Добірка наукової літератури з теми "H-uniform hypertree"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "H-uniform hypertree".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "H-uniform hypertree"

1

Farihati, Sitta Alief, A. N. M. Salman, and Pritta Etriana Putri. "Rainbow connection numbers of some classes of $ s $-overlapping $ r $-uniform hypertrees with size $ t $." AIMS Mathematics 9, no. 7 (2024): 18824–40. http://dx.doi.org/10.3934/math.2024916.

Повний текст джерела
Анотація:
<abstract><p>The rainbow connection concept was developed to determine the minimum number of passwords required to exchange encrypted information between two agents. If the information exchange involves divisions managing more than two agents, the rainbow connection concept can be extended to a hypergraph. In 2014, Carpentier et al. expanded the rainbow connection concept of graphs to hypergraphs. They implemented it on a minimally connected hypergraph, an $ r $-uniform complete hypergraph, an $ r $-uniform cycle hypergraph, and an $ r $-uniform complete multipartite hypergraph. Ho
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Faxu, Liang Wei, Jinde Cao, Feng Hu, and Haixing Zhao. "On the Maximum Estrada Index of 3-Uniform Linear Hypertrees." Scientific World Journal 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/637865.

Повний текст джерела
Анотація:
For a simple hypergraphHonnvertices, its Estrada index is defined asEE(H)=∑i=1n‍eλi, whereλ1,λ2,…,λnare the eigenvalues of its adjacency matrix. In this paper, we determine the unique 3-uniform linear hypertree with the maximum Estrada index.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Ke, Haixing Zhao, Zhonglin Ye, Yu Zhu, and Liang Wei. "The Bounds of the Edge Number in Generalized Hypertrees." Mathematics 7, no. 1 (2018): 2. http://dx.doi.org/10.3390/math7010002.

Повний текст джерела
Анотація:
A hypergraph H = ( V , ε ) is a pair consisting of a vertex set V , and a set ε of subsets (the hyperedges of H ) of V . A hypergraph H is r -uniform if all the hyperedges of H have the same cardinality r . Let H be an r -uniform hypergraph, we generalize the concept of trees for r -uniform hypergraphs. We say that an r -uniform hypergraph H is a generalized hypertree ( G H T ) if H is disconnected after removing any hyperedge E , and the number of components of G H T − E is a fixed value k ( 2 ≤ k ≤ r ) . We focus on the case that G H T − E has exactly two components. An edge-minimal G H T is
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tamas, Szantai, and Kovacs Edith. "BRAIN Journal - Application Of t-Cherry Junction Trees in Pattern Recognition." Brain Journal 1, http://www.edusoft.ro/brain/index.php/brain/article/view/103/205 (2010): 40–45. https://doi.org/10.5281/zenodo.1037305.

Повний текст джерела
Анотація:
ABSTRACT Pattern recognition aims to classify data (patterns) based either on a priori knowledge or on statistical information extracted from the data. In this paper we will concentrate on statistical pattern recognition using a new probabilistic approach which makes possible to select the so called ’informative’ features. We develop a pattern recognition algorithm which is based on the conditional independence structure underlying the statistical data. Our method was succesfully applied on a real problem of recognizing Parkinson’s disease on the basis of voice disorders.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hou, Yuan, An Chang, and Lei Zhang. "Largest H-eigenvalue of uniform s-hypertrees." Frontiers of Mathematics in China 13, no. 2 (2018): 301–12. http://dx.doi.org/10.1007/s11464-017-0678-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fu, Yanjie, and Yubin Gao. "Incidence Energy of k-Uniform Hypertrees." MATCH – Communications in Mathematical and in Computer Chemistry 92, no. 1 (2024): 133–50. http://dx.doi.org/10.46793/match.92-1.133f.

Повний текст джерела
Анотація:
For a square matrix M, its energy E(M) is the sum of its singular values. Let H be a k-uniform hypergraph, and let B(H) be the incidence matrix of H. The incidence energy BE(H) of H is the energy of B(H). Let T n,d be the set of k-uniform hypertrees of order n and size r with diameter 3 ≤ d ≤ r − 1. In this article, the k-uniform hypertrees with minimum incidence energy over T n,d are characterized. In addition, we have obtained the incidence energy of a hyperstar, and determined which hyperstar has the maximum and minimum incidence energy among all hyperstars with n vertices.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fu, Yanjie, Yubin Gao, and Zhihua Li. "The minimum incidence energy of k-uniform hypergraphs." Filomat 38, no. 30 (2024): 10675–86. https://doi.org/10.2298/fil2430675f.

Повний текст джерела
Анотація:
For a k-uniform hypergraph H = (V (H) , E (H)) of order n =|V(H)|and size r = |E(H)|, let B(H) be the incidence matrix of H. The incidence energy BE(H) of H is the energy of B(H). In this article, we determine the unique hypergraph with the minimum incidence energy among all k-uniform hypertrees of size r with fixed number of pendent edges. We also determine the unique hypergraph with theminimum incidence energy among all k-uniform unicyclic hypergraphs of size r.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tuczyński, Michał, Przemysław Wenus, and Krzysztof Węsek. "On cordial labeling of hypertrees." Discrete Mathematics & Theoretical Computer Science 21 no. 4, Graph Theory (2019). https://doi.org/10.23638/dmtcs-21-4-1.

Повний текст джерела
Анотація:
Let $f:V\rightarrow\mathbb{Z}_k$ be a vertex labeling of a hypergraph $H=(V,E)$. This labeling induces an~edge labeling of $H$ defined by $f(e)=\sum_{v\in e}f(v)$, where the sum is taken modulo $k$. We say that $f$ is $k$-cordial if for all $a, b \in \mathbb{Z}_k$ the number of vertices with label $a$ differs by at most $1$ from the number of vertices with label $b$ and the analogous condition holds also for labels of edges. If $H$ admits a $k$-cordial labeling then $H$ is called $k$-cordial. The existence of $k$-cordial labelings has been investigated for graphs for decades. Hovey~(1991) conj
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!