Добірка наукової літератури з теми "Glia Progenitors"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Glia Progenitors".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Glia Progenitors"
Pose-Méndez, Sol, Michel Rehbock, Alexandra Wolf-Asseburg, and Reinhard W. Köster. "In Vivo Monitoring of Fabp7 Expression in Transgenic Zebrafish." Cells 13, no. 13 (July 2, 2024): 1138. http://dx.doi.org/10.3390/cells13131138.
Повний текст джерелаMorrow, Theresa, Mi-Ryoung Song, and Anirvan Ghosh. "Sequential specification of neurons and glia by developmentally regulated extracellular factors." Development 128, no. 18 (September 15, 2001): 3585–94. http://dx.doi.org/10.1242/dev.128.18.3585.
Повний текст джерелаOjalvo-Sanz, Ana Cristina, and Laura López-Mascaraque. "Gliogenic Potential of Single Pallial Radial Glial Cells in Lower Cortical Layers." Cells 10, no. 11 (November 19, 2021): 3237. http://dx.doi.org/10.3390/cells10113237.
Повний текст джерелаBarriola, Sonsoles, Fernando Pérez-Cerdá, Carlos Matute, Ana Bribián, and Laura López-Mascaraque. "A Clonal NG2-Glia Cell Response in a Mouse Model of Multiple Sclerosis." Cells 9, no. 5 (May 21, 2020): 1279. http://dx.doi.org/10.3390/cells9051279.
Повний текст джерелаDimou, Leda, and Magdalena Götz. "Glial Cells as Progenitors and Stem Cells: New Roles in the Healthy and Diseased Brain." Physiological Reviews 94, no. 3 (July 2014): 709–37. http://dx.doi.org/10.1152/physrev.00036.2013.
Повний текст джерелаLi, Zhen, William A. Tyler, Ella Zeldich, Gabriel Santpere Baró, Mayumi Okamoto, Tianliuyun Gao, Mingfeng Li, Nenad Sestan, and Tarik F. Haydar. "Transcriptional priming as a conserved mechanism of lineage diversification in the developing mouse and human neocortex." Science Advances 6, no. 45 (November 2020): eabd2068. http://dx.doi.org/10.1126/sciadv.abd2068.
Повний текст джерелаGray, G. E., and J. R. Sanes. "Lineage of radial glia in the chicken optic tectum." Development 114, no. 1 (January 1, 1992): 271–83. http://dx.doi.org/10.1242/dev.114.1.271.
Повний текст джерелаHui, Subhra Prakash, Tapas Chandra Nag, and Sukla Ghosh. "Neural cells and their progenitors in regenerating zebrafish spinal cord." International Journal of Developmental Biology 64, no. 4-5-6 (2020): 353–66. http://dx.doi.org/10.1387/ijdb.190130sg.
Повний текст джерелаPawolski, Verena, and Mirko H. H. Schmidt. "Neuron–Glia Interaction in the Developing and Adult Enteric Nervous System." Cells 10, no. 1 (December 31, 2020): 47. http://dx.doi.org/10.3390/cells10010047.
Повний текст джерелаNagashima, Mikiko, and Peter F. Hitchcock. "Inflammation Regulates the Multi-Step Process of Retinal Regeneration in Zebrafish." Cells 10, no. 4 (April 1, 2021): 783. http://dx.doi.org/10.3390/cells10040783.
Повний текст джерелаДисертації з теми "Glia Progenitors"
Murdoch, Barbara. "Identification, regulation and lineage tracing of embryonic olfactory progenitors." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/994.
Повний текст джерелаBelmonte, Mateos Carla 1992. "Unveiling the molecular and behavioral properties of hindbrain rhombomere centers." Doctoral thesis, TDX (Tesis Doctorals en Xarxa), 2022. http://hdl.handle.net/10803/673433.
