Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Hilbert spaces.

Статті в журналах з теми "Hilbert spaces"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Hilbert spaces".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Bellomonte, Giorgia, and Camillo Trapani. "Rigged Hilbert spaces and contractive families of Hilbert spaces." Monatshefte für Mathematik 164, no. 3 (2010): 271–85. http://dx.doi.org/10.1007/s00605-010-0249-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

CHITESCU, ION, RAZVAN-CORNEL SFETCU, and OANA COJOCARU. "Kothe-Bochner spaces that are Hilbert spaces." Carpathian Journal of Mathematics 33, no. 2 (2017): 161–68. http://dx.doi.org/10.37193/cjm.2017.02.03.

Повний текст джерела
Анотація:
We are concerned with Kothe-Bochner spaces that are Hilbert spaces (resp. hilbertable spaces). It is shown that ¨ this is equivalent to the fact that, separately, Lρ and X are Hilbert spaces (resp. hilbertable spaces). The complete characterization of the Lρ spaces that are Hilbert spaces, given by the first-author, is used.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sharma, Sumit Kumar, and Shashank Goel. "Frames in Quaternionic Hilbert Spaces." Zurnal matematiceskoj fiziki, analiza, geometrii 15, no. 3 (2019): 395–411. http://dx.doi.org/10.15407/mag15.03.395.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sánchez, Félix Cabello. "Twisted Hilbert spaces." Bulletin of the Australian Mathematical Society 59, no. 2 (1999): 177–80. http://dx.doi.org/10.1017/s0004972700032792.

Повний текст джерела
Анотація:
A Banach space X is called a twisted sum of the Banach spaces Y and Z if it has a subspace isomorphic to Y such that the corresponding quotient is isomorphic to Z. A twisted Hilbert space is a twisted sum of Hilbert spaces. We prove the following tongue-twister: there exists a twisted sum of two subspaces of a twisted Hilbert space that is not isomorphic to a subspace of a twisted Hilbert space. In other words, being a subspace of a twisted Hilbert space is not a three-space property.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pisier, Gilles. "Weak Hilbert Spaces." Proceedings of the London Mathematical Society s3-56, no. 3 (1988): 547–79. http://dx.doi.org/10.1112/plms/s3-56.3.547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fabian, M., G. Godefroy, P. Hájek, and V. Zizler. "Hilbert-generated spaces." Journal of Functional Analysis 200, no. 2 (2003): 301–23. http://dx.doi.org/10.1016/s0022-1236(03)00044-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rudolph, Oliver. "Super Hilbert Spaces." Communications in Mathematical Physics 214, no. 2 (2000): 449–67. http://dx.doi.org/10.1007/s002200000281.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ng, Chi-Keung. "Topologized Hilbert spaces." Journal of Mathematical Analysis and Applications 418, no. 1 (2014): 108–20. http://dx.doi.org/10.1016/j.jmaa.2014.03.073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

van den Boogaart, Karl Gerald, Juan José Egozcue, and Vera Pawlowsky-Glahn. "Bayes Hilbert Spaces." Australian & New Zealand Journal of Statistics 56, no. 2 (2014): 171–94. http://dx.doi.org/10.1111/anzs.12074.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Schmitt, L. M. "Semidiscrete Hilbert spaces." Acta Mathematica Hungarica 53, no. 1-2 (1989): 103–7. http://dx.doi.org/10.1007/bf02170059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Hollstein, Ralf. "Generalized Hilbert spaces." Results in Mathematics 8, no. 2 (1985): 95–116. http://dx.doi.org/10.1007/bf03322662.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

R.Kider, Jehad, and Ragahad Ibrahaim Sabre. "Fuzzy Hilbert Spaces." Engineering and Technology Journal 28, no. 9 (2010): 1816–24. http://dx.doi.org/10.30684/etj.28.9.10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Narita, Keiko, Noboru Endou, and Yasunari Shidama. "The Orthogonal Projection and the Riesz Representation Theorem." Formalized Mathematics 23, no. 3 (2015): 243–52. http://dx.doi.org/10.1515/forma-2015-0020.

