Добірка наукової літератури з теми "Green's formula"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Green's formula".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Green's formula":

1

Zhang, Haicheng. "Toën's formula and Green's formula." Journal of Algebra 527 (June 2019): 196–203. http://dx.doi.org/10.1016/j.jalgebra.2019.02.033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

BEVERIDGE, ANDREW. "A Hitting Time Formula for the Discrete Green's Function." Combinatorics, Probability and Computing 25, no. 3 (June 29, 2015): 362–79. http://dx.doi.org/10.1017/s0963548315000152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The discrete Green's function (without boundary)$\mathbb{G}$is a pseudo-inverse of the combinatorial Laplace operator of a graphG= (V, E). We reveal the intimate connection between Green's function and the theory of exact stopping rules for random walks on graphs. We give an elementary formula for Green's function in terms of state-to-state hitting times of the underlying graph. Namely,$\mathbb{G}(i,j) = \pi_j \bigl( H(\pi,j) - H(i,j) \bigr),$where πiis the stationary distribution at vertexi,H(i, j) is the expected hitting time for a random walk starting from vertexito first reach vertexj, andH(π,j) = ∑k∈VπkH(k, j). This formula also holds for the digraph Laplace operator.The most important characteristics of a stopping rule are its exit frequencies, which are the expected number of exits of a given vertex before the rule halts the walk. We show that Green's function is, in fact, a matrix of exit frequencies plus a rank one matrix. In the undirected case, we derive spectral formulas for Green's function and for some mixing measures arising from stopping rules. Finally, we further explore the exit frequency matrix point of view, and discuss a natural generalization of Green's function for any distribution τ defined on the vertex set of the graph.
3

Ruan, Shiquan. "A short proof of Green's formula." Journal of Algebra 581 (September 2021): 45–49. http://dx.doi.org/10.1016/j.jalgebra.2021.04.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tokmagambetov, Niyaz, and Berikbol T. Torebek. "Green's formula for integro-differential operators." Journal of Mathematical Analysis and Applications 468, no. 1 (December 2018): 473–79. http://dx.doi.org/10.1016/j.jmaa.2018.08.026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pavlovic, Miroslav. "Green's formula and the Hardy-Stein identities." Filomat 23, no. 3 (2009): 135–53. http://dx.doi.org/10.2298/fil0903135p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This is a collection of some known and some new facts on the holomorphic and the harmonic version of the Hardy-Stein identity as well as on their extensions to the real and the complex ball. For example, we prove that if f is holomorphic on the unit disk D, then ??f ??Hp = ?f(0)?p + ?D?f'(z)? p-2 ?f'(z)?2(1-?z?) dA(z), (?) where Hp is the p-Hardy space, which improves a result of Yamashita [Proc. Amer. Math. Soc. 75 (1979), no. 1, 69-72]. An extension of (?) to the unit ball of Cn improves results of Beatrous an Burbea [Kodai Math. J. 8 (1985), 36-51], and of Stoll [J. London Math. Soc. (2) 48 (1993), no. 1, 126-136]. We also prove the analogous result for the harmonic Hardy spaces. The proofs of known results are shorter and more elementary then the existing ones, see Zhu [Spaces of holomorphic functions in the unit ball, Graduate Texts in Mathematics, vol. 226, Springer-Verlag, New York, 2005, Ch. IV]. We correct some constants in that book and in a paper of Jevtic and Pavlovic [Publ. Inst. Math. (Beograd) (N.S.) 64(78) (1998), 36-52].
6

Casas, Eduardo, and Luis Alberto Fernández. "A Green's formula for quasilinear elliptic operators." Journal of Mathematical Analysis and Applications 142, no. 1 (August 1989): 62–73. http://dx.doi.org/10.1016/0022-247x(89)90164-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

PARK, DAESHIK. "APPROXIMATING GREEN'S FUNCTIONS ON ℙ1 POSITIVE CHARACTERISTIC". Communications in Contemporary Mathematics 12, № 04 (серпень 2010): 537–67. http://dx.doi.org/10.1142/s0219199710003919.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fix a finite K-symmetric set [Formula: see text] and a K-symmetric probability vector [Formula: see text]. Let 𝔇v be a finite union of balls [Formula: see text] for some ah ∈ Kv and some [Formula: see text], where the balls 𝔅(ah, rh) are disjoint from 𝔛. Put 𝔈v := 𝔇v ∩ ℙ1(Kv). Then there exists a positive integer Nv such that for each sufficiently large integer N divisible by Nv, there are a number Rv, with [Formula: see text], and an [Formula: see text]-function fv(z) ∈ Kv(z) of degree N whose zeros form a "well-distributed" sequence in 𝔈v such that [Formula: see text] is a disjoint union of balls centered at the zeros of fv(z) and for all z ∉ 𝔇v, [Formula: see text]
8

