Добірка наукової літератури з теми "Gradient damage"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Gradient damage".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Gradient damage":

1

Le, Duc Trung, Jean-Jacques Marigo, Corrado Maurini, and Stefano Vidoli. "Strain-gradient vs damage-gradient regularizations of softening damage models." Computer Methods in Applied Mechanics and Engineering 340 (October 2018): 424–50. http://dx.doi.org/10.1016/j.cma.2018.06.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Saczuk, J., K. Hackl, and H. Stumpf. "Rate theory of nonlocal gradient damage-gradient viscoinelasticity." International Journal of Plasticity 19, no. 5 (May 2003): 675–706. http://dx.doi.org/10.1016/s0749-6419(02)00004-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

da Silva, L. R., and H. J. Herrmann. "Damage spreading in a gradient." Journal of Statistical Physics 52, no. 1-2 (July 1988): 463–70. http://dx.doi.org/10.1007/bf01016427.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhao, Bing, Ying-ren Zheng, Ming-hua Zeng, Xue-song Tang, and Xiao-gang Li. "First-order gradient damage theory." Applied Mathematics and Mechanics 31, no. 8 (July 24, 2010): 987–94. http://dx.doi.org/10.1007/s10483-010-1334-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bui, Q. V. "Initiation of damage with implicit gradient-enhanced damage models." International Journal of Solids and Structures 47, no. 18-19 (September 2010): 2425–35. http://dx.doi.org/10.1016/j.ijsolstr.2010.05.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Frémond, Michel, and Boumediene Nedjar. "Damage, gradient of damage and principle of virtual power." International Journal of Solids and Structures 33, no. 8 (March 1996): 1083–103. http://dx.doi.org/10.1016/0020-7683(95)00074-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kiefer, Bjoern, Tobias Waffenschmidt, Leon Sprave, and Andreas Menzel. "A gradient-enhanced damage model coupled to plasticity—multi-surface formulation and algorithmic concepts." International Journal of Damage Mechanics 27, no. 2 (January 5, 2017): 253–95. http://dx.doi.org/10.1177/1056789516676306.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A non-local gradient-enhanced damage-plasticity formulation is proposed, which prevents the loss of well-posedness of the governing field equations in the post-critical damage regime. The non-locality of the formulation then manifests itself in terms of a non-local free energy contribution that penalizes the occurrence of damage gradients. A second penalty term is introduced to force the global damage field to coincide with the internal damage state variable at the Gauss point level. An enforcement of Karush–Kuhn–Tucker conditions on the global level can thus be avoided and classical local damage models may directly be incorporated and equipped with a non-local gradient enhancement. An important part of the present work is to investigate the efficiency and robustness of different algorithmic schemes to locally enforce the Karush–Kuhn–Tucker conditions in the multi-surface damage-plasticity setting. Response simulations for representative inhomogeneous boundary value problems are studied to assess the effectiveness of the gradient enhancement regarding stability and mesh objectivity.
8

Lorentz, E., and A. Benallal. "Gradient constitutive relations: numerical aspects and application to gradient damage." Computer Methods in Applied Mechanics and Engineering 194, no. 50-52 (December 2005): 5191–220. http://dx.doi.org/10.1016/j.cma.2004.12.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lacy, Thomas E., David L. McDowell, and Ramesh Talreja. "Gradient concepts for evolution of damage." Mechanics of Materials 31, no. 12 (December 1999): 831–60. http://dx.doi.org/10.1016/s0167-6636(99)00029-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Placidi, Luca, Emilio Barchiesi, and Anil Misra. "A strain gradient variational approach to damage: a comparison with damage gradient models and numerical results." Mathematics and Mechanics of Complex Systems 6, no. 2 (May 29, 2018): 77–100. http://dx.doi.org/10.2140/memocs.2018.6.77.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Gradient damage":