Повний текст джерела
Анотація:
Abstract In this article, the orthogonal projection and the Riesz representation theorem are mainly formalized. In the first section, we defined the norm of elements on real Hilbert spaces, and defined Mizar functor RUSp2RNSp, real normed spaces as real Hilbert spaces. By this definition, we regarded sequences of real Hilbert spaces as sequences of real normed spaces, and proved some properties of real Hilbert spaces. Furthermore, we defined the continuity and the Lipschitz the continuity of functionals on real Hilbert spaces. Referring to the article [15], we also defined some definitions on
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Ciurdariu, Loredana. "Inequalities for selfadjoint operators on Hilbert spaces and pseudo-Hilbert spaces." Applied Mathematical Sciences 9 (2015): 5573–82. http://dx.doi.org/10.12988/ams.2015.56459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Mikhailets, Vladimir A., and Aleksandr A. Murach. "Interpolation Hilbert Spaces Between Sobolev Spaces." Results in Mathematics 67, no. 1-2 (2014): 135–52. http://dx.doi.org/10.1007/s00025-014-0399-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Ismagilov, R. S. "Ultrametric spaces and related Hilbert spaces." Mathematical Notes 62, no. 2 (1997): 186–97. http://dx.doi.org/10.1007/bf02355907.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Ghosh, Prasenjit. "Construction of fusion frame in Cartesian product of two Hilbert spaces." Gulf Journal of Mathematics 11, no. 2 (2021): 53–64. http://dx.doi.org/10.56947/gjom.v11i2.539.

Повний текст джерела
Анотація:
We study the concept of fusion frame in Cartesian product of two Hilbert spaces as Cartesian product of two Hilbert spaces is again a Hilbert space and see that the Cartesian product of two fusion frames is also a fusion frame. The concept of fusion frame operator on Cartesian product of two Hilbert spaces is being given and results of it are being presented.A perturbation result on fusion frame in Cartesian product of two Hilbert spaces is being discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Reddy, G. Upender. "On the Properties of Frames in 2-Hilbert Spaces." Asian Research Journal of Mathematics 21, no. 4 (2025): 136–46. https://doi.org/10.9734/arjom/2025/v21i4916.

Повний текст джерела
Анотація:
2-frames in 2-Hilbert spaces are studied, and several related results are presented. A definition of a frame associated with a fixed element in 2-Hilbert spaces is introduced and illustrated through examples. Various properties of the corresponding frame operator are investigated. Furthermore, several results from the theory of frames in Hilbert spaces are extended to the setting of 2-Hilbert spaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Kryukov, Alexey A. "Linear algebra and differential geometry on abstract Hilbert space." International Journal of Mathematics and Mathematical Sciences 2005, no. 14 (2005): 2241–75. http://dx.doi.org/10.1155/ijmms.2005.2241.

Повний текст джерела
Анотація:
Isomorphisms of separable Hilbert spaces are analogous to isomorphisms ofn-dimensional vector spaces. However, whilen-dimensional spaces in applications are always realized as the Euclidean spaceRn, Hilbert spaces admit various useful realizations as spaces of functions. In the paper this simple observation is used to construct a fruitful formalism of local coordinates on Hilbert manifolds. Images of charts on manifolds in the formalism are allowed to belong to arbitrary Hilbert spaces of functions including spaces of generalized functions. Tensor equations then describe families of functional
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Ghosh, Prasenjit, and Tapas Kumar Samanta. "Continuous frames in n-Hilbert spaces and their tensor products." Annals of the University of Craiova Mathematics and Computer Science Series 50, no. 1 (2023): 116–35. http://dx.doi.org/10.52846/ami.v50i1.1637.

Повний текст джерела
Анотація:
We introduce the notion of continuous frame in n-Hilbert space which is a generalization of discrete frame in n-Hilbert space. The tensor product of Hilbert spaces is a very important topic in mathematics. Here we also introduce the concept of continuous frame for the tensor products of n-Hilbert spaces. Further, we study dual continuous frame and continuous Bessel multiplier in n-Hilbert spaces and their tensor products.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Hong, Guoqing, and Pengtong Li. "Some Properties of Operator Valued Frames in Quaternionic Hilbert Spaces." Mathematics 11, no. 1 (2022): 188. http://dx.doi.org/10.3390/math11010188.

