Добірка наукової літератури з теми "High voltage fragmentation technology"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "High voltage fragmentation technology".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "High voltage fragmentation technology":

1

Yan, Fazhi, Jiang Xu, Shoujian Peng, Quanle Zou, Bin Zhou, Kun Long, and Zhiguo Zhao. "Breakdown process and fragmentation characteristics of anthracite subjected to high-voltage electrical pulses treatment." Fuel 275 (September 2020): 117926. http://dx.doi.org/10.1016/j.fuel.2020.117926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lin, Baiquan, Xiangliang Zhang, Fazhi Yan, Chuanjie Zhu, and Chang Guo. "Improving the Conductivity and Porosity of Coal with NaCl Solution for High-Voltage Electrical Fragmentation." Energy & Fuels 32, no. 4 (March 28, 2018): 5010–19. http://dx.doi.org/10.1021/acs.energyfuels.8b00535.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kovalchuk, B. M., A. V. Kharlov, V. A. Vizir, V. V. Kumpyak, V. B. Zorin, and V. N. Kiselev. "High-voltage pulsed generator for dynamic fragmentation of rocks." Review of Scientific Instruments 81, no. 10 (October 2010): 103506. http://dx.doi.org/10.1063/1.3497307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mativenga, Paul T., Norshah A. Shuaib, Jack Howarth, Fadri Pestalozzi, and Jörg Woidasky. "High voltage fragmentation and mechanical recycling of glass fibre thermoset composite." CIRP Annals 65, no. 1 (2016): 45–48. http://dx.doi.org/10.1016/j.cirp.2016.04.107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cho, Sang Ho, Sang Sun Cheong, Mitsuhiro Yokota, and Katsuhiko Kaneko. "The Dynamic Fracture Process in Rocks Under High-Voltage Pulse Fragmentation." Rock Mechanics and Rock Engineering 49, no. 10 (July 9, 2016): 3841–53. http://dx.doi.org/10.1007/s00603-016-1031-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Smit, Johan J., Thomas Andritsch, and Oleg A. Chevtchenko. "New materials in high voltage technology." e & i Elektrotechnik und Informationstechnik 129, no. 4 (June 2012): 180–85. http://dx.doi.org/10.1007/s00502-012-0025-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Santos, P. M., A. P. Casimiro, M. Lança, and M. I. Castro Simas. "High-voltage solutions in CMOS technology." Microelectronics Journal 33, no. 8 (August 2002): 609–17. http://dx.doi.org/10.1016/s0026-2692(02)00041-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Saunders, MP, PE Holmes, and BA Boxall. "A mixed technology high voltage process." Physica B+C 129, no. 1-3 (March 1985): 260–64. http://dx.doi.org/10.1016/0378-4363(85)90581-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schneider, Thomas. "From Low to High Voltage Technology." MTZ worldwide 82, no. 4 (March 12, 2021): 14–15. http://dx.doi.org/10.1007/s38313-021-0646-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Leißner, T., D. Hamann, L. Wuschke, H. G. Jäckel, and U. A. Peuker. "High voltage fragmentation of composites from secondary raw materials – Potential and limitations." Waste Management 74 (April 2018): 123–34. http://dx.doi.org/10.1016/j.wasman.2017.12.031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "High voltage fragmentation technology":