Повний текст джерелаLa regulació precisa de la neurogènesi s’aconsegueix localitzant la competència neurogènica de manera diferencial al llarg del territori. Al cervell posterior, l’expressió de gens proneurals es restringeix a les zones adjacents a les cèl·lules de les fronteres, i per tant és absent als centres així doncs assenyalant els centres dels rombòmers com una població no neurogènica. En aquest treball, hem revelat el seu perfil molecular espai-temporal així com un dels mecanismes que manté aquestes cèl·lules com a no neurogèniques. Mitjançant imatges 4D hem aportat llum per primera vegada a l’enteniment del seu comportament cel·lular en viu, i proposem que aquesta població dels centres dels rombòmers és de fet heterogènia ja que conté cèl·lules amb diferent capacitat proliferativa.
BOZZO, MATTEO. "Glial cells of the developing amphioxus: a molecular study." Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1043680.
Повний текст джерелаBadsha, Farhath. "A comparative study of neocortical development between humans and great apes." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-224196.
Повний текст джерелаNajas, Sales Sònia 1985. "Role of DYRK1A in the development of the cerebral cortex : Implication in Down Syndrome." Doctoral thesis, Universitat Pompeu Fabra, 2014. http://hdl.handle.net/10803/380895.
Повний текст джерелаEn aquest treball s'ha avaluat la possible contribució del gen DYRK1A, localitzat en el cromosoma humà 21, en les alteracions del desenvolupament de l’escorça cerebral associades a la Síndrome de down (SD) mitjançant l’estudi de dos models murins: el ratolí mBACTgDyrk1a, el qual conté 3 còpies de Dyrk1a, i el ratolí Ts65Dn, un dels models trisòmics de la SD més ben caracteritzats. Els nostres resultats mostren que la trisomia de Dyrk1A altera alguns paràmetres del cicle cel•lular i el tipus de divisió dels progenitors neurals del telencèfal dorsal, donant lloc a un dèficit de neurones glutamatèrgiques que persisteix fins l’edat adulta. Hem demostrat que Dyrk1a és el gen triplicat responsable del dèficit inicial en la generació de neurones glutamatèrgiques corticals observat en el ratolí Ts65Dn. A més a més, hem proporcionat evidències de que la degradació de Ciclina D1 induïda per DYRK1A és el mecanisme molecular subjacent a les alteracions de cicle cel•lular observades en els progenitors neuronals dels embrions mBACTgDyrk1a i Ts65Dn. Per altra banda, hem demostrat que la neurogènesis inicial està incrementada en l’eminència ganglionar medial dels embrions mBACTgDyrk1a, fet que altera la proporció de subtipus específics d’interneurones GABAèrgiques en l’escorça cerebral adulta. En conclusió, els nostres resultats indiquen que la sobreexpressió de DYRK1A contribueix significativament a la formació dels circuits cortical en la SD.
Than, Trong Emmanuel. "Le rôle de la signalisation Notch3 dans le maintien des cellules souches neurales du télencéphale adulte Neural stem cell quiescence and stemness are molecularly distinct outputs of the Notch3 signaling cascade in the vertebrate adult brain her4-expressing neural stem cells are maintained through population asymmetry and embedded into a hierarchy of progenitors responsible for their life-long expansion Radial Glia and Neural Progenitors in the Adult Zebrafish Central Nervous System." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS541.
Повний текст джерелаNew neurons continue to be added into discrete brain regions of most adult vertebrate species, including humans. Adult born neurons arise from precursor cells, called neural stem cells (NSCs), endowed with self-renewal potential and mostly found in a state of reversible cell cycle arrest, named quiescence. Currently, the molecular, cellular and population rules allowing NSC to balance maintenance and differentiation remain incompletely understood. At the single cell level, several factors and signalling pathways were demonstrated to be essential for NSC homeostasis. Among them, the Notch signalling pathway is critically involved in the control of NSC quiescence and stemness. However, whether these two properties represent molecularly distinct or overlapping outputs of the Notch signalling pathway remains unknown. At the cellular level, current models state that NSCs divide rarely and mostly asymmetrically, allowing both self-renewal and the generation of a more committed progeny that ultimately exits the cell cycle and fulfils neuronal differentiation. The adult zebrafish pallium harbours NSCs, called radial glia (RG), which share with their mammalian counterparts the same basic properties. Previously, our laboratory demonstrated that Notch3 was necessary to maintain RG quiescence. Here, in two different and complementary works, we took advantage of the widespread neurogenic ventricular zone (VZ) of the adult zebrafish pallium to (1) explore further the role of Notch3 signalling in RG homeostasis and (2) investigate the division pattern and dynamics allowing the RG population to be maintained on the long run. In the first study, we demonstrate that the role of Notch3 signalling extends beyond the simple maintenance of RG quiescence and that Notch3 also contributes to RG stemness. By overlapping the transcriptomic profiles of both notch3 mutant RG and adult pallial VZ progenitors, we identified different sets of Notch3 target genes potentially responsible for its pleitropic effect in RG. Notably, we show that the Notch3 signalling contribution to RG stemness critically relies on the transcriptional activation of its canonical target gene hey1 and this, independently of Notch3 action on RG quiescence. In the second study, we performed a quantitative analysis of the fates of individual her4.1(Hes5)-expressing RG. We demonstrate that these cells adopt balanced stochastic fates, which allows their population to reach homeostasis. We also report that the overall RG population of the zebrafish pallium continues to grow during adulthood and that this expansion is very likely driven by a yet undefined upstream population of progenitors. As a consequence, we propose that the adult zebrafish is organised into a hierarchy of progenitors dominated by an unknown population that fuels the ongoing production of an intrinsically homeostatic population of RG which, itself, follows neutral drift dynamics
Smith, Maria Civita. "MAPPING ASTROCYTE DEVELOPMENT IN THE DORSAL CORTEX OF THE MOUSE BRAIN." Case Western Reserve University School of Graduate Studies / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=case1373039738.
Повний текст джерелаChapman, Heather M. "Gsx genes control the neuronal to glial fate switch in telencephalic progenitors." University of Cincinnati / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1394725163.
Повний текст джерелаBeligala, Dilshan Harshajith. "Stem-like cells and glial progenitors in the adult mouse suprachiasmatic nucleus." Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1566319291491512.
Повний текст джерелаBizzotto, Sara. "Eml1 in radial glial progenitors during cortical development : the neurodevelopmental role of a protein mutated in subcortical heterotopia in mouse and human." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066118.
Повний текст джерелаThe cerebral cortex develops through genetically regulated processes of cellular proliferation, neurogenesis, migration and differentiation. Cortical malformations represent a spectrum of heterogeneous disorders due to abnormalities in these steps, and associated with epilepsy and intellectual disability. We studied the HeCo (heterotopic cortex) mutant mouse, which exhibits bilateral subcortical band heterotopia (SBH), characterized by many aberrantly positioned neurons in the white matter. We found that Eml1 (Echinoderm Microtubule-associated protein-Like 1) is mutated in these mice. Screening of EML1 in heterotopia patients identified mutations giving rise to a severe and rare form of atypical heterotopia. In HeCo embryonic brains, progenitors were identified outside the normal proliferative ventricular zone (VZ), representing a novel cause of this disorder. We studied Eml1 function in radial glial progenitors (RGCs), which are important during corticogenesis generating other subtypes of progenitors and post-mitotic neurons, and serving as guides for migrating neurons. We showed that Eml1 localizes to the mitotic spindle where it might regulate microtubule dynamics. My data suggest a role in the establishment of the steady state metaphase spindle length. Indeed, HeCo RGCs in the VZ showed a perturbed spindle length during corticogenesis, and this may represent one of the primary mechanisms leading to abnormal progenitor behavior. I also analyzed cell number and metaphase cell size at the apical side of the VZ, where mitosis occurs. I thus propose new mechanisms governing normal and pathological VZ progenitor organization and function during cortical development
Книги з теми "Glia Progenitors"
Leone, Dino. Tamoxifen-inducible glia-specific cre mice for somatic mutagenesis in oligodendrocytes and schwann cells and [beta]1-integrin regulates neural progenitor maintenance through modulation of growth factor signaling. 2003.