1

Crabbé, Blandine. "Gradient damage models in large deformation." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX085/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les modèles d'endommagement à gradient, aussi dénommés modèles à champs de phases, sont désormais largement utilisés pour modéliser la rupture fragile et ductile, depuis l'initiation de l'endommagement jusqu'à la propagation d'une fissure. Cependant, la majorité des études disponibles dans la littérature ne concerne que le cadre des petites déformations, et très peu d'études poussées ont été menées afin d'étudier leur pertinence dans un contexte de grandes déformations. Ce serait pourtant d'un intérêt primordial, notamment pour l'industrie pneumatique, qui deviendrait alors capable de prédire plus précisément l'initiation de l'endommagement dans ses structures.Dans la première partie de ce travail, nous établissons des solutions analytiques d'évolution de l'endommagement (homogène et localisée) pour des matériaux visqueux, en petites et en grandes déformations. En petites déformations, les modèles rhéologiques de Maxwell et Poynting-Thomson sont étudiés, et en grandes déformations, les modèles de Maxwell et Zener sont choisis. Une étude sur l'évolution de l'endommagement dans un cas purement hyperélastique est aussi menée.A cette première partie analytique succède une partie numérique, qui détaille l'implémentation des modèles d'endommagement à gradient dans des codes éléments finis en grandes déformations. De même qu'en petites déformations, une stratégie de minimisation alternée est adoptée pour résoudre successivement les problèmes d'endommagement et de déplacement. Le matériau suit une loi de Mooney-Rivlin quasi-incompressible, et une méthode mixte en déplacement-pression est utilisée. Des tests en 2D et 3D sont effectués, qui mettent en évidence la capacité des modèles à initier de l'endommagement en grandes déformations.Les modèles d'endommagement utilisés pour la seconde partie ne sont cependant capables d'initier de l'endommagement que dans les zones où la déformation est importante, c'est-à-dire dans les zones de forte contrainte déviatorique. Il a toutefois été montré que certains matériaux polymères, quasi-incompressibles, s'endommagent dans les zones de forte pression hydrostatique. Par conséquent, la recherche et l'étude d'un modèle d'endommagement capable d'initier de l'endommagement dans les zones de forte pression, pour des matériaux quasi-incompressibles lorsqu'ils sont sains, fait l'objet d'une troisième partie.Enfin, la croissance brusque de cavités dans un matériau hyperélastique, appelée phénomène de cavitation, est étudiée, ainsi que son interaction avec l'endommagement. Dans un premier temps, nous considérons la cavitation comme une simple bifurcation hyperélastique d'un matériau néo-hookéen compressible isotrope, et déterminons l'expression analytique de l'élongation critique pour laquelle la cavitation fait son apparition. Dans un second temps, nous montrons qu'il y a une compétition entre la cavitation et l'endommagement, et qu'en fonction de la valeur du ratio des élongations critiques respectives pour chaque phénomène, deux types de rupture apparaissent
Gradient damage models, also known as phase-field models, are now widely used to model brittle and ductile fracture, from the onset of damage to the propagation of a crack in various materials. Yet, they have been mainly studied in the framework of small deformation, and very few studies aims at proving their relevance in a finite deformation framework. This would be more helpful for the tyre industry that deals with very large deformation problems, and has to gain insight into the prediction of the initiation of damage in its structures.The first part of this work places emphasis on finding analytical solutions to unidimensional problems of damaging viscous materials in small and large deformation.In all the cases, the evolution of damage is studied, both in the homogeneous and localised cases. Having such solutions gives a suitable basis to implement these models and validate the numerical results.A numerical part naturally follows the first one, that details the specificities of the numerical implementation of these non local models in large deformation. In order to solve the displacement and damage problems, the strategy of alternate minimisation (or staggered algorithm) is used. When solved on the reference configuration, the damage problem is the same as in small deformation, and consists in a bound constraint minimisation. The displacement problem is non linear, and a mixed finite element method is used to solve a displacement-pressure problem. A quasi-incompressible Mooney-Rivlin law is used to model the behaviour of the hyperelastic material. Various tests in 2D and 3D are performed to show that gradient damage models are perfectly able to initiate damage in sound, quasi-incompressible structures, in large deformation.In the simulations depicted above, it should be noted that the damage laws combined to the hyperelastic potential results in an initiation of damage that takes place in zones of high deformation, or in other words, in zones of high deviatoric stress. However, in some polymer materials, that are known to be quasi-incompressible, it has been shown that the initiation of damage can take place in zones of high hydrostatic pressure. This is why an important aspect of the work consists in establishing a damage law such that the material be incompressible when there is no damage, and the pressure play a role in the damage criterion. Such a model is exposed in the third part.Finally, the last part focuses on the cavitation phenomenon, that can be understood as the sudden growth of a cavity. We first study it as a purely hyperelastic bifurcation, in order to get the analytical value of the critical elongation for which cavitation occurs, in the case of a compressible isotropic neo-hookean material submitted to a radial displacement. We show that there is a competition between the cavitation phenomenon and the damage, and that depending on the ratio of the critical elongation for damage and the critical elongation for cavitation, different rupture patterns can appear
2