1

Benmamas, Arezki Lotfi. "Valorisation des systèmes d’éclairage à LED en fin de cycle de vie." Thesis, Troyes, 2021. http://www.theses.fr/2021TROY0044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Si l’éclairage solide permet une réduction conséquente de la consommation d’électricité, reste posé la problématique des dispositifs à base de LED. Cette thèse associée au projet RECYLED a consisté à identifier puis à développer des méthodes et des procédés en fonction des typologies des dispositifs (lampes, tubes et luminaires) et ce en vue d’une valorisation et d’une réutilisation de certains composants élémentaires. L’objectif, par une approche globale, incluant à la fois les aspects techniques, économiques et environnementaux était d’aboutir à un taux de recyclage de 80%. Trois scénarii ont été identifiés pour le recyclage des lampes et des tubes à LED, la réutilisation, le broyage et le désassemblage des lampes et des tubes à LED. Des études des déchets et des produits commercialisés, ont été menées afin de caractériser le gisement et de dimensionner les solutions de traitement proposées et estimer le potentiel de valorisation global. Concernant le désassemblage identifié comme le point bloquant, la technologie des puissances pulsées reposant sur la fragmentation est proposée. En ce qui concerne les tubes des solutions purement mécaniques ont été validées. Les méthodes proposées permettent d'obtenir un taux de valorisation matière de 74% pour les lampes et 94% pour les tubes. Ces taux sont à relier avec les prévisions estimées pour 2030 dans le cadre de ce travail qui aboutissent à un gisement annuel maximal évalué pour les lampes à LED à 2600 tonnes et pour les tubes et dalles à LED à 1600 tonnes
While solid-state lighting allows for a significant reduction in electricity consumption, the problem of the end-of-life of the LED-based devices remains. This thesis associated with the RECYLED project consisted in identifying and then developing methods and processes according to the typologies of the devices (lamps, tubes and luminaires) with a view to recovery and reuse of certain elementary components. The objective, through a comprehensive approach, including both technical, economic and environmental aspects, was to achieve a recycling rate of 80%. Three scenarios have been identified for the recycling of LED lamps and tubes, reuse, shredding and disassembly. Studies of waste and marketed products have been carried out in order to characterize the deposit and size the proposed treatment solutions and estimate the overall recovery potential. Regarding the disassembly identified as the blocking point, the technology of pulsed powers based on fragmentation is proposed. With regard to the tubes, purely mechanical solutions have been validated. The proposed methods make it possible to obtain a material recovery rate of 74% for the lamps and 94% for the tubes. These rates are to be linked with the forecasts estimated for 2030 as part of this work, which lead to a maximum annual deposit estimated for LED lamps at 2600 tons and for LED tubes and panels at 1600 tons
2

Farag, Bassem. "High Voltage DC Arc Detection Model." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-358478.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
High voltage (HV) battery systems are widely used in many applications nowadays. And due to the safety concerns regarding lithium-ion cells, the safety of the lithium-ion based battery systems is vital. One crucial danger for lithium-ion cells is heat, And as arcs formation can lead to heat generation within the system, it is important to detect arcs that take place frequently within HV battery systems. This thesis is done in cooperation with Northvolt AB and it focuses on assessing the ability to detect the occurrence of arcs in the system, but it does not focus on preventing arcs.The goal is to build a detection system to identify the occurrence of arcs, both within the battery system and in the connection between the battery system and the load (vehicle). The detection circuit should not affect the ability of the isolation measurement unit inside the system, and the detection system should be protected at all times. The circuit was designed and tested using LTSPice software. This is due to the absence of a ready system to test the circuit against at Northvolt. The system was able to detect arcs both within the battery system and when connecting the battery system to the vehicle. Additionally, as required by Northvolt, the detection system is designed without affecting the isolation measurement unit and the detection system is kept safe at all times by using an isolation circuit. Future work is recommended to generalize the detection system so it can be used in different high voltage applications. This can be done by testing the system against other HV systems and updating the filter and amplifier’s values, as well as the software thresholds. Additionally, it is recommended that the software module is calibrated against the real system during hardware testing. This calibration will optimize the software module and, thus, result in better detection.
3

Bahnam, Nadeen. "Container closure integritytesting with High Voltage LeakDetection." Thesis, Uppsala universitet, Nanoteknologi och funktionella material, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-439566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
There are various methods that can be used for Container Closure Integrity Testing (CCIT).Each method has its pros and cons.The choice of the CCIT-method depends on various factors such as the material of the primary packaging and product properties. High Voltage Leak Detection(HVLD) is an effective method. The sensitivity of the method is quite high but its is unclear whether it can detect all the hole sizes that may entails a risk for microbial contamination. The  theoretical calculations and practical experiments shows that HVLD can detect holes in different positions and it can detect holes that are a few micrometers. If HVLD detect hole size that are 5 micrometers, it means that alla sizes that can make risk for microbial contamination for productsmanufacturedonAstraZeneca PET BFS can be detected with HVLD.
4

