Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: High-speed liquid jet.

Статті в журналах з теми "High-speed liquid jet"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "High-speed liquid jet".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

KATO, Takahisa, Nobushige TAMAKI, Masanori SHIMIZU, and Hiroyuki HIROYASU. "815 Atomization of High Speed Liquid Jet." Proceedings of Conference of Chugoku-Shikoku Branch 005.2 (2000): 261–62. http://dx.doi.org/10.1299/jsmecs.005.2.261.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shi, H. H., J. E. Field, and C. S. J. Pickles. "High Speed Liquid Impact Onto Wetted Solid Surfaces." Journal of Fluids Engineering 116, no. 2 (June 1, 1994): 345–48. http://dx.doi.org/10.1115/1.2910278.

Повний текст джерела
Анотація:
The mechanics of impact by a high-speed liquid jet onto a solid surface covered by a liquid layer is described. After the liquid jet contacts the liquid layer, a shock wave is generated, which moves toward the solid surface. The shock wave is followed by the liquid jet penetrating through the layer. The influence of the liquid layer on the side jetting and stress waves is studied. Damage sites on soda-lime glass, PMMA (polymethylmethacrylate) and aluminium show the role of shear failure and cracking and provide evidence for analyzing the impact pressure on the wetted solids and the spatial pre
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Arzate, A., and P. A. Tanguy. "Hydrodynamics of Liquid Jet Application in High-Speed Jet Coating." Chemical Engineering Research and Design 83, no. 2 (February 2005): 111–25. http://dx.doi.org/10.1205/cherd.04150.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kanemura, Takuji, Hiroo Kondo, Hirokazu Sugiura, Hiroshi Horiike, Nobuo Yamaoka, Tomohiro Furukawa, Mizuho Ida, Izuru Matsushita, and Kazuyuki Nakamura. "ICONE19-43608 DIAGNOSTICS OF HIGH-SPEED LIQUID LITHIUM JET FOR IFMIF/EVEDA LITHIUM TEST LOOP." Proceedings of the International Conference on Nuclear Engineering (ICONE) 2011.19 (2011): _ICONE1943. http://dx.doi.org/10.1299/jsmeicone.2011.19._icone1943_246.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hiroyuki, Abe, Yoshida Kenji, Fukuhara Yuichi, and Kataoka Isao. "1014 MEASUREMENT OF LIQUID FRACTION DISTRIBUTION OF HIGH SPEED WATER JET BY LASER SHRIELEN METHOD." Proceedings of the International Conference on Jets, Wakes and Separated Flows (ICJWSF) 2013.4 (2013): _1014–1_—_1014–6_. http://dx.doi.org/10.1299/jsmeicjwsf.2013.4._1014-1_.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

SHIMIZU, Masanori, Masataka ARAI, and Hiroyuki HIROYASU. "Disintegrating process of a high speed liquid jet." Transactions of the Japan Society of Mechanical Engineers Series B 54, no. 504 (1988): 2236–44. http://dx.doi.org/10.1299/kikaib.54.2236.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shi, Hong-Hui, Kazuyoshi Takayama, and Osamu Onodera. "Experimental Study of Pulsed High-Speed Liquid Jet." JSME International Journal Series B 36, no. 4 (1993): 620–27. http://dx.doi.org/10.1299/jsmeb.36.620.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Hilbing, J. H., and Stephen D. Heister. "NONLINEAR SIMULATION OF A HIGH-SPEED, VISCOUS LIQUID JET." Atomization and Sprays 8, no. 2 (1998): 155–78. http://dx.doi.org/10.1615/atomizspr.v8.i2.20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Boiko, V. M., A. Yu Nesterov, and S. V. Poplavski. "Liquid atomization in a high-speed coaxial gas jet." Thermophysics and Aeromechanics 26, no. 3 (May 2019): 385–98. http://dx.doi.org/10.1134/s0869864319030077.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Anufriev, I. S., E. Yu Shadrin, E. P. Kopyev, O. V. Sharypov, and V. V. Leschevich. "Liquid fuel spraying by a high-speed steam jet." Thermophysics and Aeromechanics 27, no. 4 (July 2020): 627–30. http://dx.doi.org/10.1134/s0869864320040162.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Rallison, J. M., and E. J. Hinch. "Instability of a high-speed submerged elastic jet." Journal of Fluid Mechanics 288 (April 10, 1995): 311–24. http://dx.doi.org/10.1017/s0022112095001157.

