Добірка наукової літератури з теми "Heat engine combustion chamber"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Heat engine combustion chamber".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Heat engine combustion chamber"

1

TULWIN, Tytus, Mirosław WENDEKER, and Zbigniew CZYŻ. "The swirl ratio influence on combustion process and heat transfer in the opposed piston compression-ignition engine." Combustion Engines 170, no. 3 (2017): 3–7. http://dx.doi.org/10.19206/ce-2017-301.

Повний текст джерела
Анотація:
In order to maximise engine heat efficiency an engines charge flow must be properly designed -especially its swirl and tumble ratio. A two-stroke compression-ignition opposed piston engine reacts to engine swirl differently compared to a standard automotive engine with axially symmetric combustion chamber. In order to facilitate direct fuel injection, high-pressure injectors must be positioned from the side of combustion chamber. Depending on the combustion chamber geometry the swirling gases impact greatly how the injection stream is formed. If the deformation is too high the high temperature
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Doppalapudi, Arun Teja, and Abul Kalam Azad. "Advanced Numerical Analysis of In-Cylinder Combustion and NOx Formation Using Different Chamber Geometries." Fire 7, no. 2 (2024): 35. http://dx.doi.org/10.3390/fire7020035.

Повний текст джерела
Анотація:
In diesel engines, emission formation inside the combustion chamber is a complex phenomenon. The combustion events inside the chamber occur in microseconds, affecting the overall engine performance and emissions characteristics. This study opted for using computational fluid dynamics (CFD) to investigate the combustion patterns and how these events affect nitrogen oxide (NOx) emissions. In this study, a diesel engine model with a flat combustion chamber (FCC) was developed for the simulation. The simulation result of the heat release rate (HRR) and cylinder pressure was validated with the expe
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shang, Yong, Fu Shui Liu, Xiang Rong Li, and Jing Wu. "Research on Parametric Design Method of Combustion Chamber on Diesel Engine." Advanced Materials Research 383-390 (November 2011): 1431–40. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.1431.

Повний текст джерела
Анотація:
One method of parametric design on combustion chamber is used in this paper. Several independent geometrical parameters of ω type and double swirl combustion chamber are brought forward. Different series of ω type and double swirl combustion chambers have been designed by using this method. The effect of the independent geometrical parameters on the performance of diesel engine has been studied by using CFD code AVL FIRE. According to this method of parametric design and calculation result, two pistons with ω type and double swirl combustion chamber has been designed with the target of the hig
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Baklanov, Andrey V. "Concentration of carbon dioxide in products of combustion of GTE NK-16ST and NK-16-18ST." Siberian Aerospace Journal 24, no. 4 (2023): 697–705. http://dx.doi.org/10.31772/2712-8970-2023-24-4-697-705.

Повний текст джерела
Анотація:
This paper considers the design of two combustion chambers of a gas turbine engine running on natural gas. One combustion chamber has 32 burners, and the other has 136 nozzles located in two rows in the flame tube head. A major contributor to global warming is considered to be the significant emissions of greenhouse gases, primarily CO2, including those emitted by gas turbine engines and power plants. The reduction of carbon dioxide levels by developing a set of structural measures in the combustion chamber is one of the urgent tasks of engine construction which requires a solution in order to
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gots, A. N., and S. A. Glinkin. "Loading conditions of pistons of internal combustion engines and causes of crack formation on combustion chamber edge." Traktory i sel hozmashiny 83, no. 10 (2016): 25–29. http://dx.doi.org/10.17816/0321-4443-66208.

Повний текст джерела
Анотація:
In order to develop the methods for assessment of durability of pistons of tractor diesel engines, it is necessary to conduct the research of causes of failures in their operation, in particular crack formation on the edge of combustion chamber. Tractor engines operate in transient regimes due to periodic changes of control organ position and resisting moment when tractor performs agricultural, logging and other works. In transient regimes, the stress-strain state of piston varies in time, which leads to the formation of fatigue cracks on the edge of combustion chamber. The paper reviews the s
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Arumugam, Sozhi, Pitchandi Kasivisvanathan, M. Arventh, and P. Maheshkumar. "Effect of Re-Entrant and Toroidal Combustion Chambers in a DICI Engine." Applied Mechanics and Materials 787 (August 2015): 722–26. http://dx.doi.org/10.4028/www.scientific.net/amm.787.722.