KIGAMI, JUN, DANIEL R. SHELDON, and ROBERT S. STRICHARTZ. "GREEN'S FUNCTIONS ON FRACTALS." Fractals 08, no. 04 (December 2000): 385–402. http://dx.doi.org/10.1142/s0218348x00000421.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
For a regular harmonic structure on a post-critically finite (p.c.f.) self-similar fractal, the Dirichlet problem for the Laplacian can be solved by integrating against an explicitly given Green's function. We give a recursive formula for computing the values of the Green's function near the diagonal, and use it to give sharp estimates for the decay of the Green's function near the boundary. We present data from computer experiments searching for the absolute maximum of the Green's function for two different examples, and we formulate two radically different conjectures for where the maximum occurs. We also investigate a local Green's function that can be used to solve an initial value problem for the Laplacian, giving an explicit formula for the case of the Sierpinski gasket. The local Green's function turns out to be unbounded, and in fact not even integrable, but because of cancelation, it is still possible to form a singular integral to solve the initial value problem if the given function satisfies a Hölder condition.
9

Surur, Agus Miftakus, Yudi Ari Adi, and Sugiyanto Sugiyanto. "Penyelesaian Persamaan Telegraph Dan Simulasinya." Jurnal Fourier 2, no. 1 (April 1, 2013): 33. http://dx.doi.org/10.14421/fourier.2013.21.33-43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Equation Telegraph is one of type from wave equation. Solving of the wave equation obtainable by using Green's function with the method of boundary condition problem. This research aim to to show the process obtain;get the mathematical formula from wave equation and also know the form of solution of wave equation by using Green's function. Result of analysis indicate that the process get the mathematical formula from wave equation from applicable Green's function in equation which deal with the wave equation, that is applied in equation Telegraph. Solution started with searching public form from Green's function, hereinafter look for the solving of wave equation in Green's function. Application from the wave equation used to look for the solving of equation Telegraph. Result from equation Telegraph which have been obtained will be shown in the form of picture (knowable to simulasi) so that form of the the equation Telegraph.
10

Zharinov, V. V. "EXTRINSIC GEOMETRY OF DIFFERENTIAL EQUATIONS AND GREEN'S FORMULA." Mathematics of the USSR-Izvestiya 35, no. 1 (February 28, 1990): 37–60. http://dx.doi.org/10.1070/im1990v035n01abeh000685.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Green's formula":