Narayan, Sooraj. "A gradient-damage theory for quasi brittle fracture." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122236.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2019
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 73-77).
Phase-field modeling of brittle fracture of linear elastic solids has been the subject of several studies in the past 25 years. An attractive feature of this approach to model fracture is its seamless ability to simulate the complicated fracture processes of nucleation, propagation, branching and merging of cracks in arbitrary geometries. While most existing models have focussed on fracture of "ideal brittle" materials, we consider fracture of "quasi-brittle" materials. The material is considered to be quasi-brittle in the sense that it does not lose its entire load-carrying capacity at the onset of damage. Instead there is a gradual degradation of the strength of the material, which is the result of microscale decohesion/damage micromechanisms. In this thesis we discuss the formulation of our gradient-damage theory for quasi-brittle fracture using the virtual-power method. The macro- and microforce balances, obtained from the virtual power approach, together with a standard free-energy imbalance law under isothermal conditions, when supplemented with a set of thermodynamically-consistent constitutive equations will provide the governing equations for our theory. We have specialized our general theory to formulate a simple continuum model for fracture of concrete - a quasi-brittle material of vast importance. We have numerically implemented our theory in a finite element program, and simulated numerical examples which show the ability of the simulation capability to reproduce the macroscopic characteristics of the failure of concrete in several technically relevant geometries reported in the literature..
by Sooraj Narayan.
S.M.
S.M. Massachusetts Institute of Technology, Department of Mechanical Engineering
3

Fassin, Marek [Verfasser]. "Modeling of gradient-extended anisotropic damage using a second order damage tensor / Marek Fassin." Düren : Shaker, 2019. http://d-nb.info/1225653886/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sumer, Emre. "Earthquake Damage Detection Using Watershed Segmentation And Intensity-gradient Orientation Approaches." Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12605485/index.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Earthquake is one of the most destructive natural disasters on earth. Rapid and reliable post-quake damage assessment has an important role to reduce the drastic effects of an earthquake by setting the responsible agencies in motion. In this study, the collapsed buildings due to earthquake were detected from post-event aerial images. Two approaches were proposed to detect the collapsed buildings. These approaches were implemented in a selected urban area of Golcuk. The first approach was based on the analysis of shadow casting edges. First, the shadow casting edges of the buildings were identified and a buffer zone was generated for each building polygon along these edges. Then, the shadow regions were detected using the watershed segmentation algorithm. This was followed by measuring the agreement between the shadow producing edges of the buildings and their corresponding shadows. Of the 284 buildings analyzed, 229 were successfully labeled as collapsed or un-collapsed providing an overall accuracy of 80,63%.In the second approach, a two-branch method based on building light intensities and the gradient orientation was used. In the first branch, an intensity threshold was determined and applied to building image patches. Then, a pixel ratio was computed to categorize the buildings. In the second branch, a series of processings were carried out including the smoothing of the building image patches and the determination of the magnitude and the orientation of the gradient. Then, an optimum angle threshold was determined to label the buildings. The final decision about the condition of a building was made by integrating the two branches. Of the 284 buildings analyzed, 254 were correctly labeled providing an overall accuracy of 89,44%. The same assessments were repeated after generating a one-pixel wide buffer zone around the building polygons and an overall accuracy of 90,85% was obtained. The results of the proposed approaches prove that the collapsed buildings caused by the earthquake can be successfully detected from post-event aerial images.
5