Повний текст джерела
Анотація:
The linearized inertial instability of the parallel shear flow of a viscoelastic liquid is considered. An elastic Rayleigh equation is derived, for high Reynolds numbers and high Weissenberg numbers, and for a viscoelastic liquid whose first normal stress dominates other stresses. The equation is used to investigate the stability of a submerged jet, that may be planar or axisymmetric, having a parabolic velocity profile. The sinuous mode is found to be fully stabilized by sufficiently large elasticity. The varicose mode in the planar case is partially stabilized, being unstable only at longer
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Matthujak, Anirut, Chaidet Kasamnimitporn, Wuttichai Sittiwong, and Kulachate Pianthong. "Effects of Different Liquid Properties on the Characteristics of Impact-Generated High-Speed Liquid Jets." Applied Mechanics and Materials 110-116 (October 2011): 370–76. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.370.

Повний текст джерела
Анотація:
This paper describes the study of high-speed liquid jets injected in air from an orifice. The main focus is to study the effect of different liquid properties on the characteristics of the high-speed liquid jets injected in ambient air. The high-speed liquid jets are generated by the impact of a projectile, which known as impact acceleration method, launched in a horizontal single-stage power gun (HSSPG). The conical nozzle of 30° angle with the orifice diameter of 0.7 mm was used to generate the jets. The characteristics of high-speed jets were visualized by the high-speed digital video camer
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Yoshihashi-Suzuki, Sachiko, Eiji Hoashi, Takuji Kanemura, Hiroo Kondo, Nobuo Yamaoka, and Hiroshi Horiike. "Characteristics of surface oscillation on high speed liquid Li jet." Fusion Engineering and Design 87, no. 7-8 (August 2012): 1434–38. http://dx.doi.org/10.1016/j.fusengdes.2012.03.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Keshavarz, B., S. I. Green, and D. T. Eadie. "Elastic liquid jet impaction on a high-speed moving surface." AIChE Journal 58, no. 11 (January 31, 2012): 3568–77. http://dx.doi.org/10.1002/aic.13737.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Oda, Tetsuya, Hiroyuki Hiroyasu, Masataka Arai, and Keiya Nishida. "Characterization of Liquid Jet Atomization across a High-Speed Airstream." JSME International Journal Series B 37, no. 4 (1994): 937–44. http://dx.doi.org/10.1299/jsmeb.37.937.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

ARAKI, Mikiya, Chengjun XU, Seiichi SHIGA, Hideshi YAMADA, Shigeru HAYASHI, and Hisao NAKAMURA. "Atomization of a High Speed Liquid Jet by Wall Impingement." Transactions of the Japan Society of Mechanical Engineers Series B 71, no. 703 (2005): 978–85. http://dx.doi.org/10.1299/kikaib.71.978.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Keshavarz, B., S. I. Green, M. H. Davy, and D. T. Eadie. "Newtonian liquid jet impaction on a high-speed moving surface." International Journal of Heat and Fluid Flow 32, no. 6 (December 2011): 1216–25. http://dx.doi.org/10.1016/j.ijheatfluidflow.2011.08.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Ao, Yun Hui. "High Speed Photography and 3-D CFD Simulation of Pulsed Anti-Riots Water Cannon Launch Process." Applied Mechanics and Materials 271-272 (December 2012): 1301–6. http://dx.doi.org/10.4028/www.scientific.net/amm.271-272.1301.

Повний текст джерела
Анотація:
In order to study the atomization mechanism of gas-liquid two-phase flow, high speed camera was used to photo the water-jet, the jet images at different time were gained, CFD technology was used to simulate the launch process of water cannon in 3-D Model, Large Eddy Simulation and VOF model were used to describe the turbulent flow and track the gas-liquid interface in and out of launch pipe. The gas-liquid distribution image of experiment and simulation, water-jet velocity of experiment and simulation both matched well with other. The simulation results show that the flow pattern in launch pip
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Umemura, Akira. "Model for the initiation of atomization in a high-speed laminar liquid jet." Journal of Fluid Mechanics 757 (September 29, 2014): 665–700. http://dx.doi.org/10.1017/jfm.2014.511.