1

Sauzedde, Isao. "Windings of the planar Brownian motion and Green’s formula." Thesis, Sorbonne université, 2021. http://www.theses.fr/2021SORUS437.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
On s'intéresse dans cette thèse à l'enlacement du mouvement Brownien plan autour des points, dans la succession des travaux de Wendelin Werner en particulier. Dans le premier chapitre, on motive cette étude par celle du cas des courbes plus lisses que le mouvement Brownien. On y démontre notamment une formule de Green pour l'intégrale de Young, sans hypothèse de simplicité de la courbe. Dans le chapitre 2, on étudie l'aire de l'ensemble des points autour desquels l'enlacement du mouvement brownien est plus grand que N. On donne, au sens presque sûr et dans les espaces Lp, une estimation asymptotique au second ordre de cette aire lorsque N tend vers l'infini. Le chapitre 3 est dévoué à la preuve d'un résultat qui montre que les points de grands enlacements se répartissent de manière très équilibrée le long de la trajectoire. Dans le chapitre 4, on utilise les résultats des deux précédents chapitres pour énoncer une formule de Green pour le mouvement brownien. On étudie aussi l'enlacement moyen de points répartis aléatoirement dans le plan. On montre que cet enlacement moyen converge en distribution (presque surement pour la trajectoire), non pas vers une constante (qui serait alors l’aire de Lévy) mais vers une variable de Cauchy centrée en l’aire de Lévy. Dans les deux derniers chapitres, on applique les idées des précédents chapitres pour définir et étudier l’aire de Lévy du mouvement Brownien lorsque la mesure d’aire sous-jacente n’est plus la mesure de Lebesgue mais une mesure aléatoire particulièrement irrégulière. On traite le cas du chaos multiplicatif gaussien en particulier, mais la méthode s’applique dans un cadre plus général
We study the windings of the planar Brownian motion around points, following the previous works of Wendelin Werner in particular. In the first chapter, we motivate this study by the one of smoother curves. We prove in particular a Green formula for Young integration, without simplicity assumption for the curve. In the second chapter, we study the area of the set of points around which the Brownian motion winds at least N times. We give an asymptotic estimation for this area, up to the second order, both in the almost sure sense and in the Lp spaces, when N goes to infinity.The third chapter is devoted to the proof of a result which shows that the points with large winding are distributed in a very balanced way along the trajectory. In the fourth chapter, we use the results from the two previous chapters to give a new Green formula for the Brownian motion. We also study the averaged winding around randomly distributed points in the plan. We show that, almost surely for the trajectory, this averaged winding converges in distribution, not toward a constant (which would be the Lévy area), but toward a Cauchy distribution centered at the Lévy area. In the last two chapters, we apply the ideas from the previous chapters to define and study the Lévy area of the Brownian motion, when the underlying area measure is not the Lebesgue measure anymore, but instead a random and highly irregular measure. We deal with the case of the Gaussian multiplicative chaos in particular, but the tools can be used in a much more general framework
2

Duduchava, Roland. "The Green formula and layer potentials." Universität Potsdam, 1999. http://opus.kobv.de/ubp/volltexte/2008/2560/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Green formula is proved for boundary value problems (BVPs), when "basic" operator is arbitrary partial differential operator with variable matrix coefficients and "boundary" operators are quasi-normal with vector-coeficients. If the system possesses the fundamental solution, representation formula for a solution is derived and boundedness properties of participating layer potentials from function spaces on the boundary (Besov, Zygmund spaces) into appropriate weighted function spaces on the inner and the outer domains are established. Some related problems are discussed in conclusion: traces of functions from weighted spaces, traces of potential-type functions, Plemelji formulae,Calderón projections, restricted smoothness of the underlying surface and coefficients. The results have essential applications in investigations of BVPs by the potential method, in apriori estimates and in asymptotics of solutions.
3

Witt, Ingo. "Green formulae for cone differential operators." Universität Potsdam, 2003. http://opus.kobv.de/ubp/volltexte/2008/2663/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Green formulae for elliptic cone differential operators are established. This is achieved by an accurate description of the maximal domain of an elliptic cone differential operator and its formal adjoint; thereby utilizing the concept of a discrete asymptotic type. From this description, the singular coefficients replacing the boundary traces in classical Green formulas are deduced.
4

Kohatsu, Higa Arturo, and Kazuhiro Yasuda. "Estimating multidimensional density functions using the Malliavin-Thalmaier formula." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/96672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Malliavin-Thalmaier formula was introduced for simulation of high dimensional probability density functions. But when this integration by parts formula is applied directly in computer simulations, we show that it is unstable. We propose an approximation to the Malliavin-Thalmaier formula. In this paper, we find the order of the bias and the variance of the approximation error. And we obtain an explicit Malliavin-Thalmaier formula for the calculation of Greeks in finance. The weights obtained are free from the curse of dimensionality.
5

Stella, Simone. "Formula integrale di Poisson per le funzioni armoniche in una palla." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/6873/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La tesi consiste nella ricerca di un candidato ideale per la soluzione del problema di Dirichlet. Vengono affrontati gli argomenti in maniera graduale, partendo dalle funzioni armoniche e le loro relative proprietà, passando per le identità e le formule di rappresentazione di Green, per finire nell'analisi del problema sopra citato, mediante i risultati precedentemente ottenuti, per concludere trovando la formula integrale di Poisson come soluzione ma anche come formula generale per sviluppi in vari ambiti.
6