Повний текст джерела
Анотація:
This paper presents the experimental work to investigate the effect of Re-entrant and Toroidal combustion chambers in a DICI Engine. The two combustion chambers namely Re-entrant combustion chamber (RCC) and Toroidal combustion chamber (TCC) were fitted in a 4.4 kW single cylinder Direct Injection Compression Ignition (DICI) engine and tests were conducted with diesel. The influences of the combustion chamber geometry characteristics on combustion, performance and emissions characteristics have been investigated. This investigation shows the peak pressure of re-entrant chamber is higher than t
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Trisna Setyawan. "Perpindahan Panas Dinding Pemodelan CFD di dalam Ruang Bakar menggunakan ANSYS forte." Mars : Jurnal Teknik Mesin, Industri, Elektro Dan Ilmu Komputer 1, no. 4 (2023): 19–25. http://dx.doi.org/10.61132/mars.v1i4.23.

Повний текст джерела
Анотація:
Heat transfer in diesel engines is known to affect engine efficiency and emissions. Increased heat transfer to the combustion chamber walls reduces the pressure in the cylinder and the average gas temperature, which reduces the work transferred to the piston per cycle. Therefore, the amount of heat transfer in an engine largely depends on the efficiency of the engine. Changes in gas temperature due to heat loss from the combustion chamber also affect the formation of pollutant emissions. Higher temperatures in the cylinder promote NOx emissions, while lower temperatures in the cylinder create
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ji, Yan Ping, Ping Sun, and Si Bo Zhao. "Analysis of Temperature Field of High Speed Diesel Engine Parts and their Structural Optimization." Applied Mechanics and Materials 490-491 (January 2014): 1003–7. http://dx.doi.org/10.4028/www.scientific.net/amm.490-491.1003.

Повний текст джерела
Анотація:
The analysis of structure and performance of internal combustion engine is presented in this paper from the following two aspects: the thermal load of I. C. Engine and the thermal efficiency of diesel engines. Firstly, the thermal load of key parts of I. C. Engine as well as the evaluation parameters of which are introduced briefly. Furthermore, based on the factors influencing the heat transfer process of internal combustion engine, the current research situation of internal combustion engine work process and heat balance for combustion chamber components, and the whole engine using numerical
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Doppalapudi, Arun Teja, Abul Kalam Azad, and Mohammad Masud Kamal Khan. "Analysis of Improved In-Cylinder Combustion Characteristics with Chamber Modifications of the Diesel Engine." Energies 16, no. 6 (2023): 2586. http://dx.doi.org/10.3390/en16062586.

Повний текст джерела
Анотація:
This study numerically analyses the effects of chamber modifications to investigate the improvement of in-cylinder combustion characteristics of the diesel engine using a computational fluid dynamics (CFD) approach. Five different modified chambers, namely, the double swirl combustion chamber (DSCC), bathtub combustion chamber (BTCC), double toroidal re-entrant combustion chamber (DTRCC), shallow depth combustion chamber (SCC), and stepped bowl combustion chamber (SBCC) were developed and compared with a reference flat combustion chamber (FCC). The effects of chamber modifications on temperatu
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Alkidas, A. C., and R. M. Cole. "Transient Heat Flux Measurements in a Divided-Chamber Diesel Engine." Journal of Heat Transfer 107, no. 2 (1985): 439–44. http://dx.doi.org/10.1115/1.3247434.

Повний текст джерела
Анотація:
Transient surface heat flux measurements were performed at several locations on the cylinder head of a divided-chamber diesel engine. The local heat flux histories were found to be significantly different. These differences are attributed to the spatial nonuniformity of the fluid motion and combustion. Both local time-averaged and local peak heat fluxes decreased with decreasing speed and load. Retarding the combustion timing beyond TDC decreased the peak heat flux in the antechamber but increased the peak heat flux in the main chamber. This is attributed to the relative increase in the portio
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Heat engine combustion chamber"

1

Savur, Mehmet Koray. "A numerical study of combined convective and radiative heat transfer in a rocket engine combustion chamber." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02Dec%5FSavur.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Goh, Sing Huat. "Numerical study of the effect of the fuel film on heat transfer in a rocket engine combustion chamber." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Dec%5FGoh.pdf.