Jędrzejewski, Piotr. "Modelling the European High-voltage electricity transmission." Thesis, KTH, Energiteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-284152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This Master’s thesis describes modelling of the cross-border electricity transmission network of Europe. Under this work an extension of The Open Source Energy Model Base for the European Union (OSeMBE) was developed, implementing interconnections to the already existing model. The model is built using the Open Source Energy Modelling System (OSeMOSYS). The purpose of the model is to find cost optimal shape of the electricity system of Europe in the modelling period from 2015 to 2050. The model was used to analyse plans for the development of the electricity interconnection network, defined by the European Union on the list of Projects of Common Interests. For the thesis four scenarios of the European electricity system’s future development were modelled. The aim was to analyse on which borders new interconnection capacity would be beneficial and to test the influence of the interconnection development on the whole electricity system, particularly generation capacities and CO2 emissions. The electricity flows were analysed on each border. For a better overview in the analysis four regions were defined. The regions are adequate to the four priority corridors for electricity defined in Trans-European Networks for Energy (TEN-E). The major finding of the scenario that optimized the capacity of the interconnections in Europe, was that only 16% of capacities planned as the PCI are needed to be built. Most of those capacities should be developed in the northern Europe, particularly on the subsea borders Germany-Norway, United Kingdom-Norway, Poland-Lithuania, but also land ones Finland-Sweden, Denmark-Germany. The analysis also included utilization factors of the interconnection lines. However, due to the simplifications and limitation of modelling tool OSeMOSYS, the results needs to be taken with certain dose of caution and may serve only for indicating the direction of further analysis. The work conducted under this Master’s thesis, might also be a base for the future work, such as deeper look on the already obtained data with purpose to find relationship between electricity generation sources being utilized and interconnections utilization. The model might be also improved by implementation interconnection representation to the borders which were omitted here due to the lack of cost data.
Detta examensarbetebeskriver modellering av Europas gränsöverskridande elektriska transmissionsnät. Under detta arbete utvecklades en utvidgning av Open Source Energy Model Base för Europeiska unionen (OSeMBE) för implementering av sammankopplingar med den redan existerande modellen. Modellen är byggd med hjälp av Open Source Energy Modeling System (OSeMOSYS). Syftet med modellen är att hitta en kostnadseffektiv form av Europas elsystem under modelleringsperioden 2015 till 2050. Modellen användes för att validera planer för utveckling av sammankoppling för elnätet, definierade av Europeiska unionen i listan över projekt av gemensamt intresse. Under denna avhandling modellerades fyra scenarier för det europeiska elsystemets framtida utveckling. Målet för scenarierna var att analysera för vilka gränser en ny sammankopplingskapacitet skulle vara till nytta, samt att testa påverkan av samtrafikutvecklingen på hela elsystemet, särskilt produktionskapacitet och koldioxidutsläpp. Därefter analyserades flödena av elektricitet vid varje gräns, och för att förenkla analysen delades området upp i fyra regioner. Regionerna är uppdelade i enlighet med de fyra prioriterade korridorerna för elektricitet, definierade i Transeuropeiska Nät för Energi (TEN-E). Det huvudsakligaresultatet i scenariot som optimerade kapaciteten för sammankopplingarna i Europa var att endast 16% av den kapacitet som planerades som PCI behöver byggas. De flesta av dessa kapaciteter bör utvecklas i norra Europa, särskilt vid havsgränserna Tyskland-Norge, Storbritannien-Norge, Polen-Litauen, men också Finland-Sverige och Danmark-Tyskland. Även användningsfaktorer för samtrafikledningarna analyserades i arbetet.
5

Aliahmad, Mehran. "High voltage circuits for short loop SLICs in a low voltage submicron BiCMOS technology." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0006/NQ41393.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Rashid, Suhail Jeremy. "High voltage packaging technology for wide bandgap power semiconductor devices." Thesis, University of Cambridge, 2008. https://www.repository.cam.ac.uk/handle/1810/252098.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wallström, Stina. "Biofilms on silicone rubber for outdoor high voltage insulation." Doctoral thesis, KTH, Fiber- och polymerteknik, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Silicone rubber high voltage insulators are sometimes colonised by microorganisms which form a biofilm on the surface of the infected unit. In this work insulators exposed to the outdoor environment in Sweden, Sri Lanka and Tanzania respectively have been studied. The biofilms colonising the insulators were shown to be of roughly the same composition regardless of their origin. Algae in association with bacteria dominated the biofilms and provided nutrition to mold growth. The isolated microorganisms were further used to study the effect of a biofilm on different silicone rubber materials. New tools for diagnosing biological growth on polymeric materials were developed and used to analyse the silicone rubber samples. No evidence of biodegradation of the polydimethylsiloxane (PDMS) molecule has been found in this work. However, this does not mean that PDMS rubbers used in high voltage insulators can be called bioresistant. Silicone insulating materials always contain additives and these may promote or hinder growth. For this reason, an extensive test program was developed, in order to evaluate the effect of different additives on the degree of biological growth. The program spanned from fast and easy methods, useful for screening large amount of samples, to the construction of specially designed microenvironment chambers in which mixed biofilms, similar to those formed on the surface of silicone rubber insulators in the field, were successfully grown. The test program showed that the flame retardant zinc borate protected the materials, whereas alumina trihydrate (ATH) did not hinder biological growth. On the contrary, environmental scanning microscopy (ESEM) in combination with X-ray energy dispersive spectroscopy (EDS) showed that the surface roughening caused by the addition of ATH to the silicone rubber matrix made the materials more difficult to clean. Furthermore when the hydrophobic surface of a silicone rubber insulator is covered by a hydrophilic biofilm this leads to a reduction of the surface hydrophobicity of the material. This may alter the electrical properties of the insulator. It is therefore important to develop methods to identify biofouled units. In this work, laser-induced fluorescence (LIF) spectroscopy was explored as a tool for the detection of biofilms on silicone rubbers. The experiments revealed that weak traces of algae or fungal growth, even those not visible to the naked eye, could be detected by this technique. In addition, it was shown that photography and subsequent digital image analysis could be utilised to estimate the area covered by biofilm growth. The results obtained indicate that LIF spectroscopy in combination with image analysis could be used for field diagnostics of biological growth on insulators in service.
8