Повний текст джерела
Анотація:
Quaternionic Hilbert spaces play an important role in applied physical sciences especially in quantum physics. In this paper, the operator valued frames on quaternionic Hilbert spaces are introduced and studied. In terms of a class of partial isometries in the quaternionic Hilbert spaces, a parametrization of Parseval operator valued frames is obtained. We extend to operator valued frames many of the properties of vector frames on quaternionic Hilbert spaces in the process. Moreover, we show that all the operator valued frames can be obtained from a single operator valued frame. Finally, sever
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Faried, Nashat, Mohamed S.S. Ali, and Hanan H. Sakr. "Fuzzy soft Hilbert spaces." Journal of Mathematics and Computer Science 22, no. 02 (2020): 142–57. http://dx.doi.org/10.22436/jmcs.022.02.06.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Marmo, G., A. Simoni, and F. Ventriglia. "Tomography in Hilbert spaces." Journal of Physics: Conference Series 87 (November 1, 2007): 012013. http://dx.doi.org/10.1088/1742-6596/87/1/012013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Preiss, David. "TILINGS OF HILBERT SPACES." Mathematika 56, no. 2 (2010): 217–30. http://dx.doi.org/10.1112/s0025579310000562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Hausenblas, Erika, and Markus Riedle. "Copulas in Hilbert spaces." Stochastics 89, no. 1 (2016): 222–39. http://dx.doi.org/10.1080/17442508.2016.1158821.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Robertson, A. Guyan. "Injective matricial Hilbert spaces." Mathematical Proceedings of the Cambridge Philosophical Society 110, no. 1 (1991): 183–90. http://dx.doi.org/10.1017/s0305004100070237.

Повний текст джерела
Анотація:
Injective matricial operator spaces have been classified up to Banach space isomorphism in [20]. The result is that every such space is isomorphic to l∞, l2, B(l2), or a direct sum of such spaces. A more natural project, given the matricial nature of the definitions involved, would be the classification of such spaces up to completely bounded isomorphism. This was done for injective von Neumann algebras in [6] and for injective operator systems (i.e. unital injective operator spaces) in [19]. It turns out that the spaces l∞ and B(l2) are in a natural way uniquely characterized up to completely
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Bestvina, Mladen. "Stabilizing fake Hilbert spaces." Topology and its Applications 26, no. 3 (1987): 293–305. http://dx.doi.org/10.1016/0166-8641(87)90050-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Dobrowolski, Tadeusz, and Janusz Grabowski. "Subgroups of Hilbert spaces." Mathematische Zeitschrift 211, no. 1 (1992): 657–69. http://dx.doi.org/10.1007/bf02571453.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Ben-Yaacov, Itay, and Alexander Berenstein. "Imaginaries in Hilbert spaces." Archive for Mathematical Logic 43, no. 4 (2004): 459–66. http://dx.doi.org/10.1007/s00153-003-0200-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Zerakidze, Z. S. "Hilbert spaces of measures." Ukrainian Mathematical Journal 38, no. 2 (1986): 131–35. http://dx.doi.org/10.1007/bf01058467.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Gheondea, Aurelian. "On locally Hilbert spaces." Opuscula Mathematica 36, no. 6 (2016): 735. http://dx.doi.org/10.7494/opmath.2016.36.6.735.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Sultanic, Saida. "Sub-Bergman Hilbert spaces." Journal of Mathematical Analysis and Applications 324, no. 1 (2006): 639–49. http://dx.doi.org/10.1016/j.jmaa.2005.12.035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Terekhin, P. A. "Multishifts in Hilbert spaces." Functional Analysis and Its Applications 39, no. 1 (2005): 57–67. http://dx.doi.org/10.1007/s10688-005-0017-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

HACIOGLU, EMIRHAN, та VATAN KARAKAYA. "Existence and convergence for a new multivalued hybrid mapping in CAT(κ) spaces". Carpathian Journal of Mathematics 33, № 3 (2017): 319–26. http://dx.doi.org/10.37193/cjm.2017.03.06.

Повний текст джерела
Анотація:
Most of the studies about hybrid mappings are carried out for single-valued mappings in Hilbert spaces. We define a new class of multivalued mappings in CAT (k) spaces which contains the multivalued generalization of (α, β) - hybrid mappings defined on Hilbert spaces. In this paper, we prove existence and convergence results for a new class of multivalued hybrid mappings on CAT(κ) spaces which are more general than Hilbert spaces and CAT(0) spaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Hua, Dingli, and Yongdong Huang. "The Characterization and Stability of g-Riesz Frames for Super Hilbert Space." Journal of Function Spaces 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/465094.

Повний текст джерела
Анотація:
G-frames and g-Riesz frames as generalized frames in Hilbert spaces have been studied by many authors in recent years. The super Hilbert space has a certain advantage compared with the Hilbert space in the field of studying quantum mechanics. In this paper, for super Hilbert spaceH⊕K, the definitions of a g-Riesz frame and minimal g-complete are put forward; also a characterization of g-Riesz frames is obtained. In particular, we generalize them to general super Hilbert spaceL1⊕L2⊕⋯⊕Ln. Finally, a conclusion of the stability of a g-Riesz frame for the super Hilbert space is given.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

F. Al-Mayahi, Noori, and Abbas M. Abbas. "Some Properties of Spectral Theory in Fuzzy Hilbert Spaces." Journal of Al-Qadisiyah for computer science and mathematics 8, no. 2 (2017): 1–7. http://dx.doi.org/10.29304/jqcm.2016.8.2.27.