Chongo, Ambrose. "Computing the Greeks using the integration by parts formula for the Skorohod integral." Thesis, Link to the online version, 2008. http://hdl.handle.net/10019/818.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lazzari, Lisa. "Formule di Rappresentazione e Formule di Media per Funzioni Armoniche." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15930/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In questa tesi vengono analizzate le principali caratteristiche delle funzioni armoniche, che sono funzioni che risolvono l'equazione di Laplace. Vengono inizialmente definite e dimostrate le formule di rappresentazione di Green, dopo aver definito le relative identità e la formula di Green, e viene analizzato il nucleo di Poisson. Successivamente vengono descritte le formule di media e vengono proposte alcune applicazioni, come la disuguaglianza di Harnack e il teorema di Liouville. Infine viene proposto un approccio alla risoluzione del problema di Dirichlet, mediante il metodo di Perron. Come premessa a tale metodo vengono definite e descritte le funzioni superarmoniche e subarmoniche.
8

Matsuda, Hidefumi. "Shear viscosity of classical fields using the Green-Nakano-Kubo formula on a lattice." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Totaro, Federico. "Funzioni armoniche e formule di media." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In questa tesi abbiamo definito una soluzione del classico problema di Dirichlet per il Laplaciano in un arbitrario dominio limitato di R^n. Siamo partiti dallo studio delle funzioni armoniche, funzioni che risolvono l’equazione di Laplace; in seguito abbiamo definito le identità e la funzione di Green con le quali abbiamo dimostrato le formule di rappresentazione del medesimo. Successivamente, descritti il nucleo di Poisson e le formule di media, sono state analizzate alcune conseguenze di quest’ultime, quali la disuguaglianza di Harnack, il Teorema di Liouville e il principio del massimo e del minimo debole e forte. Infine abbiamo illustrato un criterio di risolubilità chiamato metodo di Perron per funzioni subarmoniche.
10

Mazzetti, Caterina. "Le funzioni armoniche e le formule di media." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2015. http://amslaurea.unibo.it/9444/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In questa tesi studiamo le proprietà fondamentali delle funzioni armoniche. Ricaviamo le formule di media mostrando alcune proprietà importanti, quali la disuguaglianza di Harnack, il teorema di Liouville, il principio del massimo debole e forte. Infine, illustriamo un criterio di risolubilità per il problema di Dirichlet per il Laplaciano in un arbitrario dominio limitato di R^n tramite un metodo noto come metodo di Perron per le funzioni subarmoniche.

Книги з теми "Green's formula":

1

Peacock, Paul. Precycle! Preston [England]: Good Life Press, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Donahue, Dennis Patrick. Lawman's Brut, an early Arthurian poem: A study of Middle English formulaic composition. Lewiston [N.Y.]: E. Mellen Press, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Morawetz, Klaus. Nonequilibrium Green’s Functions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198797241.003.0007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The method of the equation of motion is used to derive the Martin–Schwinger hierarchy for the nonequilibrium Green’s functions. The formal closure of the hierarchy is reached by using the selfenergy which provides a recipe for how to construct selfenergies from approximations of the two-particle Green’s function. The Langreth–Wilkins rules for a diagrammatic technique are shown to be equivalent to the weakening of initial correlations. The quantum transport equations are derived in the general form of Kadanoff and Baym equations. The information contained in the Green’s function is discussed. In equilibrium this leads to the Matsubara diagrammatic technique.
4

An Exact Formula for the Filth Growth (@Smålands). -, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sanders, Amelia. Bowl: 50 Nutritionally Balanced Vegetarian Bowls-Endless Combinations with Basic Formula of Grains, Greens and Proteins. Independently Published, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Back, Kerry E. Option Pricing. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190241148.003.0016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Options, option portfolios, put‐call parity, and option bounds are explained. Changes of numeraire (measure) are discussed, and the Black‐Scholes formula is derived. The fundamental PDE for an option value is explained. The option greeks are defined, and delta hedging is explained. The smooth pasting condition for valuing an American option is explained.
7

He, Tian-Xiao. Dimensionality Reducing Expansion of Multivariate Integration. Birkhauser, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

He, Tian-Xiao. Dimensionality Reducing Expansion of Multivariate Integration. Birkhauser, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

He, Tian-Xiao. Dimensionality Reducing Expansion of Multivariate Integration. Birkhäuser Boston, 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

He, Tian-Xiao. Dimensionality Reducing Expansion of Multivariate Integration. Birkhauser Verlag, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Green's formula":