Salemi, Arash. "Silicon Carbide Technology for High- and Ultra-High-Voltage Bipolar Junction Transistors and PiN Diodes." Doctoral thesis, KTH, Integrerade komponenter och kretsar, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-197913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Silicon carbide (SiC) is an attractive material for high-voltage and high-temperature electronic applications owing to the wide bandgap, high critical electric field, and high thermal conductivity. High- and ultra-high-voltage silicon carbide bipolar devices, such as bipolar junction transistors (BJTs) and PiN diodes, have the advantage of a low ON-resistance due to conductivity modulation compared to unipolar devices. However, in order to be fully competitive with unipolar devices, it is important to further improve the off-state and on-state characteristics, such as breakdown voltage, leakage current, common-emitter current gain, switching, current density, and ON-resistance. In order to achieve a high breakdown voltage with a low leakage current, an efficient and easy to fabricate junction edge protection or termination is needed. Among different proposed junction edge protections, a mesa design integrated with junction termination extensions (JTEs) is a powerful approach. In this work, implantation-free 4H-SiC BJTs in two classes of voltage, i.e., 6 kV-class and 15 kV-class with an efficient and optimized implantation-free junction termination (O-JTE) and multiple-shallow-trench junction termination extension (ST-JTE) are designed, fabricated and characterized. These terminations result in high termination efficiency of 92% and 93%, respectively. The 6 kV-class BJTs shows a maximum current gain of β = 44. A comprehensive study on the geometrical design is done in order to improve the on-state performances. For the first time, new cell geometries (square and hexagon) are presented for the SiC BJTs. The results show a significant improvement of the on-state characteristics because of a better utilization of the base area. At a given current gain, new cell geometries show a 42% higher current density and 21% lower ON-resistance. The results of this study, including an optimized fabrication process, are utilized in the 15 kV-class BJTs where a record high current gain of β = 139 is achieved. Ultra-high-voltage PiN diodes in two classes of voltage, i.e., 10+ kV using on-axis 4H-SiC and 15 kV-class off-axis 4H-SiC, are presented. O-JTE is utilized for 15 kV-class PiN diodes, while three steps ion-implantation are used to form the JTE in 10+ kV PiN diodes. Carbon implantation followed by high-temperature annealing is also performed for the 10+ kV PiN diodes in order to enhance the lifetime. Both type diodes depict conductivity modulation in the drift layer. No bipolar degradation is observed in 10+ kV PiN diodes.

QC 20161209

9

Livermore, Luke. "Integration of offshore wind farms through High Voltage Direct Current networks." Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/42892/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The integration of offshore wind farms through Multi Terminal DC (MTDC) networks into the GB network was investigated. The ability of Voltage Source Converter (VSC) High Voltage Direct Current (HVDC) to damp Subsynchronous Resonance (SSR) and ride through onshore AC faults was studied. Due to increased levels of wind generation in Scotland, substantial onshore and offshore reinforcements to the GB transmission network are proposed. Possible inland reinforcements include the use of series compensation through fixed capacitors. This potentially can lead to SSR. Offshore reinforcements are proposed by two HVDC links. In addition to its primary functions of bulk power transmission, a HVDC link can be used to provide damping against SSR, and this function has been modelled. Simulation studies have been carried out in PSCAD. In addition, a real-time hardware-in-the-loop HVDC test rig has been used to implement and validate the proposed damping scheme on an experimental platform. When faults occur within AC onshore networks, offshore MTDC networks are vulnerable to DC overvoltages, potentially damaging the DC plant and cables. Power reduction and power dissipation control systems were investigated to ride through onshore AC faults. These methods do not require dedicated fast communication systems. Simulations and laboratory experiments are carried out to evaluate the control systems, with the results from the two platforms compared.
10