Wolfe, Christopher Edward. "Damage accumulation in a gradient stress field in graphite/epoxy laminates." Thesis, Massachusetts Institute of Technology, 1989. http://hdl.handle.net/1721.1/39360.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fassin, Marek [Verfasser], Stefanie [Akademischer Betreuer] Reese, and Stephan [Akademischer Betreuer] Wulfinghoff. "Modeling of gradient-extended anisotropic damage using a second order damage tensor / Marek Fassin ; Stefanie Reese, Stephan Wulfinghoff." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://nbn-resolving.de/urn:nbn:de:101:1-2020052807010313503272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fassin, Marek Verfasser], Stefanie [Akademischer Betreuer] [Reese, and Stephan [Akademischer Betreuer] Wulfinghoff. "Modeling of gradient-extended anisotropic damage using a second order damage tensor / Marek Fassin ; Stefanie Reese, Stephan Wulfinghoff." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1211096432/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bonello, Kenneth John. "Damage accumulation in graphite/epoxy laminates due to cyclic gradient stress fields." Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/42999.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Tianyi. "Gradient-damage modeling of dynamic brittle fracture : variational principles and numerical simulations." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLX042/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Une bonne tenue mécanique des structures du génie civil en béton armé sous chargements dynamiques sévères est primordiale pour la sécurité et nécessite une évaluation précise de leur comportement en présence de propagation dynamique de fissures. Dans ce travail, on se focalise sur la modélisation constitutive du béton assimilé à un matériau élastique-fragile endommageable. La localisation des déformations sera régie par un modèle d'endommagement à gradient où un champ scalaire réalise une description régularisée des phénomènes de rupture dynamique. La contribution de cette étude est à la fois théorique et numérique. On propose une formulation variationnelle des modèles d'endommagement à gradient en dynamique. Une définition rigoureuse de plusieurs taux de restitution d'énergie dans le modèle d'endommagement est donnée et on démontre que la propagation dynamique de fissures est régie par un critère de Griffith généralisé. On décrit ensuite une implémentation numérique efficace basée sur une discrétisation par éléments finis standards en espace et la méthode de Newmark en temps dans un cadre de calcul parallèle. Les résultats de simulation de plusieurs problèmes modèles sont discutés d'un point de vue numérique et physique. Les lois constitutives d'endommagement et les formulations d'asymétrie en traction et compression sont comparées par rapport à leur aptitude à modéliser la rupture fragile. Les propriétés spécifiques du modèle d'endommagement à gradient en dynamique sont analysées pour différentes phases de l'évolution de fissures : nucléation, initiation, propagation, arrêt, branchement et bifurcation. Des comparaisons avec les résultats expérimentaux sont aussi réalisées afin de valider le modèle et proposer des axes d'amélioration
In civil engineering, mechanical integrity of the reinforced concrete structures under severe transient dynamic loading conditions is of paramount importance for safety and calls for an accurate assessment of structural behaviors in presence of dynamic crack propagation. In this work, we focus on the constitutive modeling of concrete regarded as an elastic-damage brittle material. The strain localization evolution is governed by a gradient-damage approach where a scalar field achieves a smeared description of dynamic fracture phenomena. The contribution of the present work is both theoretical and numerical. We propose a variationally consistent formulation of dynamic gradient damage models. A formal definition of several energy release rate concepts in the gradient damage model is given and we show that the dynamic crack tip equation of motion is governed by a generalized Griffith criterion. We then give an efficient numerical implementation of the model based on a standard finite-element spatial discretization and the Newmark time-stepping methods in a parallel computing framework. Simulation results of several problems are discussed both from a computational and physical point of view. Different damage constitutive laws and tension-compression asymmetry formulations are compared with respect to their aptitude to approximate brittle fracture. Specific properties of the dynamic gradient damage model are investigated for different phases of the crack evolution: nucleation, initiation, propagation, arrest, kinking and branching. Comparisons with experimental results are also performed in order to validate the model and indicate its further improvement
10

