Jackson, Sabine Schmidt, Kurt H. Kjær, and Camilla S. Andresen. "A reconstruction of warm-water inflow to Upernavik Isstrøm since 1925 CE and its relation to glacier retreat." Climate of the Past 15, no. 3 (July 1, 2019): 1171–86. http://dx.doi.org/10.5194/cp-15-1171-2019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. The mass loss from the Greenland Ice Sheet has increased over the past 2 decades. Marine-terminating glaciers contribute significantly to this mass loss due to increased melting and ice discharge. Periods of rapid retreat of these tidewater glaciers have been linked to the concurrent inflow of warm Atlantic-sourced waters. However, little is known about the variability of these Atlantic-derived waters within the fjords, due to a lack of multi-annual in situ measurements. Thus, to better understand the potential role of ocean warming on glacier retreat, reconstructions that characterize the variability of Atlantic water inflow to the fjords are required. Here, we investigate foraminiferal assemblages in a sediment core from Upernavik Fjord, West Greenland, in which the major ice stream Upernavik Isstrøm terminates. We conclude that the foraminiferal assemblage is predominantly controlled by changes in bottom water composition and provide a reconstruction of Atlantic water inflow to Upernavik Fjord, spanning the period 1925–2012. This reconstruction reveals peak Atlantic water influx during the 1930s and again after 2000, a pattern that is comparable to the Atlantic Multidecadal Oscillation (AMO). The comparison of these results to historical observations of front positions of Upernavik Isstrøm reveals that inflow of warm Atlantic-derived waters likely contributed to high retreat rates in the 1930s and after 2000. However, moderate retreat rates of Upernavik Isstrøm also prevailed in the 1960s and 1970s, showing that glacier retreat continued despite a reduced Atlantic water inflow, albeit at a lower rate. Considering the link between bottom water variability and the AMO in Upernavik Fjord, and the fact that a persistent negative phase of the AMO is expected for the next decade, Atlantic water inflow into the fjord may decrease in the coming decade, potentially minimizing or stabilizing the retreat of Upernavik Isstrøm during this time interval.
10

Laska, Michał, Bartłomiej Luks, and Tomasz Budzik. "Influence of snowpack internal structure on snow metamorphism and melting intensity on Hansbreen, Svalbard." Polish Polar Research 37, no. 2 (June 1, 2016): 193–218. http://dx.doi.org/10.1515/popore-2016-0012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThis paper presents a detailed study of melting processes conducted on Hansbreen – a tidewater glacier terminating in the Hornsund fjord, Spitsbergen. The fieldwork was carried out from April to July 2010. The study included observations of meltwater distribution within snow profiles in different locations and determination of its penetration time to the glacier ice surface. In addition, the variability of the snow temperature and heat transfer within the snow cover were measured. The main objective concerns the impact of meltwater on the diversity of physical characteristics of the snow cover and its melting dynamics. The obtained results indicate a time delay between the beginning of the melting processes and meltwater reaching the ice surface. The time necessary for meltwater to percolate through the entire snowpack in both, the ablation zone and the equilibrium line zone amounted toc.12 days, despite a much greater snow depth at the upper site. An elongated retention of meltwater in the lower part of the glacier was caused by a higher amount of icy layers (ice formationsandmelt-freeze crusts), resulting from winter thaws, which delayed water penetration. For this reason, a reconstruction ofrain-on-snowevents was carried out. Such results give new insight into the processes of the reactivation of the glacier drainage system and the release of freshwater into the sea after the winter period.

Дисертації з теми "Glacier melting reconstruction":