Panji, Arikson Heraldus. "Optimization of High Voltage Cable Dimension in Scania Electric Vehicle’s Systems." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
With the increasing demand for electrified vehicles, the demand for electrical components, including cables, is rising too. Thus, it is important to develop a method to optimize the cable sizing to ensure the cable is technically robust and economically efficient. The aim of this project is to study and evaluate different cables’ designs to find the optimum dimension for “high voltage” class (automotive voltage class B) cables in the electrical vehicle system. Three important technical aspects in evaluating the optimum cross-section area (CSA) are the ampacity of the cable, short-circuit withstand capability and voltage drop.In this project, the ampacity of a cable placed in air is calculated by the analytical method based on IEC 60287 and by a finite-element simulation. These results are verified against direct measurements using a dc source and load. In DC calculation, the similarity of all three methods is high, within 96%. The formation of the cable also affects the ampacity of the cable. For DC currents, the vertical formation has a higher ampacity than the horizontal formation, by almost 2%. For AC currents, the trefoil formation has a higher ampacity than the horizontal and vertical formation, by around 6-9%.Calculations of short circuit withstand capability and voltage drop were performed to ensure cable performance. The larger CSA corresponds to both higher short circuit capability and lower voltage drop. In a short circuit, a duration around 0.5 s is critical since there is a significant difference between short circuit withstand capability before and after this. Voltage drop calculation is performed to ensure that the combination of CSA and length does not exceed 3% voltage drop at the load end side of the circuit. The Voltage drop is not found to be an important factor to consider. Based on those three factors, the optimization process is described with a flowchart.
Efterfrågan på elfordon ökar, och därmed ökar också efterfrågan på den elektriska komponenten. Därför är det viktigt att utveckla en metod för att optimera kabelstorleken så att kabeln är tekniskt robust och ekonomiskt effektiv. Syftet med detta projekt är att studera och utvärdera olika kablarnas konstruktioner för att hitta den optimala dimensionen för högspänningsklass (spänningsklass B) i elfordonssystemet. Tre viktiga tekniska aspekter vid utvärderingen av den optimala kabelstorleken är kabelns kapacitet, kortslutningsförmåga och spänningsfall.I detta projekt placeras kabeln i luften. Ampaciteten beräknas med hjälp av en analytisk metod baserad på IEC 60287 och en simulering med finita element metoden. Dessa resultat verifieras mot direkta mätningar med hjälp av en likströmskälla och elektrisk belastning. För DC-beräkning är likheten för alla tre metoderna mycket hög. Bildningen av kabeln påverkar också kabelns ampacitet. För DC-strömmar har den vertikala formationen en högre ampacitet än den horisontella formationen för nästan 2%. För växelströmmar har trefoilformationen en högre ampacitet än den horisontella och vertikala formationen med 6-9 %.Kortslutningsförmågan och spänningsfallberäkningen utfördes för att säkerställa kabelprestanda. En större CSA innebär högre kortslutningsförmåga och lägre spänningsfall. Spänningsfallberäkning utförs för att begränsa kabellängden för att säkerställa ett maximalt 3% spänningsfall vid kretsens laständsida. Spänningsfallet är en viktig faktor att beakta. Med hjälp av dessa tre faktorer beskrivs optimeringsprocessen med ett flödesschema.

Книги з теми "High voltage fragmentation technology":