Повний текст джерела
Анотація:
Thesis (M.S. in Engineering Science (Mechanical Engineering))--Naval Postgraduate School, December 2003.<br>Thesis advisor(s): Ashok Gopinath, Christopher Brophy. Includes bibliographical references (p. 71-72). Also available online.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kianzad, Siamak. "Measurement of Thermal Insulation properties of TBC inside the Combustion chamber." Thesis, Luleå tekniska universitet, Materialvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-61917.

Повний текст джерела
Анотація:
This master thesis project was performed in collaboration with Scania CV AB, Engine Materials group. The purpose with the project was to investigate different ceramic TBC (Thermal Barrier Coating) thermal insulation properties inside the combustion chamber. Experimental testing was performed with a Single-Cylinder engine with TBC deposited on selected components. A dummy-valve was developed and manufactured specifically for this test in order to enable a water cooling system and to ease the testing procedure. The dummy-valve consists of a headlock, socket, valve poppet and valve shaft. Additio
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Berger, Sandrine. "Implementation of a coupled computational chain to the combustion chamber's heat transfer." Phd thesis, Toulouse, INPT, 2016. http://oatao.univ-toulouse.fr/16636/1/Berger_Sandrine.pdf.

Повний текст джерела
Анотація:
The design of aeronautical engines is subject to many constraints that cover performance gain as well as increasingly sensitive environmental issues. These often contradicting objectives are currently being answered through an increase in the local and global temperature in the hot stages of the engine. As a result, the solid parts encounter very high temperature levels and gradients that are critical for the engine lifespan. Combustion chamber walls in particular are subject to large thermal constraints. It is thus essential for designers to characterize accurately the local thermal state of
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lewis, Andrew. "Investigation into the effect of the thermal management system of a diesel engine on the rate of heat transfer through the combustion chamber." Thesis, University of Bath, 2014. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.665393.

Повний текст джерела
Анотація:
Modern diesel engines are being continuously developed in order to improve their specific output thus reducing the fuel consumption. This is in response to both increasingly stringent regulations and to the demands of the customer evolving. With this in mind a more detailed understanding of some of the fundamental processes within the engine are required. A prime example of one of these processes is heat transfer. In the region of 17-35% of fuel energy will pass to the coolant, therefore the rate of heat transfer has a considerable effect on the design and function of the engine. This thesis d
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Le, guen Simon. "Étude expérimentale et modélisation phénoménologique des transferts thermiques aux parois des chambres de combustion des moteurs à allumage commandé." Thesis, Ecole centrale de Nantes, 2020. http://www.theses.fr/2020ECDN0012.

Повний текст джерела
Анотація:
Du fait du durcissement des normes en matière d’émissions polluantes et de gaz à effet de serre, les constructeurs automobiles développent des groupes motopropulseurs toujours plus sophistiqués et mettent au point des stratégies de contrôle moteur avancées. Dans ce contexte, les outils de simulation interviennent à toutes les étapes du processus de développement d’un moteur. Il est donc nécessaire de posséder des modèles à la fois fiables et simples d’utilisation. Les transferts thermiques entre les gaz et les parois de la chambre de combustion influencent des postes clés tels que la consommat
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Weber, Fabian. "Optical Analysis of the Hydrogen Cooling Film in High Pressure Combustion Chambers." Thesis, Luleå tekniska universitet, Rymdteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-76872.

Повний текст джерела
Анотація:
For performance optimisation of modern liquid cryogenic bipropellant rocket combustion chambers, one component which plays an important role in reducing the wall side heat flux, is the behaviour of the cooling film. At the Institute of Space Propulsion of the German Aerospace Center (DLR) in Lampoldshausen, hot test runs have been performed using the experimental combustion chamber BKM, to investigate the wall side heat flux which is -- among other factors -- dependent on cooling film properties. To gain more insight into the film behaviour under real rocket-like conditions, optical diagnostic
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Matuška, Petr. "Spalovací komora Stirlingova motoru o výkonu do 3 kW." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230437.