1

Kynde, Hämberg Josefine. "En studie om De Geer-morän längs med Sveriges västkust." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-448890.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Majoriteten av geomorfologin i Sveriges landskap är produkten av den senaste nedisningen som avslutades för ca 8000 år sedan. De Geer-morän är en typ av moränavlagring som härstammar från denna nedisning. De Geer-moränavlagringarna har ett omdebatterat bildningssätt samt är landformer med en omtvistad innebörd i landskapen världen över. Vad är det som moränavlagringarna återspeglar? Är det avlagringar från svämmande glaciärer, avlagringar formade vid grundstötningslinjen för en ryckvis avsmältande glaciär eller kanske avlagringar bildade av sammanpressat material i basala sprickor hos en glaciär? Diskussionen om De Geer-moränen har varit långvarig och teorierna är många. Här är forskningen inte överens. Det förefaller också att studerad De Geer-morän på olika platser världen över inte nödvändigtvis behöver ha haft samma bildningsätt. I Sverige förekommer De Geer-morän främst i två områden, längs med kusten i Norrbotten och Västerbotten, samt vid den mellansvenska israndzonen. I dessa områden förekommer moränavlagringarna som små ryggar i svärmar med några meters höjd. De studier som gjorts i Sverige om De Geer-morän har förklarligt nog tenderat att fokusera på dessa två större områden. Men, utöver dessa två större områden finns det också ett mycket mindre område beläget längs med Sveriges västkust, ett område med samma typ av moränavlagringar. De Geer-moränen här, benämnda Hallands kustmorän, är både äldre och färre, dessutom är senaste nedisningens avsmältning i detta område mer ovisst. I denna uppsats gjordes ett försök till att övergripligt redogöra för några av de presenterade teorierna som föreligger De Geer-moränens bildningssätt. Uppsatsen syftar till att studera och kartera De Geer-moränen belägen längs med Sveriges västkust med hjälp av höjddata och sedan jämföra dessa avlagringar med den teori som presenteras i bakgrunden för denna uppsats. De Geer-moränen kommer även att jämföras med en isavsmältningsrekonstruktion gjord i programmet ICESHEET 1.0, med lokala karterade isräfflor i området samt även analyseras utifrån beskrivningarna till SGUs utgivna jordartskartor. Förhoppningen var att denna uppsatsen skulle kunna bringa mer klarhet om omfattningen och utbredningen av De Geer-moränen längs med Sveriges västkust. Resultatet som erhölls presenterades bland annat visuellt med framtagna kartbilder. Några av de slutsatser som kunde dras utifrån denna studie var att De Geer-moränen längs med Sveriges västkust är starkt påverkade av svallning och överlagring av yngre sediment vilket gjorde dem svåra att upptäcka i landskapet. Högst troligt är det att förekomsten av De Geer-morän längs med Sveriges västkust är större än vad som syns vid dagens marknivå på grund av överlagring, dessutom tyder mycket på att avlagringarna fortsätter ut i Kungsbackafjorden och Kattegatt. Det gick för det studerade området att se att det fanns ett samband mellan jorddjup och förekomsten av De Geer-morän. Ryggarna var främst avlagrade ovanpå drumliner och förekom främst i områden med ett jorddjup på ≥ 5m. Det gick inte att dra några slutsatser om De Geer-moränens bildningssätt i området.
Most of the geomorphology in the Swedish landscape is a product of the last deglaciation that ended about 8000 years ago. De Geer moraine is moraine deposits that has debated origins as well as debated implications worldwide. What message does the deposits send? What kind of conditions do they reflect? Are they perhaps the deposits of surging glaciers, or deposits formed at the grounding lines of melting glaciers or perhaps are they squeezed ridges formed in basal crevasses of glaciers? The discussion in research worldwide about the origin of these features have been going on for a long time and there is a lot of different theories about how the deposits are formed. The De Geer moraines in Sweden are mainly located in two larger areas, one of them being along the east coast in Norrbotten and Västerbotten, and the other one being a large belt of deposits that are located parallel to the big Swedish lake Vänern. The majority of the published articles about De Geer moraine in Sweden are therefore understandably about these two larger areas, however there are also a much smaller area of De Geer moraine along Sweden’s west coast. These deposits are called Halland’s coastal moraines and are not studied to the same extent as the other two areas. This bachelor thesis aims to, in a general way, describe some of the different theories there are about the formation of these ridges. The purpose of this thesis is to study and map the De Geer moraine along the Swedish west coast and compare them to the theory featured in the background of this paper. The ridges will then also be studied on the basis of a glacier melting reconstruction in the computer software ICESHEET 1.0, of ice striations in the area and lastly on the basis of the descriptions to the quaternary maps published by Geological Survey of Sweden. Hopefully, this paper will bring some clarity about the De Geer moraine ridges along the Swedish west coast. The results from this thesis were presented visually in different types of map sheets. Some of the conclusions that could be drawn from this bachelor thesis was that ridges along the Swedish west coast were both wave-washed and superimposed by younger sediments which therefore made them hard to both map and distinguish. There is a high probability that the occurrence of De Geer moraine is much larger in the area than what could be seen at today’s ground level. Also, the distribution of the ridges suggested that they continued out in Kattegatt and the Kungsbackafjord. In general, the ridges were superimposed on drumlins and there was shown to be a connection between soil depth and the occurrence of De Geer moraine, the ridges mainly occurred where the soil depth were ≥5 metres. Despite of this, no conclusion could be drawn about the formation of the features.

До бібліографії