1

Kind, Dieter, and Hermann Kärner. High-Voltage Insulation Technology. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-663-14090-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Blume, Steven Warren. High voltage protection for telecommunications. Hoboken, N.J: Wiley-IEEE Press, 2011.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kind, Dieter. High-voltage insulation technology: Textbook for electrical engineers. Braunschweig: Vieweg, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dai, Liang. Design of high performance CMOS voltage-controlled oscillators. Boston: Kluwer Academic Publishers, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chaudhuri, Nilanjan Ray. Integrating Wind Energy to Weak Power Grids using High Voltage Direct Current Technology. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03409-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Waltari, Mikko E. Circuit techniques for low-voltage and high-speed A/D converters. Boston: Kluwer Academic Publishers, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Langen, Klaas-Jan de. Compact low-voltage and high-speed CMOS, BiCMOS, and bipolar operational amplifiers. Boston, MA: Kluwer Academic Publishers, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Langen, Klaas-Jan de. Compact low-voltage and high-speed CMOS, BiCMOS, and bipolar operational amplifiers. Boston: Kluwer Academic Publishers, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Langen, Klaas-Jan de. Compact low-voltage and high-speed CMOS, BiCMOS, and bipolar operational amplifiers. Boston: Kluwer Academic Publishers, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Peschke, E. Cable systems for high and extra-high voltage: Development, manufacture, testing, installation and operation of cables and their accessories. Erlangen: Publicis MCD Vlg., 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "High voltage fragmentation technology":

1

Kind, Dieter, and Hermann Kärner. "Electric Strength." In High-Voltage Insulation Technology, 1–61. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-663-14090-0_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kind, Dieter, and Hermann Kärner. "Insulating Materials in High-Voltage Technology." In High-Voltage Insulation Technology, 62–96. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-663-14090-0_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kind, Dieter, and Hermann Kärner. "Design and Manufacture of High-Voltage Equipment." In High-Voltage Insulation Technology, 97–158. Wiesbaden: Vieweg+Teubner Verlag, 1985. http://dx.doi.org/10.1007/978-3-663-14090-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nagai, K. "High Voltage Technology in Space." In Environmental and Space Electromagnetics, 56–59. Tokyo: Springer Japan, 1991. http://dx.doi.org/10.1007/978-4-431-68162-5_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Minkner, Ruthard, and Joachim Schmid. "Insulation for High Voltage Equipment." In The Technology of Instrument Transformers, 1–41. Wiesbaden: Springer Fachmedien Wiesbaden, 2021. http://dx.doi.org/10.1007/978-3-658-34863-2_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Owen, Michael J. "Surface Properties of Silicone High Voltage Insulators." In Science and Technology of Polymers and Advanced Materials, 99–106. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-0112-5_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Babouche, Randa, Nourelddine Henini, Kamel Saoudi, and Taki Eddine Ameur. "Sliding Mode Control of Voltage Source Converter Based High Voltage Direct Current System." In Advances in Green Energies and Materials Technology, 209–14. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0378-5_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ricotti, Giulio, Dario Bianchi, Fabio Quaglia, and Sandro Rossi. "Design and Technology for Very High-Voltage Opamps." In Efficient Sensor Interfaces, Advanced Amplifiers and Low Power RF Systems, 175–86. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21185-5_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Schurig, E., M. Demierre, C. Schott, and R. S. Popovic. "A Vertical Hall Device in CMOS High-Voltage Technology." In Transducers ’01 Eurosensors XV, 140–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59497-7_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Qian, Feng, Wenqian Qiu, Jian Ding, Chunxiu An, Hongbo Liu, Jianhua Chen, and Yang Shen. "Design of Ultra-High-Voltage Alternating Current (UHVAC) Substation." In Advanced Topics in Science and Technology in China, 1201–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-54575-1_25.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "High voltage fragmentation technology":