Le, Duc Trung. "Modèle d'endommagement à gradient : approche par homogénéisation." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066662/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'objectif de cette thèse est de proposer une démarche de modélisation à partir de niveau microstructure pour obtenir un modèle d'endommagement à gradient. Elle se fonde, d'une part, sur la méthode d'homogénéisation pour construire un milieu effectif à partir de la microstructure donnée, et d'autre part, sur la formulation variationnelle, à l'échelle macroscopique, d'une loi d'évolution d'endommagement à partir du milieu homogénéisé. Nous construisons dans un premier temps une approche basée sur le développement asymptotique et de la méthode variationnelle pour homogénéiser un milieu élastique périodique. Afin de modéliser le phénomène de localisation d'endommagement , cette approche a été étendue à un milieu hétérogène quasi périodique. Par un exemple du milieu micro fissuré quasi périodique, nous obtenons une énergie élastique qui dépend non seulement du gradient de l'endommagement mais aussi du gradient de déformation. Dans la deuxième partie, nous construisons un modèle d'endommagement à gradient à partir de l'énergie élastique homogénéisé en se basant sur la principe de minimisation d'énergie. En ajoutant des hypothèse pour simplifier le modèle, nous pouvons construit explicitement des états localisés d'endommagement et de déformation. Enfin, un schéma de résolution numérique, basé sur un algorithme de minimisation alternée, a été proposé pour le cas d'un barre en traction. A partir des résultats numériques, les avantages et les inconvénients du modèle sont discutés
The aim of this work is to propose a general framework to obtain a gradient damage model from the micro-structural level. It is based, firstly, on the homogenization method to derive an effective medium from the microstructure, and secondly, on the variational formulation of a damage evolution law from the homogenized medium. We propose, as a first step, an approach based on asymptotic expansion and the variational method for homogenizing a periodic elastic medium. To model the localization of damage, this approach has been extended to a quasi-periodic heterogeneous medium. From an example of quasi periodically micro-cracked solid, we obtain an elastic energy that not only depends on the gradient of the damage but also the strain gradients. Based on the principle of energy minimization, we propose the construction of a gradient damage model from the elastic energy homogenized in the second part. By adding some hypothesis to simplify the model, we can construct localized damage and strain solutions in closed form. Finally, a numerical resolution scheme, which is based on an alternate minimization algorithm, is proposed for the one-dimensional traction bar test. From the numerical results, the advantages and disadvantages of the model are discussed

Книги з теми "Gradient damage":

1

Martínez Pañeda, Emilio. Strain Gradient Plasticity-Based Modeling of Damage and Fracture. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-63384-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pañeda, Emilio Martínez. Strain Gradient Plasticity-Based Modeling of Damage and Fracture. Springer, 2017.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pañeda, Emilio Martínez. Strain Gradient Plasticity-Based Modeling of Damage and Fracture. Springer, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Davies, Patricia. Skin assessment. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199642663.003.0013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
As soon as a patient is admitted, they should undergo a full top-to-toe skin assessment, in order to identify the condition of their skin and any existing pressure damage. All patients should be assessed for pressure ulcer risk, and their care should be planned, based on these findings. This chapter covers performing a skin assessment and pressure ulcer assessment; it also discusses pressure ulcer prevention, grading, and treatment.
5

Manson, S. S., and G. R. Halford. Fatigue and Durability of Metals at High Temperatures. ASM International, 2009. http://dx.doi.org/10.31399/asm.tb.fdmht.9781627083430.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fatigue and Durability of Metals at High Temperatures is a repository of knowledge, experience, and insights on high-temperature fatigue and its effect on component lifetime and failure. The first few chapters provide readers with an intuitive understanding of creep and creep-fatigue and how they progress based on time, temperature, and stress. In subsequent chapters, the authors present several fatigue life prediction techniques, comparing them to each other and to experimental test results. The authors focus on a method called strain-range partitioning that breaks stress-strain hysteresis loops into simpler components, the effects of which can be analyzed more easily. Through detailed examples, they show how strain-range partitioning can account for creep-fatigue interactions, multiaxial stresses and strains, temperature gradients, metallurgical and microstructural changes, thermal fatigue, and damage mitigation or “healing” due to sequential loading. The method is also used to examine the cyclic deformation characteristics of various steels and alloys and the obstacles to achieving high-temperature structural durability with fiber-reinforced metal-matrix composites. For information on the print version, ISBN 978-0-87170-718-5, follow this link.