Повний текст джерела
Анотація:
In this paper we give some definitions and properties of spectral theory in fuzzy Hilbert spaces also we introduce definitions Invariant under a linear operator on fuzzy normed spaces and reduced linear operator on fuzzy Hilbert spaces and we prove theorms related to eigenvalue and eigenvectors ,eigenspace in fuzzy normed , Invariant and reduced in fuzzy Hilbert spaces and show relationship between them.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

GHOSH, PRASENJIT, and T. K. SAMANTA. "Fusion frame and its alternative dual in tensor product of Hilbert spaces." Creative Mathematics and Informatics 33, no. 1 (2024): 33–46. http://dx.doi.org/10.37193/cmi.2024.01.04.

Повний текст джерела
Анотація:
We study fusion frame in tensor product of Hilbert spaces and discuss some of its properties.\,The resolution of the identity operator on a tensor product of Hilbert spaces is being discussed.\,An alternative dual of a fusion frame in tensor product of Hilbert spaces is also presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Solèr, M. P. "Characterization of hilbert spaces by orthomodular spaces." Communications in Algebra 23, no. 1 (1995): 219–43. http://dx.doi.org/10.1080/00927879508825218.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

NG, CHI-KEUNG. "On quaternionic functional analysis." Mathematical Proceedings of the Cambridge Philosophical Society 143, no. 2 (2007): 391–406. http://dx.doi.org/10.1017/s0305004107000187.

Повний текст джерела
Анотація:
AbstractIn this paper, we will show that the category of quaternion vector spaces, the category of (both one-sided and two sided) quaternion Hilbert spaces and the category of quaternion B*-algebras are equivalent to the category of real vector spaces, the category of real Hilbert spaces and the category of real C*-algebras respectively. We will also give a Riesz representation theorem for quaternion Hilbert spaces and will extend the main results in [12] (namely, we will give the full versions of the Gelfand–Naimark theorem and the Gelfand theorem for quaternion B*-algebras). On our way to th
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Larionov, Evgeny. "ON STABILITY OF BASES IN HILBERT SPACES." Eurasian Mathematical Journal 11, no. 2 (2020): 65–71. http://dx.doi.org/10.32523/2077-9879-2020-11-2-65-71.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Drahovský, Štefan, and Michal Zajac. "Hyperreflexive operators on finite dimensional Hilbert spaces." Mathematica Bohemica 118, no. 3 (1993): 249–54. http://dx.doi.org/10.21136/mb.1993.125929.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Dixmier, Jacques. "Operateurs hypofermes." Journal of Operator Theory 91, no. 2 (2024): 323–33. https://doi.org/10.7900/jot.2023nov13.2451.

Повний текст джерела
Анотація:
Range spaces of bounded linear operators between Hilbert spaces, as well as linear operators between Hilbert spaces, whose graph is a bounded linear range of some Hilbert space, were systematically studied in an early paper. Here extensions of the above topics to the framework of general Banach spaces are discussed. A hypoclosed linear subspace of a Banach space is the range space of a bounded linear operator defined on some Banach space, while a hypoclosed linear operator is a linear operator between Banach spaces, whose graph is hypoclosed. Characterizations, permanence properties, pathologi
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Bayaz, Daraby, Delzendeh Fataneh, and Rahimi Asghar. "Parseval's equality in fuzzy normed linear spaces." MATHEMATICA 63 (86), no. 1 (2021): 47–57. http://dx.doi.org/10.24193/mathcluj.2021.1.05.

Повний текст джерела
Анотація:
We investigate Parseval's equality and define the fuzzy frame on Felbin fuzzy Hilbert spaces. We prove that C(Omega) (the vector space of all continuous functions on Omega) is normable in a Felbin fuzzy Hilbert space and so defining fuzzy frame on C(Omega) is possible. The consequences for the category of fuzzy frames in Felbin fuzzy Hilbert spaces are wider than for the category of the frames in the classical Hilbert spaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Gao, Wen Hua, and Pei Xin Ye. "Estimates for Multilinear Hilbert Operators on Morrey Spaces and the Best Constants." Applied Mechanics and Materials 433-435 (October 2013): 531–34. http://dx.doi.org/10.4028/www.scientific.net/amm.433-435.531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ghosh, Prasenjit. "Generalized fusion frame in quaternionic Hilbert spaces." Gulf Journal of Mathematics 16, no. 1 (2024): 123–35. http://dx.doi.org/10.56947/gjom.v16i1.1784.