1

Arroyos, Marina Roche, Javier Arturo Corea Araujo, Didac Sabria, Vinayak Padmaji, Pablo Cano, and Patrice Garmier. "Model based component co-optimization and scalability of virtual testing for electric drivetrain vehicle." In FISITA World Congress 2021. FISITA, 2021. http://dx.doi.org/10.46720/f2021-dgt-045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
"Within the automotive product development cycle virtual and heterogeneous testing is becoming increasingly established through component, module and vehicle-level simulation. Though a number of standards in this field have been established, models are still mostly created in a fragmented manner: using domain-specific tools to create, manage and execute simulations without standardization of the content of the functional interfaces (FMI does only standardize the format) and limited scalability. This fragmentation leads to a lot of redundant effort as models of the same component or system are re-created several times. HIFI-ELEMENTS project addressed this fragmentation through two main mechanisms: Firstly, developing, validating and publishing a recommendation for standardization of model interfaces for common e-drive components (e-machine, inverter, battery, DC/DC converter, thermal management) and implementation of compliant versions of existing models. Secondly, implementing a seamless workflow linking extended versions of existing tools with effort-saving automated methods for model parameterization and test case generation. This seamless integration will substantially increase the number of integrations and test cases that can be early validated through simulation, leading to optimized efficiency designs and development effort reduction. The standardization also guarantees scalability among fidelity levels, from concept design to XiL through detailed modelling. In this paper we present the results of the Use Case C: Component co-optimization. The purpose of use cases is the demonstration of the advantages of the standardized models and workflow industry relevant scenarios. The work content performed in the use case is very extensive and multidisciplinary. In the first step, the high fidelity models from the expert components developers were validated independently with automated testing tools and later integrated to create a complete vehicle architecture integration. The standardization permitted to seamlessly test several component variants developed within the project for the same architecture, including tens of motor models with different technologies, inverters and high voltage converters with different IGBT technology and various battery packs. This possibility was exploited through co-optimization with multi objective Genetic Algorithm, permitting to select the optimal component combination, powertrain architecture (with and without high voltage DCDC converter) and components parametrization considering the trade-off of consumption and performances. The optimized and baseline variants were used to demonstrate the scalability of the models to different simulation objectives. The model was co-simulated with a traffic simulation environment in order to evaluate the impact of eco-driving recommendation algorithms in a realistic driving situation. The optimized solution was also validated against a wide database of driving conditions including real driving cycles, performance and vehicle dynamics. Finally, the integrated models were seamlessly transferred to real time simulation platform for Model-in-the-Loop testing with a simulated 3D environment aimed at ADAS testing. Real-time capability demonstrates that next steps such as Driver-in-the-Loop and Hardware-in-the loop can be achieved smoothly. The extensive simulation activities performed in this use case demonstrate the benefits of the standard in models exchangeability and effort reduction in model based development. This project received funding from the European Union’s (EU) Horizon 2020 Research and innovation program under grant agreement N 769935."
2

Curran, D. R. "Computer models of dynamic fracture and fragmentation." In High-pressure science and technology—1993. AIP, 1994. http://dx.doi.org/10.1063/1.46047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Papageorgiou, C. D., T. E. Raptis, Angelos Angelopoulos, and Takis Fildisis. "Fragmentation of Thin Wires under High Voltage Pulses and Bipolar Fusion." In ORGANIZED BY THE HELLENIC PHYSICAL SOCIETY WITH THE COOPERATION OF THE PHYSICS DEPARTMENTS OF GREEK UNIVERSITIES: 7th International Conference of the Balkan Physical Union. AIP, 2010. http://dx.doi.org/10.1063/1.3322590.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Østergaard, Inge, Arne Nysveen, and Thomas Romanisko. "MECON: A High Voltage Subsea Connector." In Offshore Technology Conference. Offshore Technology Conference, 1999. http://dx.doi.org/10.4043/10948-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Iversen, Øyvind, and Johansen Audun. "High Voltage Cables – A Technology Step." In Offshore Technology Conference. OTC, 2022. http://dx.doi.org/10.4043/32084-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract A two-sided marked push for subsea power transmission has taken place in the last 5 years, first initiated by the oil & gas industry's push for subsea electrification, then followed by a desire to reduce the CO2 footprint from oil & gas production throughelectrification of production facilities with power from onshore. More recently, the dramatic development in offshore wind and especially the floating wind market for clean renewable power results in the same need. Common for both areas is the need for transmission capability of the electric power at high voltage. Subsea cables for high voltage have existed since the early 20th century, but deep water and dynamic use of cables has, until recently, only been needed in niche areas. The know-how and experience from the niche areas combined with long-term operational experience for high voltage transmission cables has been a vital factor leading to the development of a qualified solution for deepwater and/or long-distance cabling system which also function in a dynamic situation. The latter is vital for larger offshore wind farms, as well as subsea development. Electrical insulation systems are grouped as wet or dry, where the latter traditionally has been used for voltage ratings above 52 kV. The traditional solution using lead as a water barrier is not suited for dynamic applications and this paper presents the process of qualifying a new industrial solution for dynamic high voltage cables suited for deep water and/or harsh weather for oil & gas or floating windfarms. A complete 145 kV dry design cable system has been qualified for dynamic and static use, with factory joints and repair joints making deepwater and/or long-distance transmission capacity possible. At the same time, qualification of a 72.5 kV wet design cable and factory joint has been completed. The qualified transmission system consists of a mixture of traditional cable design and a new novel water barrier system for subsea cables. Combining this development with the extended qualification of wet design supports increased power transmission capacity.
6