Повний текст джерела
Анотація:
This thesis deals with the construction proposal of the combustion chamber of Stirling engine. The introduction briefly describes the history and practical application of Stirlinova engine today. The following section explains the differences between theoretical and real cycle and the principle of beta Stirling engine modifications. The next section is devoted to the calculation of fuel and air consumption and fuel compared to each other. The proposed design is based not only on the calculation of fuel and air, but also heat transfer between flue gas and preheated air. The last part is devoted
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Robinson, Kevin. "IC engine coolant heat transfer studies." Thesis, University of Bath, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ahmed, Mahbub. "Investigation on the flame dynamics of meso-combustors." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2008. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Книги з теми "Heat engine combustion chamber"

1

M, Kazaroff John, Jankovsky Robert S, and United States. National Aeronautics and Space Administration., eds. A dual-cooled hydrogen-oxygen rocket engine heat transfer analysis. National Aeronautics and Space Administration, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

M, Kazaroff John, Jankovsky Robert S, and United States. National Aeronautics and Space Administration., eds. A dual-cooled hydrogen-oxygen rocket engine heat transfer analysis. National Aeronautics and Space Administration, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

M, Kazaroff John, Jankovsky Robert S, and United States. National Aeronautics and Space Administration., eds. A dual-cooled hydrogen-oxygen rocket engine heat transfer analysis. National Aeronautics and Space Administration, 1991.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

A, Roncace Elizabeth, and United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., eds. Hot-gas-side heat transfer characteristics of subscale, plug-nozzle rocket calorimeter chamber. National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Quentmeyer, Richard J. Hot-gas-side heat transfer characteristics of subscale, plug-nozzle rocket calorimeter chamber. Lewis Research Center, 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

United States. National Aeronautics and Space Administration., ed. Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles: Final report. SECA, Inc., 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

United States. National Aeronautics and Space Administration., ed. Heat transfer in rocket engine combustion chambers and regeneratively cooled nozzles: Final report. SECA, Inc., 1993.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jankovsky, Robert S. High-area-ratio rocket nozzle at high combustion chamber pressure--experimental and analytical validation. National Aeronautics and Space Administration, Glenn Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

D, Smith Timothy, Pavli Albert J, and NASA Glenn Research Center, eds. High-area-ratio rocket nozzle at high combustion chamber pressure--experimental and analytical validation. National Aeronautics and Space Administration, Glenn Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

D, Smith Timothy, Pavli Albert J, and NASA Glenn Research Center, eds. High-area-ratio rocket nozzle at high combustion chamber pressure--experimental and analytical validation. National Aeronautics and Space Administration, Glenn Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Heat engine combustion chamber"

1

Olmeda, R., P. Breda, C. Stemmer, and M. Pfitzner. "Large-Eddy Simulations for the Wall Heat Flux Prediction of a Film-Cooled Single-Element Combustion Chamber." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_14.

Повний текст джерела
Анотація:
Abstract In order for modern launcher engines to work at their optimum, film cooling can be used to preserve the structural integrity of the combustion chamber. The analysis of this cooling system by means of CFD is complex due to the extreme physical conditions and effects like turbulent fluctuations damping and recombination processes in the boundary layer which locally change the transport properties of the fluid. The combustion phenomena are modeled by means of Flamelet tables taking into account the enthalpy loss in the proximity of the chamber walls. In this work, Large-Eddy Simulations
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Tang, Xinhao, Suhua Shen, Yanjie Hu, and Chunxiao Wang. "Airworthiness Design and Verification Analysis of Unconventional Thermodynamic Cycle Hydrogen Aero-Turbine Engines." In Proceedings of the 10th Hydrogen Technology Convention, Volume 1. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-8631-6_2.

Повний текст джерела
Анотація:
AbstractHydrogen fuel is an extremely ideal aviation power with its characteristics of high power density and zero carbon emission. Hydrogen fuel is stored in a low-temperature liquid state in aircraft, and the liquid hydrogen needs to be warmed up to hydrogen gas by heat transfer before entering the combustion chamber to participate in combustion. Since liquid hydrogen has the traits of low temperature and high specific heat capacity, large amount of heat is required to complete the heat transfer process. And the engine thermal cycle process can be fully utilized for heat transfer of liquid h
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fiedler, Torben, Joachim Rösler, Martin Bäker, et al. "Mechanical Integrity of Thermal Barrier Coatings: Coating Development and Micromechanics." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_19.

Повний текст джерела
Анотація:
Abstract To protect the copper liners of liquid-fuel rocket combustion chambers, a thermal barrier coating can be applied. Previously, a new metallic coating system was developed, consisting of a NiCuCrAl bond-coat and a Rene 80 top-coat, applied with high velocity oxyfuel spray (HVOF). The coatings are tested in laser cycling experiments to develop a detailed failure model, and critical loads for coating failure were defined. In this work, a coating system is designed for a generic engine to demonstrate the benefits of TBCs in rocket engines, and the mechanical loads and possible coating fail
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Perakis, Nikolaos, and Oskar J. Haidn. "Experimental and Numerical Investigation of CH$$_4$$/O$$_2$$ Rocket Combustors." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_23.

Повний текст джерела
Анотація:
Abstract The experimental investigation of sub-scale rocket engines gives significant information about the combustion dynamics and wall heat transfer phenomena occurring in full-scale hardware. At the same time, the performed experiments serve as validation test cases for numerical CFD models and for that reason it is vital to obtain accurate experimental data. In the present work, an inverse method is developed able to accurately predict the axial and circumferential heat flux distribution in CH$$_4$$/O$$_2$$ rocket combustors. The obtained profiles are used to deduce information about the i
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Barfusz, Oliver, Felix Hötte, Stefanie Reese, and Matthias Haupt. "Pseudo-transient 3D Conjugate Heat Transfer Simulation and Lifetime Prediction of a Rocket Combustion Chamber." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_17.

Повний текст джерела
Анотація:
Abstract Rocket engine nozzle structures typically fail after a few engine cycles due to the extreme thermomechanical loading near the nozzle throat. In order to obtain an accurate lifetime prediction and to increase the lifetime, a detailed understanding of the thermomechanical behavior and the acting loads is indispensable. The first part is devoted to a thermally coupled simulation (conjugate heat transfer) of a fatigue experiment. The simulation contains a thermal FEM model of the fatigue specimen structure, RANS simulations of nine cooling channel flows and a Flamelet-based RANS simulatio
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Morozov, V., and I. Morozova. "Decrease in the Concentration of Hazardous Components of Exhaust Gases from a Combustion Chamber of a Heat Engine." In Advanced Nanomaterials for Detection of CBRN. Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-2030-2_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Adams, Karen M., and Richard E. Baker. "Effects of Combustion Chamber Deposit Location and Composition." In Chemistry of Engine Combustion Deposits. Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-2469-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Leger, B., and P. Andre. "Multi-Hole Cooling Effectiveness on Combustion Chamber Walls." In Heat Transfer Enhancement of Heat Exchangers. Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9159-1_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kaplan, Z., P. Novotný, and V. Píštěk. "Virtual Design of Stirling Engine Combustion Chamber." In Recent Advances in Mechatronics. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-05022-0_54.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gülen, S. Can. "External Combustion Engines." In Applied Second Law Analysis of Heat Engine Cycles. CRC Press, 2023. http://dx.doi.org/10.1201/9781003247418-13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Heat engine combustion chamber"

1

Kawamura, Hideo, Akira Higashino, and Shigeo Sekiyama. "Combustion and Combustion Chamber For a Low Heat Rejection Engine." In International Congress & Exposition. SAE International, 1996. http://dx.doi.org/10.4271/960506.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yang, Wanli, Guohua Chen, and Yan Chen. "Study of Transient Heat Transfer of Components in Internal Combustion Chamber." In ASME 2002 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/icef2002-513.