Повний текст джерела
Анотація:
The notion of a generalized fusion frame in quaternionic Hilbert space is introduced. A characterization of generalized fusion frame in quaternionic Hilbert space with the help of frame operator is being discussed. Finally, g-fusion frame in quaternionic Hilbert space using invertible bounded right Q-linear operator on quaternionic Hilbert space is constructed.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Ferrer, Osmin, Luis Lazaro, and Jorge Rodriguez. "Successions of J-bessel in Spaces with Indefinite Metric." WSEAS TRANSACTIONS ON MATHEMATICS 20 (April 6, 2021): 144–51. http://dx.doi.org/10.37394/23206.2021.20.15.

Повний текст джерела
Анотація:
A definition of Bessel’s sequences in spaces with an indefinite metric is introduced as a generalization of Bessel’s sequences in Hilbert spaces. Moreover, a complete characterization of Bessel’s sequences in the Hilbert space associated to a space with an indefinite metric is given. The fundamental tools of Bessel’s sequences theory are described in the formalism of spaces with an indefinite metric. It is shown how to construct a Bessel’s sequences in spaces with an indefinite metric starting from a pair of Hilbert spaces, a condition is given to decompose a Bessel’s sequences into in spaces
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Ghosh, Prasenjit, and T. K. Samanta. "Generalized Fusion Frame in A Tensor Product of Hilbert Space." Journal of the Indian Mathematical Society 89, no. 1-2 (2022): 58. http://dx.doi.org/10.18311/jims/2022/29307.

Повний текст джерела
Анотація:
Generalized fusion frames and some of their properties in a tensor product of Hilbert spaces are studied. Also, the canonical dual g-fusion frame in a tensor product of Hilbert spaces is considered. The frame operator for a pair of <em>g</em>-fusion Bessel sequences in a tensor product of Hilbert spaces is presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Prykarpatskyy, Yarema A., Petro Ya Pukach, Myroslava I. Vovk, and Michal Greguš. "Some Remarks on Smooth Mappings of Hilbert and Banach Spaces and Their Local Convexity Property." Axioms 13, no. 4 (2024): 227. http://dx.doi.org/10.3390/axioms13040227.

Повний текст джерела
Анотація:
We analyze smooth nonlinear mappings for Hilbert and Banach spaces that carry small balls to convex sets, provided that the radii of the balls are small enough. We focus on the study of new and mildly sufficient conditions for the nonlinear mapping of Hilbert and Banach spaces to be locally convex, and address a suitably reformulated local convexity problem analyzed within the Leray–Schauder homotopy method approach for Hilbert spaces, and within the Lipschitz smoothness condition for both Hilbert and Banach spaces. Some of the results presented in this work prove to be interesting and novel,
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Guo, Xunxiang. "g-Bases in Hilbert Spaces." Abstract and Applied Analysis 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/923729.

Повний текст джерела
Анотація:
The concept ofg-basis in Hilbert spaces is introduced, which generalizes Schauder basis in Hilbert spaces. Some results aboutg-bases are proved. In particular, we characterize theg-bases andg-orthonormal bases. And the dualg-bases are also discussed. We also consider the equivalent relations ofg-bases andg-orthonormal bases. And the property ofg-minimal ofg-bases is studied as well. Our results show that, in some cases,g-bases share many useful properties of Schauder bases in Hilbert spaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Talakua, Mozart W., and Stenly J. Nanuru. "TEOREMA REPRESENTASI RIESZ–FRECHET PADA RUANG HILBERT." BAREKENG: Jurnal Ilmu Matematika dan Terapan 5, no. 2 (2011): 1–8. http://dx.doi.org/10.30598/barekengvol5iss2pp1-8.

Повний текст джерела
Анотація:
Hilbert space is a very important idea of the Davids Hilbert invention. In 1907, Riesz and Fréchet developed one of the theorem in Hilbert space called the Riesz-Fréchet representationtheorem. This research contains some supporting definitions Banach space, pre-Hilbert spaces, Hilbert spaces, the duality of Banach and Riesz-Fréchet representation theorem. On Riesz-Fréchet representation theorem will be shown that a continuous linear functional that exist in the Hilbert space is an inner product, in other words, there is no continuous linear functional on a Hilbert space except the inner produc
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!