Повний текст джерела
Анотація:
AbstractA laminar water jet issuing at high speed from a short circular nozzle into air exhibits various instability features at different distances from the nozzle exit. Near the exit, the effects of gaseous friction and pressure are relatively weak. Deformation of the jet surface in this region is mainly due to the instability of a thin liquid shear layer flow, which relaxes from the velocity profile produced by the nozzle wall. In this paper, a model for this type of instability based on linear stability analysis is investigated to describe the process initiating the formation of liquid lig
Стилі APA, Harvard, Vancouver, ISO та ін.
20

NAKAYAMA, HARUKA, ROCCO PORTARO, CHARLES BASENGA KIYANDA, and HOI DICK NG. "CFD MODELING OF HIGH SPEED LIQUID JETS FROM AN AIR-POWERED NEEDLE-FREE INJECTION SYSTEM." Journal of Mechanics in Medicine and Biology 16, no. 04 (June 2016): 1650045. http://dx.doi.org/10.1142/s0219519416500457.

Повний текст джерела
Анотація:
A liquid jet injector is a biomedical device intended for drug delivery. Medication is delivered through a fluid stream that penetrates the skin. This small diameter liquid stream is created by a piston forcing a fluid column through a nozzle. These devices can be powered by springs or compressed gas. In this study, a CFD simulation is carried out to investigate the fluid mechanics and performance of needle free injectors powered specifically by compressed air. The motion of the internal mechanisms of the injector which propels a liquid jet through an orifice is simulated by the moving boundar
Стилі APA, Harvard, Vancouver, ISO та ін.
21

YAMAGUCHI, Makoto, Yuki KOBAYASHI, Takahiro TOGA, Yuki INOUE, Takahiro SUMI, and Tokitada HASHIMOTO. "Penetration process into a viscoelastic substance by high-speed liquid jet." Proceedings of Conference of Kyushu Branch 2018.71 (2018): B15. http://dx.doi.org/10.1299/jsmekyushu.2018.71.b15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Itoh, Kazuhiro, Yoshiyuki Tsuji, Hideo Nakamura, and Yutaka Kukita. "Free-Surface Shear Layer Instabilities on a High-Speed Liquid Jet." Fusion Technology 37, no. 1 (January 2000): 74–88. http://dx.doi.org/10.13182/fst00-a124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

DAIKOKU, Masatoshi, Takumi YAMAGUCHI, Takahiro OKABE, Takao INAMURA, Tatsuya SOMA, Souta NYUUI, Yasuhiro SAITO, Yosuke MATSUSHITA, Hideyuki AOKI, and Jyunichi FUKUNO. "Atomization Characteristics of Thin Liquid Jet by High-speed Air Flow." Proceedings of Autumn Conference of Tohoku Branch 2017.53 (2017): 306. http://dx.doi.org/10.1299/jsmetohoku.2017.53.306.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Shi, Hong-Hui, and Motoyuki Itoh. "Design and Experiment of a Small High-Speed Liquid Jet Apparatus." Japanese Journal of Applied Physics 35, Part 1, No. 7 (July 15, 1996): 4157–65. http://dx.doi.org/10.1143/jjap.35.4157.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Oyarte Gálvez, Loreto, Maria Brió Pérez, and David Fernández Rivas. "High speed imaging of solid needle and liquid micro-jet injections." Journal of Applied Physics 125, no. 14 (April 14, 2019): 144504. http://dx.doi.org/10.1063/1.5074176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Sugimoto, Taro, Akiko Kaneko, Yutaka Abe, Akihiro Uchibori, Akikazu Kurihara, Takashi Takata, and Hiroyuki Ohshima. "Droplet entrainment by high-speed gas jet into a liquid pool." Nuclear Engineering and Design 380 (August 2021): 111306. http://dx.doi.org/10.1016/j.nucengdes.2021.111306.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

LASHERAS, J. C., E. VILLERMAUX, and E. J. HOPFINGER. "Break-up and atomization of a round water jet by a high-speed annular air jet." Journal of Fluid Mechanics 357 (February 25, 1998): 351–79. http://dx.doi.org/10.1017/s0022112097008070.

Повний текст джерела
Анотація:
The near- and far-field break-up and atomization of a water jet by a high-speed annular air jet are examined by means of high-speed flow visualizations and phase Doppler particle sizing techniques. Visualization of the jet's near field and measurements of the frequencies associated with the gas–liquid interfacial instabilities are used to study the underlying physical mechanisms involved in the primary break-up of the water jet. This process is shown to consist of the stripping of water sheets, or ligaments, which subsequently break into smaller lumps or drops. An entrainment model of the near
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Reddy, Rajesh, and R. Banerjee. "Study of Disintegration of a High Speed Liquid Jet Using VOF Method." Procedia IUTAM 15 (2015): 305–12. http://dx.doi.org/10.1016/j.piutam.2015.04.043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

ARAKI, Mikiya, Chengjun XU, Hiroyuki YAMAMOTO, Seiichi SHIGA, Hisao NAKAMURA, Shigeru HAYASHI, Hideshi YAMADA, and Tomio OBOKATA. "Atomization Mechanism of a High-Speed Liquid Jet Impinging on a Wall." Proceedings of the JSME annual meeting 2003.3 (2003): 65–66. http://dx.doi.org/10.1299/jsmemecjo.2003.3.0_65.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Kim, S., and A. F. Mills. "Condensation on Coherent Turbulent Liquid Jets: Part I—Experimental Study." Journal of Heat Transfer 111, no. 4 (November 1, 1989): 1068–74. http://dx.doi.org/10.1115/1.3250769.

Повний текст джерела
Анотація:
Condensation on coherent turbulent liquid jets was investigated experimentally in order to obtain a data base for the liquid side heat transfer coefficient. Jet breakup was identified by means of high-speed photography. Nozzles were formed from smooth and roughened glass tubes to define the initial turbulence level in the jets. Jet diameters of 3–7 mm and lengths of 2–12 cm were tested at jet velocities of 1.4–12 m/s giving Reynolds numbers of 6000–40,000. Viscosity and surface tension were varied by using ethanol, and water from 277–300 K, as test liquids. The Stanton number was found to be e
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Matthujak, Anirut, Chaidet Kasamnimitporn, Wuttichai Sittiwong, and Kulachate Pianthong. "Visualization of Supersonic Non-Newtonian Liquid Jets." Applied Mechanics and Materials 187 (June 2012): 63–67. http://dx.doi.org/10.4028/www.scientific.net/amm.187.63.

Повний текст джерела
Анотація:
This paper describes the characteristics of supersonic non-Newtonian liquid jets injected in ambient air. The main focus is to visualize three types of time-independent non-Newtonian liquid jet and to describe their behaviors. Moreover, comparisons between their dynamic behaviors with Newtonian liquid jet are reported. The supersonic liquid jets are generated by impact driven method in a horizontal single-stage power gun. Jets have been visualized by the high speed digital video camera and shadowgraph method. Effects of different liquid types on the jet penetration distance, average jet veloci
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Bukharov, A. V., A. F. Ginevsky, and E. V. Vishnevsky. "NUMERICAL SIMULATION OF COOLING JET FROM HYDROGEN AND DEUTERIUM AS APPLICABLE TO INSTALLATIONS ON RECEIVING CRYOGENIC MONODISPERSE TARGETS." Herald of Dagestan State Technical University. Technical Sciences 46, no. 1 (July 16, 2019): 8–18. http://dx.doi.org/10.21822/2073-6185-2019-46-1-8-18.