Повний текст джерела
Анотація:
The high cycle fatigue (thermal fatigue) is common in engines with high specific power output. In order to get the accurate temperature and heat flux distribution of the components with steep temperature gradients in the combustion chamber, an analytical solution in the case of a semi-infinite solid of constant properties is investigated by employing measured instantaneous heat flux as the boundary conditions. The new method is applied to an engine.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rashidi, Manoochehr, and Ali Reza Noori. "CFD Simulation of Heat Transfer in SI Engine Combustion Chamber." In ASME 2003 Heat Transfer Summer Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/ht2003-47063.

Повний текст джерела
Анотація:
The investigation reported in this paper includes the variation of transient and local heat transfer coefficient and heat flux in the combustion chamber of a spark ignition (SI) engine. Heat transfer characteristics are obtained from the Kiva-3v CFD (Computational Fluid Dynamics) code. Instantaneous results including the variations of mean heat transfer coefficient on the piston surface, combustion chamber, and wall of the cylinder are presented. Moreover, variations of the local heat transfer coefficient and heat flux along a centerline on the piston as well as a few locations on the combusti
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Aghakashi, V., M. H. Saidi, A. Ghafourian, and A. A. Mozafari. "Analysis of Temperature Distribution Over a Gas Turbine Shaft Exposed to a Swirl Combustor Flue." In 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22628.

Повний текст джерела
Анотація:
Gas turbine shaft is generally exposed to high temperature gases and may seriously be affected and overheated due to temperature fluctuations in the combustion chamber. Considering vortex flow in the combustion chamber, it may increase the heat release rate and combustion efficiency and also control location of energy release. However, this may result in excess temperature on the combustor equipments and gas turbine shaft. Vortex flow in the vortex engine which is created by the geometry of combustion chamber and conditions of flow field is a bidirectional swirl flow that maintains the chamber
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mohammadi, Arash, Seyed Ali Jazayeri, and Masoud Ziabasharhagh. "Numerical Simulation of Convective Heat Transfer in a Spark Ignition Engine." In ASME 2008 Internal Combustion Engine Division Spring Technical Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/ices2008-1687.

Повний текст джерела
Анотація:
A computational fluid dynamics code is applied to simulate fluid flow and combustion in a four-stroke single cylinder engine with flat combustion chamber geometry. Heat flux and heat transfer coefficient on the cylinder head, cylinder wall, piston, intake and exhaust valves are determined. Result for a certain condition is compared for total heat transfer coefficient of the cylinder engine with available correlation proposed by experimental measurement in the literature and close agreement is observed. It is observed that the value of heat flux and heat transfer coefficient varies considerably
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ichiyanagi, Mitsuhisa, Zhiyuan Liu, Haoyu Chen, et al. "Evaluation of On-board Heat Loss Prediction Model and Polytropic Index Prediction Model for CI Engines Using Measurements of Combustion Chamber Wall Heat Flux." In Small Engine Technology Conference & Exposition. Society of Automotive Engineers of Japan, 2020. http://dx.doi.org/10.4271/2019-32-0543.

Повний текст джерела
Анотація:
&lt;div class="section abstract"&gt;&lt;div class="htmlview paragraph"&gt;Diesel engines need to optimize the fuel injection timing and quantity of each cycle in the transient operation to increase the thermal efficiency and reduce the exhaust gas emissions through the precise combustion control. The heat transfer from the working gas in the combustion chamber to the chamber wall is a crucial factor to predict the gas temperature in the combustion chamber to optimize the timing and quantity of fuel injection. Therefore, the authors developed both the heat loss and the polytropic index predicti
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Selim, M. Y. E., and S. M. S. Elfeky. "Effects of Diesel / Water Emulsion on Heat Flow and Thermal Loading in a Precombustion Chamber Diesel Engine." In ASME 2001 Internal Combustion Engine Division Spring Technical Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/ices2001-126.