1

Menger, Karl. "On Green’s Formula." In Selecta Mathematica, 41–45. Vienna: Springer Vienna, 2003. http://dx.doi.org/10.1007/978-3-7091-6045-9_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Balakrishnan, V. "Kubo-Green Formulas." In Elements of Nonequilibrium Statistical Mechanics, 203–22. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62233-6_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Freeden, Willi, and Michael Schreiner. "Green’s Functions and Integral Formulas." In Spherical Functions of Mathematical Geosciences, 159–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85112-7_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Freeden, Willi, and Michael Schreiner. "Green’s Functions and Integral Formulas." In Spherical Functions of Mathematical Geosciences, 193–250. Berlin, Heidelberg: Springer Berlin Heidelberg, 2022. http://dx.doi.org/10.1007/978-3-662-65692-1_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kuusalo, Tapani. "A Green formula with multiplicities." In Lecture Notes in Mathematics, 219–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0081256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Eriksson, Kenneth, Claes Johnson, and Donald Estep. "Gauss’ Theorem and Green’s Formula in ℝ2." In Applied Mathematics: Body and Soul, 949–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05800-8_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Eriksson, Kenneth, Claes Johnson, and Donald Estep. "Gauss’ Theorem and Green’s Formula in ℝ3." In Applied Mathematics: Body and Soul, 959–63. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05800-8_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Xiao, Jie, and Fan Xu. "Green’s Formula with ℂ*-Action and Caldero–Keller’s Formula for Cluster Algebras." In Representation Theory of Algebraic Groups and Quantum Groups, 313–48. Boston: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4697-4_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Pendleton, Robert. "‘The Proper Formula’: Conrad’s Transformed Adventure Story." In Graham Greene’s Conradian Masterplot, 11–55. London: Palgrave Macmillan UK, 1996. http://dx.doi.org/10.1007/978-1-349-24363-1_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ashbaugh, Mark S., Fritz Gesztesy, Lotfi Hermi, Klaus Kirsten, Lance Littlejohn, and Hagop Tossounian. "Green’s Functions and Euler’s Formula for $$\zeta (2n)$$." In Springer Proceedings in Mathematics & Statistics, 27–45. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68490-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Green's formula":

1

Boi, S., A. Mazzino, and P. Muratore-Ginanneschi. "Taylor-Green-Kubo formula and asymptotic transport of inertial particles." In THMT-18. Turbulence Heat and Mass Transfer 9 Proceedings of the Ninth International Symposium On Turbulence Heat and Mass Transfer. Connecticut: Begellhouse, 2018. http://dx.doi.org/10.1615/thmt-18.1240.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tsuda, Hirofumi, and Ken Umeno. "New expression of SNR formula for CDMA system." In 2016 International Conference on Smart Green Technology in Electrical and Information Systems (ICSGTEIS). IEEE, 2016. http://dx.doi.org/10.1109/icsgteis.2016.7885768.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Guha, Amitava, and Jeffrey Falzarano. "Development of a Computer Program for Three Dimensional Analysis of Zero Speed First Order Wave Body Interaction in Frequency Domain." In ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/omae2013-11601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Evaluation of motion characteristics of ships and offshore structures at the early stage of design as well as during operation at the site is very important. Strip theory based programs and 3D panel method based programs are the most popular tools used in industry for vessel motion analysis. These programs use different variations of the Green’s function or Rankine sources to formulate the boundary element problem which solves the water wave radiation and diffraction problem in the frequency domain or the time domain. This study presents the development of a 3D frequency domain Green’s function method in infinite water depth for predicting hydrodynamic coefficients, wave induced forces and motions. The complete theory and its numerical implementation are discussed in detail. An in house application has been developed to verify the numerical implementation and facilitate further development of the program towards higher order methods, inclusion of forward speed effects, finite depth Green function, hydro elasticity, etc. The results were successfully compared and validated with analytical results where available and the industry standard computer program for simple structures such as floating hemisphere, cylinder and box barge as well as complex structures such as ship, spar and a tension leg platform.
4