Повний текст джерела
Анотація:
Objectives. Development of a model and carrying out numerical calculations for the cooling of thin jets of Hydrogen and Deuterium as applicable to installations on receiving cryogenic monodisperse targets.Methods. To achieve this purpose, the model of cryogenic jet outflow into the low pressure area was created and using PHOENICS software the temperature change of the surface and the interior of a jet over time for various external parameters is investigated through the numerical method.Result. The dependences of temperature changes of liquid Hydrogen and Deuterium jets along the jet surface a
Стилі APA, Harvard, Vancouver, ISO та ін.
33

GÓMEZ-LEDESMA, R., K. T. KIGER, and J. H. DUNCAN. "The impact of a translating plunging jet on a pool of the same liquid." Journal of Fluid Mechanics 680 (April 26, 2011): 5–30. http://dx.doi.org/10.1017/jfm.2011.70.

Повний текст джерела
Анотація:
An experimental study on the impact of a translating two-dimensional transient jet on an initially quiescent liquid pool is studied experimentally using high-speed cinematic visualization and particle image velocimetry methods. Six jet conditions (covering a range of jet thicknesses, velocities and inclination angles relative to vertical) are considered, with measurements performed over a range of horizontal translation speeds for each jet condition. For all conditions studied herein, the jet penetrates into the pool and forms two craters – one upstream and one downstream of the jet. Gravity a
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Zhu, Xia, Taisuke Satoh, Hiromichi Toyota, Shinfuku Nomura, Yukiharu Iwamoto, and Pria Gautama. "Basic Characteristics of In-Liquid Plasma Jet and Electrode Damage." Key Engineering Materials 749 (August 2017): 76–80. http://dx.doi.org/10.4028/www.scientific.net/kem.749.76.

Повний текст джерела
Анотація:
The most progress towards a practical method of fusing municipal waste incineration ash has been in the use of a plasma jet that employs arc discharge, a form of thermal plasma. However, a remaining problem is that stable plasma generation is prevented by melting of the nozzle of the plasma-jet torch by the high-temperature plasma flow. With the objective of developing high-speed fusion treatment for waste materials using an in-liquid plasma jet, basic research was conducted on plasma stability and the durability of plasma-jet torches, including electrodes and nozzles. Basic plasma jet charact
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Xue, Xiao Chun, Yong Gang Yu, and Qi Zhang. "Experimental Study on Expansion Process of High Pressure Twin Combustion-Gas Jets in Liquid." Applied Mechanics and Materials 148-149 (December 2011): 212–15. http://dx.doi.org/10.4028/www.scientific.net/amm.148-149.212.

Повний текст джерела
Анотація:
In order to investigate the multipoint ignition process and the combustion stability controlling mechanism of the bulk-loaded liquid propellant gun, the cylindrical stepped-wall observation chambers and cylindrical observation chambers are designed. The expansion process and interaction of high-speed twin combustion-gas jets in liquid are studied by high speed photographic system. The influence of chamber structure, nozzle diameter, dual-orifice interval, jet pressure on twin gas jets expansion process has been discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Kanemura, Takuji, Sachiko Yoshihashi-Suzuki, Hiroo Kondo, Hirokazu Sugiura, Nobuo Yamaoka, Mizuho Ida, Hiroo Nakamura, Izuru Matsushita, Takeo Muroga, and Hiroshi Horiike. "Characteristics of free-surface wave on high-speed liquid lithium jet for IFMIF." Journal of Nuclear Materials 417, no. 1-3 (October 2011): 1303–6. http://dx.doi.org/10.1016/j.jnucmat.2010.12.275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Johnston, A. P., and K. M. Isaac. "SPRAY EVOLUTION OF A COFLOWING ROUND LIQUID JET IN HIGH-SPEED AIR FLOW." Atomization and Sprays 11, no. 4 (2001): 305–16. http://dx.doi.org/10.1615/atomizspr.v11.i4.10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Kopyev, E. P., I. S. Anufriev, Ya A. Osintsev, and M. A. Mukhina. "Investigation of high speed steam jet effect on combustion of substandard liquid hydrocarbons." Journal of Physics: Conference Series 1369 (November 2019): 012035. http://dx.doi.org/10.1088/1742-6596/1369/1/012035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Balasubramanyam, M. S., and C. P. Chen. "Modeling liquid jet breakup in high speed cross-flow with finite-conductivity evaporation." International Journal of Heat and Mass Transfer 51, no. 15-16 (July 2008): 3896–905. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.11.054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Dong, Ping, Dong Cheng, Huixiang Jing, Guanghua Li, Bingju Lu, and Ximeng Wang. "Flow Structures of Submerged Gas Jet in Liquid Currents." E3S Web of Conferences 299 (2021): 03011. http://dx.doi.org/10.1051/e3sconf/202129903011.