Частини книг з теми "Gradient damage":

1

Frémond, Michel. "Damage. Gradient of Damage." In Non-Smooth Thermomechanics, 313–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04800-9_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

De Borst, R., A. Benallal, and R. H. J. Peerlings. "On Gradient-Enhanced Damage Theories." In IUTAM Symposium on Mechanics of Granular and Porous Materials, 215–26. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5520-5_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nedjar, B. "Damage and Gradient of Damage in Transient Dynamics." In Solid Mechanics and Its Applications, 189–96. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4738-5_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bui, Tinh Quoc. "A Smoothing Gradient-Enhanced Damage Model." In Computational and Experimental Simulations in Engineering, 91–96. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-27053-7_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Forest, Samuel. "Micromorphic Approach to Gradient Plasticity and Damage." In Handbook of Nonlocal Continuum Mechanics for Materials and Structures, 1–47. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-22977-5_9-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Forest, Samuel. "Micromorphic Approach to Gradient Plasticity and Damage." In Handbook of Nonlocal Continuum Mechanics for Materials and Structures, 499–546. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-58729-5_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Marigo, Jean-Jacques, and Arthur Geromel Fischer. "Gradient Damage Models Coupled With Plasticity and Their Application to Dynamic Fragmentation." In Dynamic Damage and Fragmentation, 95–141. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2019. http://dx.doi.org/10.1002/9781119579311.ch3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mao, Yingyan, and Ningli Wang. "Biomechanical Mechanisms of IOP-/CSFP-Induced Optic Nerve Damage." In Intraocular and Intracranial Pressure Gradient in Glaucoma, 275–80. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-2137-5_39.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pijaudier-Cabot, G. "Micro-Crack Clustering, Non Local and Gradient Damage Models." In Damage and Fracture of Disordered Materials, 179–215. Vienna: Springer Vienna, 2000. http://dx.doi.org/10.1007/978-3-7091-2504-5_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fodde, Riccardo, and Monique Losekoot. "Mutation Analysis by Denaturing Gradient Gel Electrophoresis (DGGE)." In Technologies for Detection of DNA Damage and Mutations, 253–65. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-0301-3_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Gradient damage":

1

Zhao, Bing, Ying-ren Zheng, Ming-hua Zeng, Xue-song Tang, and Xiao-Qiang Yan. "Gradient-Dependent Damage Constitutive: The Second-Order Gradient Damage Model." In GeoHunan International Conference 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41041(348)5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Voyiadjis, George Z., and Robert J. Dorgan. "Formulation of a Gradient Enhanced Coupled Damage-Plasticity Model." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59890.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An overview of the formulation of a gradient enhanced continuum coupled damage-plasticity model as a constitutive framework to model the nonlocal response of materials is presented. The formulation uses a thermodynamically consistent framework to introduce material length scales through the gradients of the hardening variables. The development of evolution equations for plasticity and damage is treated in a similar mathematical approach and formulation since both address defects such as dislocations for the former and cracks/voids for the later. The gradient enhancements are investigated as powerful tools for modeling observations at the microscale that are not possible to interpret with classical deformation models. By the introduction of higher order gradients, this model is able to predict the size of localized zones based on material constants, as opposed to local models where the loss of ellipticity causes the localized zones to be mesh dependent. Justification for the gradient theory is given by approximating nonlocal theory through a truncated Taylor expansion.
3