Повний текст джерела
Анотація:
Abstract An experimental investigation has been carried out to study the effects of using water / diesel emulsion fuel in an indirect injection diesel engine on the heat flux crossing liner and cylinder head, thermal loading and metal temperature distribution. A single cylinder precombustion chamber diesel engine has been used in the present work. The engine was instrumented for performance, metal temperature and heat flux measurements. The pure gas oil fuel and different ratios of water / diesel emulsion were used and their effects on the heat flux level and the injector tip temperature are s
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Li, Yuanhong, and Song-Charng Kong. "Multidimensional Modeling of Temperature Distribution in Engine Combustion Chamber." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44035.

Повний текст джерела
Анотація:
Heat conduction calculations are coupled with in-cylinder combustion modeling for engine simulation in this study. Heat transfer on the fluid-solid interface will affect the in-cylinder combustion process, emissions formation, and thermal loading on the combustion chamber surface. Full knowledge of heat fluxes on the interface is important in helping improve engine efficiency, reduce exhaust emissions, and reduce combustion chamber thermal stresses. To account for the unsteady, non-uniform temperature distributions on the combustion chamber surface, a fully coupled numerical procedure was deve
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kidoguchi, Yoshiyuki, Michiko Sanda, and Kei Miwa. "Experimental and Theoretical Optimization of Combustion Chamber and Fuel Distribution for the Low Emission DI Diesel Engine." In ASME 2001 Internal Combustion Engine Division Spring Technical Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/ices2001-127.

Повний текст джерела
Анотація:
Abstract This study investigated the effect of combustion chamber geometry and initial mixture distribution on combustion process in a direct-injection diesel engine by means of experiment and CFD calculation. The high squish combustion chamber with squish lip could produce simultaneous reduction of NOx and particulate emissions with retarded injection timing in the real engine experiment. According to the CFD computation, the high squish combustion chamber with central pip is effective to continue combustion under the squish lip until the end of combustion and the combustion region forms rich
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shudo, T., and H. Suzuki. "New Heat Transfer Equation Applicable to Hydrogen-Fuelled Engines." In ASME 2002 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/icef2002-515.

Повний текст джерела
Анотація:
Equations to describe heat transfer from burning gas to a combustion chamber have been empirically derived from hydrocarbon combustion engines. Previous research has analyzed the applicability of the equations to hydrogen combustion and showed that they calculate a lower cooling loss than experimental values. By focusing on the gas velocity term in the heat transfer equation and investigating replacement terms to better fit to hydrogen combustion, a new equation including rate of heat release in the gas velocity term is proposed. It is shown that the new equation is more applicable to hydrogen
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Heat engine combustion chamber"

1

Beurlot, Kyle, and Timothy Jacobs. PR457-242002-R01 Hydrogen and Natural Gas Mixtures in 2 Stroke Engines for Methane Reductions. Pipeline Research Council International, Inc. (PRCI), 2025. https://doi.org/10.55274/r0000108.

Повний текст джерела
Анотація:
Large-bore natural gas two-stroke engines with lean-burn technology have been integral to the North American pipeline network for many years and will remain crucial for future gas transportation. As research focuses on achieving lower lean ignition limits, pre-combustion chambers have gained attention as a promising method to enhance combustion stability and engine reliability. However, retrofitting existing platforms with pre-combustion chambers may not always be financially viable, which calls for further exploration of alternative technologies that could reduce methane emissions from two-st
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Olsen, Daniel, and Azer Yalin. L52360 NOx Reduction Through Improved Precombustion Chamber Design. Pipeline Research Council International, Inc. (PRCI), 2018. http://dx.doi.org/10.55274/r0011536.

Повний текст джерела
Анотація:
several objectives were Several objectives were completed. First, a literature review was performed to assess the current technological state of prechambers. This includes state of the art design, reliability surveys, and proven prechamber design criteria. This is an enabling tool for developing new prechamber concepts for year 2 of the project. The prioritized concepts are (in order): - Improved prechamber geometry - apply high speed engine prechamber design and scale up for large bore engines. - Adiabatic prechamber - traditional prechamber will ceramic lining to reduce heat transfer to the
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jacobs, Timothy, and Jacob Hedrick. PR-457-14201-R03 Variable NG Composition Effects in LB 2S Compressor Engines - Prediction Enhancement. Pipeline Research Council International, Inc. (PRCI), 2017. http://dx.doi.org/10.55274/r0011406.

Повний текст джерела
Анотація:
Phase II of the project has focused on improving the initial analysis performed in the first phase by enhancing the various aspects of predictive combustion for lean burn spark ignition natural gas engines under variable composition fueling. These enhancements have incorporated validation data from a Cooper-Bessemer GMVH-10C3 engine located in New Jersey, which improves upon the lack of field data to bound the scope of composition variation. In simulation related endeavors, effort was made to improve the fundamental combustion physics related parameters, namely laminar flame speed, by developi
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hrehor, Troy, Timothy Jacobs, and Mark Patterson. PR457-22209-R01 Feasibility Study of the Premixing of PCC Fuel and Air to Reduce GHG Emissions. Pipeline Research Council International, Inc. (PRCI), 2025. https://doi.org/10.55274/r0000115.

Повний текст джерела
Анотація:
The large-bore, slow-speed, two-stroke natural gas engines that frequently power natural gas pipelines are the subjects of increasingly stringent emissions standards, particularly those targeting emissions of oxides of nitrogen (NOx) and greenhouse gases (GHGs) such as methane and carbon dioxide. Running these engines near their lean limits of operation reduces combustion temperature and therefore NOx emissions but at the cost of increased misfires and combustion instability, thus increasing GHG emissions. A pre-combustion chamber (PCC) can be equipped to provide a high-energy ignition source
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nakashima, Kenro, Munemasa Hashimoto, Shigeo Sekiyama, and Hiroshi Sasaki. Combustion and Performance of Heat-Insulated Natural Gas Engine With a Control Valve at a Pre-Chamber. SAE International, 2005. http://dx.doi.org/10.4271/2005-08-0545.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Suzuki, Yasuko, Kazumichi Terauchi, Masahiko Emi, Kenjiro Shimano, and Yoshiteru Enomoto. Direct Heat Loss to Combustion Chamber Walls in a Direct-Injection Diesel Engine~Evaluation of Direct Heat Loss to Piston Top Land. SAE International, 2005. http://dx.doi.org/10.4271/2005-08-0547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fontanesi, Stefano, Vincenzo Gagliardi, Simone Malaguti, and Enrico Mattarelli. CFD parametric analysis of the combustion chamber shape in a small HSDI Diesel engine. SAE International, 2005. http://dx.doi.org/10.4271/2005-32-0094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Taylor. NR199202 Fiber Optic Fabry-Perot Sensors for Combustion Chamber Monitor. Pipeline Research Council International, Inc. (PRCI), 1992. http://dx.doi.org/10.55274/r0011145.

Повний текст джерела
Анотація:
Presently, there is no way to continuously measure pressure and temperature in engines over extended periods of operation. Reliable fiber optic sensor networks supplying data to computerized engine control systems could lead to fuel economies in the millions of dollars per year. The goal of this project is to demonstrate the utilization of a new fiber optic sensor technology in engines used for the pumping of natural gas.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Simpson and Olsen. L52358 Experimental Evaluation of a New Prechamber Design on the GMV-4TF Natural Gas Engine. Pipeline Research Council International, Inc. (PRCI), 2012. http://dx.doi.org/10.55274/r0010255.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vieira, Greg, and Daniel Olsen. PR179-23204-R01 Design and Testing of a Multi-Nozzle PCC on a GMV4 LB NG Engine. Pipeline Research Council International, Inc. (PRCI), 2025. https://doi.org/10.55274/r0000114.

Повний текст джерела
Анотація:
Methane slip from large-bore, two-stroke, natural gas engines contribute significantly to green-house gas emissions. Optimizing the design and functionality of pre-combustion chambers is one potential solution to reducing these emissions. The objective of the study was to optimize a pre-combustion chamber to improve combustion efficiency and reduce methane emissions from a Cooper Bessemer GMV-4TF. Computational fluid dynamic simulations were used to investigate the effects of varying pre-combustion chamber design parameters, including nozzle angle, flow area, and volume. The most effective des
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!