Повний текст джерела
Анотація:
The flow structure of the submerged gas jet in liquid currents is important to engineering applications. In the present study, the development of a submerged gas jet subjected to liquid current is experimentally investigated to evaluate the effects of the current on the underwater gas jet evolution. A full-scale experimental setup is designed for submerged gas jet release and dispersion in the liquid currents with different velocities. The flow structures of the gas jet are captured by shadow photography combined with a high speed video camera. The experimental images are processed to extract
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Tamaddon, Amir Hossein, Naser Belmiloud, Geert Doumen, Herbert Struyf, Paul W. Mertens, and Marc M. Heyns. "Evaluation of High-Speed Linear Air-Knife Based Wafer Dryer." Solid State Phenomena 195 (December 2012): 239–42. http://dx.doi.org/10.4028/www.scientific.net/ssp.195.239.

Повний текст джерела
Анотація:
With the downscaling of devices, due to device geometry shrinkage, the total number of cleaning steps has increased dramatically. As a result, the number of drying cycles after cleaning has increased as well. As the device shrinks with the integration density increase, it is noteworthy that a perfect drying efficiency is mandatory to obtain a high performance device [. Basically, the mechanism of wafer drying in semiconductor industry can be explained as: first reducing the amount of liquid on the wafer surface by mechanical forces. There are some approaches for removing the liquid such as spi
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Shi, S. X., D. G. Xi, J. R. Qin, N. Liu, and G. C. Shu. "Unstable Asymmetric Modes of a Liquid Jet." Journal of Fluids Engineering 121, no. 2 (June 1, 1999): 379–83. http://dx.doi.org/10.1115/1.2822217.

Повний текст джерела
Анотація:
This paper reports the results of a linear instability analysis for a viscous liquid jet injecting into a quiescent inviscid gas medium with three-dimensional disturbances. A dispersion equation that accounts for the growth of asymmetric waves is derived, and the maximum rates of growth of various modes are calculated. The asymmetric breakup phenomenon of the jet and its structures at different modes is also studied by using a high-speed multi-frame holographic system. The theoretical predictions agree well with the experimental observations. The results of this study thus confirm the existenc
Стилі APA, Harvard, Vancouver, ISO та ін.
43

ZHU, YONGGANG, HASAN N. OĞUZ, and ANDREA PROSPERETTI. "On the mechanism of air entrainment by liquid jets at a free surface." Journal of Fluid Mechanics 404 (February 10, 2000): 151–77. http://dx.doi.org/10.1017/s0022112099007090.

Повний текст джерела
Анотація:
The process by which a liquid jet falling into a liquid pool entrains air is studied experimentally and theoretically. It is shown that, provided the nozzle from which the jet issues is properly contoured, an undisturbed jet does not entrap air even at relatively high Reynolds numbers. When surface disturbances are generated on the jet by a rapid increase of the liquid flow rate, on the other hand, large air cavities are formed. Their collapse under the action of gravity causes the entrapment of bubbles in the liquid. This sequence of events is recorded with a CCD and a high-speed camera. A bo
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Yin, Zhaoqin, Zemin Huang, Chengxu Tu, Xiaoyan Gao, and Fubing Bao. "Dynamic Characteristics of Bubble Collapse Near the Liquid-Liquid Interface." Water 12, no. 10 (October 8, 2020): 2794. http://dx.doi.org/10.3390/w12102794.

Повний текст джерела
Анотація:
Bubble collapse near the liquid-liquid interface was experimentally studied in this paper, and the dynamic evolution of a laser-induced bubble (generation, expansion, and collapse) and the liquid-liquid interface (dent and rebound) were captured by a high-speed shadowgraph system. The effect of the dimensionless distance between the bubble and the interface on the direction of the liquid jet, the direction of bubble migration, and the dynamics of bubble collapse were discussed. The results show that: (1) The jet generated during bubble collapse always directs toward the denser fluid; (2) bubbl
Стилі APA, Harvard, Vancouver, ISO та ін.
45

TARANENKO, ANTON, MARKUS BUSSMANN, and HONGHI TRAN. "A laboratory study of recovery boiler smelt shattering." August 2014 13, no. 8 (September 1, 2014): 19–26. http://dx.doi.org/10.32964/tj13.8.19.