Iversen, Øyvind, and Johansen Audun. "High Voltage Cables – A Technology Step." In Offshore Technology Conference. OTC, 2022. http://dx.doi.org/10.4043/32084-ms.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract A two-sided marked push for subsea power transmission has taken place in the last 5 years, first initiated by the oil & gas industry's push for subsea electrification, then followed by a desire to reduce the CO2 footprint from oil & gas production throughelectrification of production facilities with power from onshore. More recently, the dramatic development in offshore wind and especially the floating wind market for clean renewable power results in the same need. Common for both areas is the need for transmission capability of the electric power at high voltage. Subsea cables for high voltage have existed since the early 20th century, but deep water and dynamic use of cables has, until recently, only been needed in niche areas. The know-how and experience from the niche areas combined with long-term operational experience for high voltage transmission cables has been a vital factor leading to the development of a qualified solution for deepwater and/or long-distance cabling system which also function in a dynamic situation. The latter is vital for larger offshore wind farms, as well as subsea development. Electrical insulation systems are grouped as wet or dry, where the latter traditionally has been used for voltage ratings above 52 kV. The traditional solution using lead as a water barrier is not suited for dynamic applications and this paper presents the process of qualifying a new industrial solution for dynamic high voltage cables suited for deep water and/or harsh weather for oil & gas or floating windfarms. A complete 145 kV dry design cable system has been qualified for dynamic and static use, with factory joints and repair joints making deepwater and/or long-distance transmission capacity possible. At the same time, qualification of a 72.5 kV wet design cable and factory joint has been completed. The qualified transmission system consists of a mixture of traditional cable design and a new novel water barrier system for subsea cables. Combining this development with the extended qualification of wet design supports increased power transmission capacity.
7

Chavez, Patrick P., Nicolas A. Jaeger, Farnoosh Rahmatian, and Christopher P. Yakymyshyn. "Integrated-optic voltage transducer for high-voltage applications." In 2000 International Conference on Application of Photonic Technology (ICAPT 2000), edited by Roger A. Lessard and George A. Lampropoulos. SPIE, 2000. http://dx.doi.org/10.1117/12.406373.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Fink, David A., Richard Torti, Nicholas Reinhardt, Marcel P. J. Gaudreau, and Frank Mansfield. "High Voltage IGBT Switching Arrays." In 2008 14th Symposium on Electromagnetic Launch Technology. IEEE, 2008. http://dx.doi.org/10.1109/elt.2008.46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bertolotto, P., M. Faifer, and R. Ottoboni. "High Voltage Multi-Purpose Current and Voltage Electronic Transformer." In 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007. IEEE, 2007. http://dx.doi.org/10.1109/imtc.2007.379148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhu, Jinsong, and Sen Dou. "Intermediate Bus Voltage Optimization for High Voltage Input VRM." In 2006 7th International Conference on Electronic Packaging Technology. IEEE, 2006. http://dx.doi.org/10.1109/icept.2006.359751.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "High voltage fragmentation technology":

1

Falzone, Alec, Joe Sunstrom, Emily Grumbles, and Ron Hendershot. Daikin Advanced Lithium Ion Battery Technology - High Voltage Electrolyte. Office of Scientific and Technical Information (OSTI), February 2021. http://dx.doi.org/10.2172/1766981.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sunstrom, Joseph, and Ron E. Hendershot. Daikin Advanced Lithium Ion Battery Technology – High Voltage Electrolyte - REVISED. Office of Scientific and Technical Information (OSTI), March 2017. http://dx.doi.org/10.2172/1345663.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

NORTHROP GRUMMAN CORP ROLLING MEADOWS IL. Manufacturing Technology for High Voltage Power Supplies (HVPS). Volume II - Program Details. Fort Belvoir, VA: Defense Technical Information Center, August 1996. http://dx.doi.org/10.21236/ada324475.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

NORTHROP GRUMMAN CORP ROLLING MEADOWS IL. Manufacturing Technology for High Voltage Power Supplies (HVPS). Volume IV. Reference Information. Fort Belvoir, VA: Defense Technical Information Center, August 1996. http://dx.doi.org/10.21236/ada324508.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

NORTHROP GRUMMAN CORP ROLLING MEADOWS IL. Manufacturing Technology for High Voltage Power Supplies (HVPS). Volume I - Program Summary. Fort Belvoir, VA: Defense Technical Information Center, August 1996. http://dx.doi.org/10.21236/ada324364.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Li. High-speed, Low Voltage, Miniature Electro-optic Modulators Based on Hybrid Photonic-Crystal/Polymer/Sol-Gel Technology. Fort Belvoir, VA: Defense Technical Information Center, February 2012. http://dx.doi.org/10.21236/ada566226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії