Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Gradient of elasticity.

Статті в журналах з теми "Gradient of elasticity"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Gradient of elasticity".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Askes, Harm, and Miguel A. Gutiérrez. "Implicit gradient elasticity." International Journal for Numerical Methods in Engineering 67, no. 3 (2006): 400–416. http://dx.doi.org/10.1002/nme.1640.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tarasov, Vasily E., and Elias C. Aifantis. "Toward fractional gradient elasticity." Journal of the Mechanical Behavior of Materials 23, no. 1-2 (2014): 41–46. http://dx.doi.org/10.1515/jmbm-2014-0006.

Повний текст джерела
Анотація:
AbstractThe use of an extension of gradient elasticity through the inclusion of spatial derivatives of fractional order to describe the power law type of non-locality is discussed. Two phenomenological possibilities are explored. The first is based on the Caputo fractional derivatives in one dimension. The second involves the Riesz fractional derivative in three dimensions. Explicit solutions of the corresponding fractional differential equations are obtained in both cases. In the first case, stress equilibrium in a Caputo elastic bar requires the existence of a nonzero internal body force to
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lurie, Sergey A., Alexander L. Kalamkarov, Yury O. Solyaev, and Alexander V. Volkov. "Dilatation gradient elasticity theory." European Journal of Mechanics - A/Solids 88 (July 2021): 104258. http://dx.doi.org/10.1016/j.euromechsol.2021.104258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lazar, Markus. "On gradient field theories: gradient magnetostatics and gradient elasticity." Philosophical Magazine 94, no. 25 (2014): 2840–74. http://dx.doi.org/10.1080/14786435.2014.935512.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gutkin, M. Yu, and E. C. Aifantis. "Edge dislocation in gradient elasticity." Scripta Materialia 36, no. 1 (1997): 129–35. http://dx.doi.org/10.1016/s1359-6462(96)00352-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lazar, Markus, and Gérard A. Maugin. "Dislocations in gradient elasticity revisited." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 462, no. 2075 (2006): 3465–80. http://dx.doi.org/10.1098/rspa.2006.1699.

Повний текст джерела
Анотація:
In this paper, we consider dislocations in the framework of first as well as second gradient theory of elasticity. Using the Fourier transform, rigorous analytical solutions of the two-dimensional bi-Helmholtz and Helmholtz equations are derived in closed form for the displacement, elastic distortion, plastic distortion and dislocation density of screw and edge dislocations. In our framework, it was not necessary to use boundary conditions to fix constants of the solutions. The discontinuous parts of the displacement and plastic distortion are expressed in terms of two-dimensional as well as o
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hwang, K. C., T. F. Cuo, Y. Huang, and J. Y. Chen. "Fracture in strain gradient elasticity." Metals and Materials 4, no. 4 (1998): 593–600. http://dx.doi.org/10.1007/bf03026364.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gutkin, M. Yu, and E. C. Aifantis. "Screw dislocation in gradient elasticity." Scripta Materialia 35, no. 11 (1996): 1353–58. http://dx.doi.org/10.1016/1359-6462(96)00295-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Giannakopoulos, Antonios E., Stylianos Petridis, and Dimitrios S. Sophianopoulos. "Dipolar gradient elasticity of cables." International Journal of Solids and Structures 49, no. 10 (2012): 1259–65. http://dx.doi.org/10.1016/j.ijsolstr.2012.02.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zervos, A. "Finite elements for elasticity with microstructure and gradient elasticity." International Journal for Numerical Methods in Engineering 73, no. 4 (2008): 564–95. http://dx.doi.org/10.1002/nme.2093.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Mousavi, S. Mahmoud, Juha Paavola, and Djebar Baroudi. "Distributed non-singular dislocation technique for cracks in strain gradient elasticity." Journal of the Mechanical Behavior of Materials 23, no. 3-4 (2014): 47–58. http://dx.doi.org/10.1515/jmbm-2014-0007.

Повний текст джерела
Анотація:
AbstractThe mode III fracture analysis of a cracked graded plane in the framework of classical, first strain gradient, and second strain gradient elasticity is presented in this paper. Solutions to the problem of screw dislocation in graded materials are available in the literature. These solutions include various frameworks such as classical elasticity, and the first strain and second strain gradient elasticity theories. One of the applications of dislocations is the analysis of a cracked medium through distributed dislocation technique. In this article, this technique is used for the mode II
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Eremeyev, V. A., and F. dell’Isola. "Weak Solutions within the Gradient-Incomplete Strain-Gradient Elasticity." Lobachevskii Journal of Mathematics 41, no. 10 (2020): 1992–98. http://dx.doi.org/10.1134/s1995080220100078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Polizzotto, Castrenze. "Stress gradient versus strain gradient constitutive models within elasticity." International Journal of Solids and Structures 51, no. 9 (2014): 1809–18. http://dx.doi.org/10.1016/j.ijsolstr.2014.01.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Efremidis,, G. T., and E. C. Aifantis,. "The Coefficient of Geostatic Stress: Gradient Elasticity vs. Classical Elasticity." Journal of the Mechanical Behavior of Materials 18, no. 1 (2007): 43–54. http://dx.doi.org/10.1515/jmbm.2007.18.1.43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Tarasov, Vasily E. "Fractional Gradient Elasticity from Spatial Dispersion Law." ISRN Condensed Matter Physics 2014 (April 3, 2014): 1–13. http://dx.doi.org/10.1155/2014/794097.

Повний текст джерела
Анотація:
Nonlocal elasticity models in continuum mechanics can be treated with two different approaches: the gradient elasticity models (weak nonlocality) and the integral nonlocal models (strong nonlocality). This paper focuses on the fractional generalization of gradient elasticity that allows us to describe a weak nonlocality of power-law type. We suggest a lattice model with spatial dispersion of power-law type as a microscopic model of fractional gradient elastic continuum. We demonstrate how the continuum limit transforms the equations for lattice with this spatial dispersion into the continuum e
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Lazar, Markus. "Incompatible strain gradient elasticity of Mindlin type: screw and edge dislocations." Acta Mechanica 232, no. 9 (2021): 3471–94. http://dx.doi.org/10.1007/s00707-021-02999-2.

Повний текст джерела
Анотація:
AbstractThe fundamental problem of dislocations in incompatible isotropic strain gradient elasticity theory of Mindlin type, unsolved for more than half a century, is solved in this work. Incompatible strain gradient elasticity of Mindlin type is the generalization of Mindlin’s compatible strain gradient elasticity including plastic fields providing in this way a proper eigenstrain framework for the study of defects like dislocations. Exact analytical solutions for the displacement fields, elastic distortions, Cauchy stresses, plastic distortions and dislocation densities of screw and edge dis
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Tarasov, Vasily E. "General lattice model of gradient elasticity." Modern Physics Letters B 28, no. 07 (2014): 1450054. http://dx.doi.org/10.1142/s0217984914500547.

Повний текст джерела
Анотація:
In this paper, new lattice model for the gradient elasticity is suggested. This lattice model gives a microstructural basis for second-order strain-gradient elasticity of continuum that is described by the linear elastic constitutive relation with the negative sign in front of the gradient. Moreover, the suggested lattice model allows us to have a unified description of gradient models with positive and negative signs of the strain gradient terms. Possible generalizations of this model for the high-order gradient elasticity and three-dimensional case are also suggested.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Eremeyev, Victor A., Antonio Cazzani, and Francesco dell’Isola. "On nonlinear dilatational strain gradient elasticity." Continuum Mechanics and Thermodynamics 33, no. 4 (2021): 1429–63. http://dx.doi.org/10.1007/s00161-021-00993-6.

Повний текст джерела
Анотація:
AbstractWe call nonlinear dilatational strain gradient elasticity the theory in which the specific class of dilatational second gradient continua is considered: those whose deformation energy depends, in an objective way, on the gradient of placement and on the gradient of the determinant of the gradient of placement. It is an interesting particular case of complete Toupin–Mindlin nonlinear strain gradient elasticity: indeed, in it, the only second gradient effects are due to the inhomogeneous dilatation state of the considered deformable body. The dilatational second gradient continua are str
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Gusev, Andrei A., and Sergey A. Lurie. "Symmetry conditions in strain gradient elasticity." Mathematics and Mechanics of Solids 22, no. 4 (2015): 683–91. http://dx.doi.org/10.1177/1081286515606960.

Повний текст джерела
Анотація:
We study the variational significance of the “order-of-differentiation” symmetry condition of strain gradient elasticity. This symmetry condition stems from the fact that in strain gradient elasticity, one can interchange the order of differentiation in the components of the second displacement gradient tensor. We demonstrate that this symmetry condition is essential for the validity of free variational formulations commonly employed for deriving the field equations of strain gradient elasticity. We show that relying on this additional symmetry condition, one can restrict consideration to stra
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Volkov-Bogorodskii, D. B., and S. A. Lurie. "Eshelby integral formulas in gradient elasticity." Mechanics of Solids 45, no. 4 (2010): 648–56. http://dx.doi.org/10.3103/s0025654410040138.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Tsagrakis, Ioannis, Igor S. Yasnikov, and Elias C. Aifantis. "Gradient elasticity for disclinated micro crystals." Mechanics Research Communications 93 (October 2018): 159–62. http://dx.doi.org/10.1016/j.mechrescom.2017.11.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Konstantopoulos, Iason, and Elias Aifantis. "Gradient elasticity applied to a crack." Journal of the Mechanical Behavior of Materials 22, no. 5-6 (2013): 193–201. http://dx.doi.org/10.1515/jmbm-2013-0026.

Повний текст джерела
Анотація:
AbstractThe aim of this paper is to investigate the stress and the displacement field of a crack within a robust version of gradient elasticity, focusing at the standard Mode I, II, III problems. Special treatment is attributed to the crack configuration near its tip, deriving the gradient elasticity results that are analogous to the classical asymptotical solutions near the crack tip.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Sun, Bohua, and E. C. Aifantis. "Gradient Elasticity Formulations for Micro/Nanoshells." Journal of Nanomaterials 2014 (2014): 1–4. http://dx.doi.org/10.1155/2014/846370.

Повний текст джерела
Анотація:
The focus of this paper is on illustrating how to extend the second author’s gradient theory of elasticity to shells. Three formulations are presented based on the implicit gradient elasticity constitutive relation1 -ld2∇2σij=Cijkl(1-ls2∇2)εkland its two approximations1+ls2∇2-ld2∇2σij=Cijklεklandσij=Cijkl(1+ld2∇2-ls2∇2)εkl.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Gutkin, M. Yu, and E. C. Aifantis. "Dislocations and Disclinations in Gradient Elasticity." physica status solidi (b) 214, no. 2 (1999): 245–84. http://dx.doi.org/10.1002/(sici)1521-3951(199908)214:2<245::aid-pssb245>3.0.co;2-p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Fischer, Paul, Julia Mergheim та Paul Steinmann. "𝒞1 continuous discretization of gradient elasticity". PAMM 9, № 1 (2010): 435–36. http://dx.doi.org/10.1002/pamm.200910190.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Lazopoulos, K. A., and A. K. Lazopoulos. "Strain gradient elasticity and stress fibers." Archive of Applied Mechanics 83, no. 9 (2013): 1371–81. http://dx.doi.org/10.1007/s00419-013-0752-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Ma, Hansong, Gengkai Hu, Yueguang Wei, and Lihong Liang. "Inclusion problem in second gradient elasticity." International Journal of Engineering Science 132 (November 2018): 60–78. http://dx.doi.org/10.1016/j.ijengsci.2018.07.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Fischer, Paul, Markus Klassen, Julia Mergheim, Paul Steinmann, and Ralf Müller. "Isogeometric analysis of 2D gradient elasticity." Computational Mechanics 47, no. 3 (2010): 325–34. http://dx.doi.org/10.1007/s00466-010-0543-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Polizzotto, Castrenze. "Gradient elasticity and nonstandard boundary conditions." International Journal of Solids and Structures 40, no. 26 (2003): 7399–423. http://dx.doi.org/10.1016/j.ijsolstr.2003.06.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Lazar, Markus, Gérard A. Maugin, and Elias C. Aifantis. "Dislocations in second strain gradient elasticity." International Journal of Solids and Structures 43, no. 6 (2006): 1787–817. http://dx.doi.org/10.1016/j.ijsolstr.2005.07.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Papanicolopulos, S. A. "Chirality in isotropic linear gradient elasticity." International Journal of Solids and Structures 48, no. 5 (2011): 745–52. http://dx.doi.org/10.1016/j.ijsolstr.2010.11.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Lazopoulos, K. A., and A. K. Lazopoulos. "Fractional derivatives and strain gradient elasticity." Acta Mechanica 227, no. 3 (2015): 823–35. http://dx.doi.org/10.1007/s00707-015-1489-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Owen, David R. "Elasticity with Gradient-Disarrangements: A Multiscale Perspective for Strain-Gradient Theories of Elasticity and of Plasticity." Journal of Elasticity 127, no. 1 (2016): 115–50. http://dx.doi.org/10.1007/s10659-016-9599-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

XU, LIANG, and SHENGPING SHEN. "SIZE-DEPENDENT PIEZOELECTRICITY AND ELASTICITY DUE TO THE ELECTRIC FIELD-STRAIN GRADIENT COUPLING AND STRAIN GRADIENT ELASTICITY." International Journal of Applied Mechanics 05, no. 02 (2013): 1350015. http://dx.doi.org/10.1142/s1758825113500154.

Повний текст джерела
Анотація:
A size-dependent nonclassical Bernoulli–Euler beam model based on the strain gradient elasticity is proposed for piezoelectric nanowires. The governing equations and the corresponding boundary conditions are naturally derived from the variational principle. Different from the classical piezoelectric beam theory, the electric field–strain gradient coupling and the strain gradient elasticity are both taken into account. Static bending problem of a cantilever piezoelectric nanobeam is solved to illustrate the effect of strain gradient. The present model contains material length scale parameters a
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Lazar, Markus, and Giacomo Po. "On Mindlin’s isotropic strain gradient elasticity: Green tensors, regularization, and operator-split." Journal of Micromechanics and Molecular Physics 03, no. 03n04 (2018): 1840008. http://dx.doi.org/10.1142/s2424913018400088.

Повний текст джерела
Анотація:
The theory of Mindlin’s isotropic strain gradient elasticity of form II is reviewed. Three-dimensional and two-dimensional Green tensors and their first and second derivatives are derived for an unbounded medium. Using an operator-split in Mindlin’s strain gradient elasticity, three-dimensional and two-dimensional regularization function tensors are computed, which are the three-dimensional and two-dimensional Green tensors of a tensorial Helmholtz equation. In addition, a length scale tensor is introduced, which is responsible for the characteristic material lengths of strain gradient elastic
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Lazar, Markus. "Irreducible decomposition of strain gradient tensor in isotropic strain gradient elasticity." ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 96, no. 11 (2016): 1291–305. http://dx.doi.org/10.1002/zamm.201500278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Aifantis, Elias C. "On scale invariance in anisotropic plasticity, gradient plasticity and gradient elasticity." International Journal of Engineering Science 47, no. 11-12 (2009): 1089–99. http://dx.doi.org/10.1016/j.ijengsci.2009.07.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Peerlings, R. H. J., and N. A. Fleck. "Computational Evaluation of Strain Gradient Elasticity Constants." International Journal for Multiscale Computational Engineering 2, no. 4 (2004): 599–620. http://dx.doi.org/10.1615/intjmultcompeng.v2.i4.60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Solyaev, Yury, and Sergey A. Lurie. "ESHELBY INTEGRAL FORMULAS IN SECOND GRADIENT ELASTICITY." Nanoscience and Technology: An International Journal 11, no. 2 (2020): 99–107. http://dx.doi.org/10.1615/nanoscitechnolintj.2020031434.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Carta, Giorgio, Terry Bennett, and Harm Askes. "Determination of dynamic gradient elasticity length scales." Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics 165, no. 1 (2012): 41–47. http://dx.doi.org/10.1680/eacm.2012.165.1.41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Metrikine, A. V. "On causality of the gradient elasticity models." Journal of Sound and Vibration 297, no. 3-5 (2006): 727–42. http://dx.doi.org/10.1016/j.jsv.2006.04.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Lazar, Markus. "Non-singular dislocation loops in gradient elasticity." Physics Letters A 376, no. 21 (2012): 1757–58. http://dx.doi.org/10.1016/j.physleta.2012.04.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Gutkin, M. Yu, and E. C. Aifantis. "Dislocations in the theory of gradient elasticity." Scripta Materialia 40, no. 5 (1999): 559–66. http://dx.doi.org/10.1016/s1359-6462(98)00424-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Gutkin, M. Yu, K. N. Mikaelyan, and E. C. Aifantis. "Screw dislocation near interface in gradient elasticity." Scripta Materialia 43, no. 6 (2000): 477–84. http://dx.doi.org/10.1016/s1359-6462(00)00445-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Lam, D. C. C., F. Yang, A. C. M. Chong, J. Wang, and P. Tong. "Experiments and theory in strain gradient elasticity." Journal of the Mechanics and Physics of Solids 51, no. 8 (2003): 1477–508. http://dx.doi.org/10.1016/s0022-5096(03)00053-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Auffray, N., H. Le Quang, and Q. C. He. "Matrix representations for 3D strain-gradient elasticity." Journal of the Mechanics and Physics of Solids 61, no. 5 (2013): 1202–23. http://dx.doi.org/10.1016/j.jmps.2013.01.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Cordero, Nicolas M., Samuel Forest, and Esteban P. Busso. "Second strain gradient elasticity of nano-objects." Journal of the Mechanics and Physics of Solids 97 (December 2016): 92–124. http://dx.doi.org/10.1016/j.jmps.2015.07.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Papanicolopulos, S. A., A. Zervos, and I. Vardoulakis. "A three-dimensionalC1finite element for gradient elasticity." International Journal for Numerical Methods in Engineering 77, no. 10 (2009): 1396–415. http://dx.doi.org/10.1002/nme.2449.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Georgiadis, H. G., P. A. Gourgiotis, and D. S. Anagnostou. "The Boussinesq problem in dipolar gradient elasticity." Archive of Applied Mechanics 84, no. 9-11 (2014): 1373–91. http://dx.doi.org/10.1007/s00419-014-0854-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Anagnostou, DS, PA Gourgiotis, and HG Georgiadis. "The Cerruti problem in dipolar gradient elasticity." Mathematics and Mechanics of Solids 20, no. 9 (2013): 1088–106. http://dx.doi.org/10.1177/1081286513514882.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!