Повний текст джерела
Анотація:
A scaled-down experimental apparatus was built to examine smelt shattering during typical recovery boiler operations. Water-glycerine solutions and air were used in place of smelt and steam. A high-speed camera and image processing software were used to record and quantify liquid shattering in terms of droplet number and size distributions, as a function of air velocity, air nozzle position, liquid flow rate, and liquid viscosity. The results showed that increasing shatter jet velocity reduced average droplet size, increasing the liquid flow rate increased droplet size, and placing the shatter
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Cai, Youer, Xudong Zu, Yaping Tan, and Zhengxiang Huang. "Study on the Interference Process of Liquid Radial Reflux on the Stability of a Shaped Charge Jet." Applied Sciences 11, no. 17 (August 30, 2021): 8044. http://dx.doi.org/10.3390/app11178044.

Повний текст джерела
Анотація:
The process of liquid radial reflux interference during jet penetration in a liquid-filled composite structure is divided in this study into three stages: bottom plate reflection interference, side-wall reflection interference, and side-wall secondary reflection interference. The calculation model of the velocity interval of the disturbed jet and the residual penetration depth of the jet has been established through theoretical analysis. Results show that the liquid-filled composite structure can interfere with the high-speed section of the shaped charge jet. The accuracy of the theoretical an
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Oda, Tetsuya, Hiroyuki Hiroyasu, and Keiya Nishida. "Characteristics of Liquid Jet Atomization across a High-Speed Airstream. 3rd Report, Breakup Process of Liquid Jet and Internal Structure of Spray." Transactions of the Japan Society of Mechanical Engineers Series B 59, no. 560 (1993): 1408–13. http://dx.doi.org/10.1299/kikaib.59.1408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Naz, Muhammad Yasin, Shaharin A. Sulaiman, Bambang Ari-Wahjoedi, and Ku Zilati Ku Shaari. "Visual Study of Hollow Cone Water Spray Jet Breakup Process at Elevated Temperatures and Pressures." Applied Mechanics and Materials 465-466 (December 2013): 485–89. http://dx.doi.org/10.4028/www.scientific.net/amm.465-466.485.

Повний текст джерела
Анотація:
The liquid jet breakup is a ubiquitous phenomenon in nature and a classic problem in hydrodynamics. The understanding of the jet breakup mechanism of hot liquids is still a challenge for researchers. The objective of this work was to understand and control the hot water spray jet breakup mechanism at moderate pumping pressures and elevated temperature. For this purpose, the visual and comparative studies were conducted on hollow cone water spray patterns generated by three hollow cone spray nozzles which were installed in an in-house built intermittently forced liquid spraying system. Using a
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Wang, Cheng-Peng, Ji-Song Zhao, Yun Jiao, and Ke-Ming Cheng. "Measurement of surface shear stress vector beneath high-speed jet flow using liquid crystal coating." Modern Physics Letters B 32, no. 12n13 (May 10, 2018): 1840029. http://dx.doi.org/10.1142/s0217984918400298.

Повний текст джерела
Анотація:
The shear-sensitive liquid crystal coating (SSLCC) technique is investigated in the high-speed jet flow of a micro-wind-tunnel. An approach to measure surface shear stress vector distribution using the SSLCC technique is established, where six synchronous cameras are used to record the coating color at different circumferential view angles. Spatial wall shear stress vector distributions on the test surface are obtained at different velocities. The results are encouraging and demonstrate the great potential of the SSLCC technique in high-speed wind-tunnel measurement.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

VARGA, C. M., J. C. LASHERAS, and E. J. HOPFINGER. "Initial breakup of a small-diameter liquid jet by a high-speed gas stream." Journal of Fluid Mechanics 497 (December 25, 2003): 405–34. http://dx.doi.org/10.1017/s0022112003006724.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!