Kosina, Hans, Heribert Seiler, and Viktor Sverdlov. "Analytical Formulae for the Surface Green’s Functions of Graphene and 1T’ MoS2 Nanoribbons." In 2020 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD). IEEE, 2020. http://dx.doi.org/10.23919/sispad49475.2020.9241650.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hao Zhuang, Wenjian Yu, Gang Hu, Zhi Liu, and Zuochang Ye. "Fast floating random walk algorithm formulti-dielectric capacitance extraction with numerical characterization of Green's functions." In 2012 17th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2012. http://dx.doi.org/10.1109/aspdac.2012.6164977.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tsubogo, Takashi. "Reciprocal Form of the Wave Drift Force and Moment Acting on Floating Body." In ASME 2008 27th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2008. http://dx.doi.org/10.1115/omae2008-57694.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper provides the reciprocal form on wave drift force and moment from the momentum theory. The author in Japan has transformed from the pressure integration on the wetted body surface oscillating in regular waves into the reciprocal form at the near field, then transformed into the form at the far field owing to Green’s second identity, and transformed into Maruo’s and Newman’s formulas. But in this paper the start point is the momentum theory and the goal is the reciprocal form. The obtained reciprocal form at the far field can be transformed into the integration over the wetted floating body surface owing to Green’s second identity.
7

Bernblit, Michael V. "The Modified Boundary Element Method for Vibration and Sound Radiation Prediction of Fluid-Loaded Structures." In ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0432.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The objective of this study is to modify the conventional Boundary Element Method (BEM) to enable rigorous account of fluid loading. For this purpose the two-level BEM has been developed which allows to split structural and acoustical phases of the problem into two sequential stages. At first step fluid loading is ignored and the in-vacuo normal component of the surface velocity and structural Green’s function are calculated. Then surface pressure distribution is computed from the modified Boundary Integra] Equation with perturbated kernel. Secondly, vibration velocity of fluid-loaded surface is calculated using convolution of the surface pressure and the in-vacuo Green’s function. After that sound pressure is predicted for any control point by Helmholtz formula. The method is applied for volume and planar fluid-loaded radiators as well as to sound scattering by elastic bodies.
8

LEI, LIHUI. "FORMAL VERIFICATION OF A SOLUTION FOR GREEN COMPUTING." In Proceedings of the QL&SC 2012. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814401531_0051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hong, D. C., T. B. Ha, and K. H. Song. "Numerical Study of Forward-Speed Ship Motion and Added Resistance." In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The added resistance of a ship was calculated using Maruo’s formula [1] involving the three-dimensional Kochin function obtained using the source and normal doublet distribution over the wetted surface of the ship. The density of the doublet distribution was obtained as the solution of the three-dimensional frequency-domain forward-speed Green integral equation containing the exact line integral along the waterline. Numerical results of the Wigley ship models II and III in head seas, obtained by making use of the inner-collocation 9-node second-order boundary element method have been compared with the experimental results reported by Journée [2]. The forward-speed hydrodynamic coefficients of the Wigley models have shown no irregular-frequencylike behavior. The steady disturbance potential due to the constant forward speed of the ship has also been calculated using the Green integral equation associated with the steady forward-speed free-surface Green function since the so-called mj-terms [3] appearing in the body boundary conditions contain the first and second derivatives of the steady potential over the wetted surface of the ship. However, the free-surface boundary condition was kept linear in the present study. The added resistances of the Wigley II and III models in head seas obtained using Maruo’s formula showing acceptable comparison with experimental results, have been presented. The added resistances in following seas obtained using Maruo’s formula have also been presented.
10

Rahim, Mustaqqim Abdul, Lum Chui Ying, Shahiron Shahidan, Zuhayr Md Ghazaly, Shamilah Anudai, Nor Faizah Bawadi, Nur Fitriah Isa, Zulkarnain Hassan, Afifuddin Habulat, and Zul-Atfi Ismail. "Design reinforced concrete structures: Differences in procedure, formula, and results between Eurocode 2 and British Standard 8110." In 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Green's formula":

1

Benjaminsen, Tor A., Hanne Svarstad, and Iselin Shaw of Tordarroch. Recognising Recognition in Climate Justice. Institute of Development Studies (IDS), October 2021. http://dx.doi.org/10.19088/1968-2021.127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We argue that in order to achieve climate justice, recognition needs to be given more attention in climate research, discourse, and policies. Through the analysis of three examples, we identify formal and discursive recognition as central types of recognition in climate issues, and we show how powerful actors exercise their power in ways that cause climate injustice through formal and discursive misrecognition of poor and vulnerable groups. The three examples discussed are climate mitigation through forest conservation (REDD), the Great Green Wall project in Sahel, and the narrative about climate change as a contributing factor to the Syrian war.

До бібліографії