Hamed, M., and K. Saanouni. "Elastoplastic Nonlocal Micromorphic Formulations With Damage Gradient." In ASME 2012 11th Biennial Conference on Engineering Systems Design and Analysis. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/esda2012-82928.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
It is well known that the use of inelastic constitutive equations accounting for induced softening leads to pathological space (mesh) and time discretization dependency of the numerical solution of the Initial and Boundary value Problem (IBVP). To solve this drawback a thermodynamically-consistent formulation incorporating first gradient of micromorphic damage in the framework of micromorphic continuum is proposed. In this formulation the damage field is strongly coupled with mixed isotropic and kinematic nonlinear hardening together with micromorphic damage variables. A new finite element with one additional degree of freedom for the micromorphic damage field is developed and implemented into ABAQUS/EXPLICIT using the user’s subroutines VUEL and VUMAT. For the validation purpose, 3D uniaxial tension example of metallic sheet is performed using the proposed micromorphic fully coupled elastoplastic constitutive equations.
4

Darnton, Aaron, and Massimo Ruzzene. "Damage Mapping in Composites With Phase Gradient." In ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/smasis2014-7685.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lamb wave based methods for structural health monitoring and non-destructive evaluation have shown promise in composite and laminated structure applications. Many methods have been considered, but exploitation of the phase of the propagating wave is a recent addition. Utilizing the phase alleviates the ambiguity of many amplitude and modal analysis approaches. This paper considered two-dimensional damage analogs in analytical simulations, numerical simulations and experimental studies. Additionally, this paper addresses the importance of proper filtering for successful spatial domain reconstruction. The phase gradient approach was successful in cases where modal filtering yielded good results. In the case where modal filtering did not successfully reconstruct the time-space domain wave, the phase gradient approach could not be employed, underscoring the need for robust modal filtering techniques.
5

César de Sá, J. M. A. "Gradient Damage Models in Metal Forming Problems." In MATERIALS PROCESSING AND DESIGN: Modeling, Simulation and Applications - NUMIFORM 2004 - Proceedings of the 8th International Conference on Numerical Methods in Industrial Forming Processes. AIP, 2004. http://dx.doi.org/10.1063/1.1766816.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sladek, Jan, Vladimir Sladek, Miroslav Repka, and Siegfried Schmauder. "Gradient theory for crack analysis in thermoelectric materials." In FRACTURE AND DAMAGE MECHANICS: Theory, Simulation and Experiment. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0033983.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Li, Gang, Fuh Gwo Yuan, Raphael Haftka, and Nam Ho Kim. "Gradient Enhanced Damage Sizing for Structural Health Management." In 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-1836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Putar, Filip, Jurica Soric, Tomislav Lesicar, and Zdenko Tonkovic. "DAMAGE MODELING USING STRAIN GRADIENT BASED FINITE ELEMENT FORMULATION." In VII European Congress on Computational Methods in Applied Sciences and Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2016. http://dx.doi.org/10.7712/100016.2292.7030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Voyiadjis, George, Rashid Abu Al-Rub, and Anthony Palazotto. "A Gradient-Dependent Constitutive Model to Simulate Impact Damage Problem." In 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2004. http://dx.doi.org/10.2514/6.2004-1919.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Hernández Torres, Reynier, Marluce Scarabello, Haroldo Campos Velho, Leonardo Chiwiacowsky, Aline Soterroni, Erica Gouvea, and Fernando Ramos. "A Hybrid Method using q-Gradient to Identify Strutuctral Damage." In XXXVI Iberian Latin American Congress on Computational Methods in Engineering. Rio de Janeiro, Brazil: ABMEC Brazilian Association of Computational Methods in Engineering, 2015. http://dx.doi.org/10.20906/cps/cilamce2015-0872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Gradient damage":

1

Verhoosel, Clemens V., Michael A. Scott, Michael J. Borden, Thomas J. Hughes, and Ren de Borst. Discretization of higher-order gradient damage models using isogeometric finite elements. Fort Belvoir, VA: Defense Technical Information Center, May 2011. http://dx.doi.org/10.21236/ada555369.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cavallaro, Paul V. Effects of Weave Styles and Crimp Gradients on Damage Tolerance and Energy-Absorption Capacities of Woven Kevlar/Epoxy Composites. Fort Belvoir, VA: Defense Technical Information Center, September 2015. http://dx.doi.org/10.21236/ada624461.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії
Current page language: Ukrainian.
You might want to see the page in this language: English.
Change language