Знайти повний текст джерелаЧастини книг з теми "Glia Progenitors"
Eugenín-von Bernhardi, Jaime, and Leda Dimou. "NG2-glia, More Than Progenitor Cells." In Advances in Experimental Medicine and Biology, 27–45. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-40764-7_2.
Повний текст джерелаBosch, E. Peter, José G. Assouline, and Ramon Lim. "In Vitro Effects of Glia Maturation Factor on Bipotential Glial Progenitor Cells." In Model Systems of Development and Aging of the Nervous System, 125–37. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-2037-1_10.
Повний текст джерелаScolding, Neil. "The adult human oligodendrocyte progenitor." In Molecular Signaling and Regulation in Glial Cells, 288–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60669-4_25.
Повний текст джерелаFranklin, Robin J. M. "The biology of the transplanted oligodendrocyte progenitor." In Molecular Signaling and Regulation in Glial Cells, 367–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60669-4_32.
Повний текст джерелаBalasubramanian, Swarnalatha, Elizabeth M. Powell, and Jennie B. Leach. "Culturing Neurons, Glia, and Progenitor Cells in Three-Dimensional Hydrogels." In Extracellular Matrix, 91–99. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-2083-9_9.
Повний текст джерелаAder, Marius, Volker Enzmann, and Mike Francke. "Potential of Müller Glia and Stem/Progenitor Cells to Regenerate Retinal Tissue." In Stem Cell Biology and Regenerative Medicine, 161–75. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0787-8_8.
Повний текст джерелаEspinosa, A., D. Espejo, and J. de Vellis. "Transplantation of Oligodendrocyte Progenitors and CG4 Cells into the Dveloping Rat Brain: Differences and Similarities." In Molecular Signaling and Regulation in Glial Cells, 329–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-60669-4_29.
Повний текст джерелаNishikawa, Masashi, Koh-ichi Nagata, and Hidenori Tabata. "Live Imaging of Migrating Neurons and Glial Progenitors Visualized by in Utero Electroporation." In Methods in Molecular Biology, 201–9. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-3810-1_17.
Повний текст джерелаNelson, Craig M., and David R. Hyde. "Müller Glia as a Source of Neuronal Progenitor Cells to Regenerate the Damaged Zebrafish Retina." In Retinal Degenerative Diseases, 425–30. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0631-0_54.
Повний текст джерелаSmall, R. "Differentiation of a Migratory Bipotential Glial Progenitor Cell in the Developing Rat Optic Nerve." In Neural Development and Regeneration, 677–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-73148-8_71.
Повний текст джерелаТези доповідей конференцій з теми "Glia Progenitors"
Sudina, A. K., D. V. Goldshtein, D. N. Silachev, and D. I. Salikhova. "GLIAL PROGENITOR CELL TRANSPLANTATION ENHANCES RECOVERY OF SENSORIMOTOR DEFICITS IN RATS AFTER TRAUMATIC BRAIN INJURY." In XI МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ МОЛОДЫХ УЧЕНЫХ: БИОИНФОРМАТИКОВ, БИОТЕХНОЛОГОВ, БИОФИЗИКОВ, ВИРУСОЛОГОВ, МОЛЕКУЛЯРНЫХ БИОЛОГОВ И СПЕЦИАЛИСТОВ ФУНДАМЕНТАЛЬНОЙ МЕДИЦИНЫ. IPC NSU, 2024. https://doi.org/10.25205/978-5-4437-1691-6-105.
Повний текст джерелаGrinchevskaia, L. R., D. I. Salikhova, T. K. Fatkhudinov, and D. V. Goldshtein. "THE ROLE OF GLIAL PROGENITOR CELLS IN ANGIOGENESIS." In NOVEL TECHNOLOGIES IN MEDICINE, BIOLOGY, PHARMACOLOGY AND ECOLOGY, 205–9. LLC Institute Information Technologies, 2024. http://dx.doi.org/10.47501/978-5-6044060-4-5.205-209.
Повний текст джерела