Добірка наукової літератури з теми "Hybrid photoanode"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Hybrid photoanode".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Hybrid photoanode":

1

An, Pengda, Baopeng Yang, Ning Zhang, Hongmei Li, and Min Liu. "Hybrid TaON/LaTiO2N photoelectrode for water oxidation." Transportation Safety and Environment 1, no. 3 (December 12, 2019): 212–19. http://dx.doi.org/10.1093/tse/tdz020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Efficient and stable photoelectrodes for water oxidation are highly desirable in the field of photoelectrochemical (PEC) water splitting. However, photoelectrodes with low externally applied bias usually exhibit weak photocurrent and vice versa. Herein, novel and efficient CoOx-TaON/LTON composite photoanodes have been successfully prepared by a microwave assisted method followed with a particle transfer procedure. The obtained photoanode generated an anodic photocurrent of ~7.2 mA cm−2 at 1.2 VRHE and initiated the anodic photourrent at ~0.5 VRHE. The HC-STH of the composite photoelectrode reached 1.0% at 1.2 VRHE. Further, stoichiometric oxygen and hydrogen are stably produced on the photoanode and the counter electrode with a Faraday efficiency of unity for 2 h.
2

Wang, Wangyin, Zhiliang Wang, Qingjun Zhu, Guangye Han, Chunmei Ding, Jun Chen, Jian-Ren Shen, and Can Li. "Direct electron transfer from photosystem II to hematite in a hybrid photoelectrochemical cell." Chemical Communications 51, no. 95 (2015): 16952–55. http://dx.doi.org/10.1039/c5cc06900a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Grau, Sergi, Serena Berardi, Alicia Moya, Roc Matheu, Vito Cristino, Juan José Vilatela, Carlo A. Bignozzi, Stefano Caramori, Carolina Gimbert-Suriñach, and Antoni Llobet. "A hybrid molecular photoanode for efficient light-induced water oxidation." Sustainable Energy & Fuels 2, no. 9 (2018): 1979–85. http://dx.doi.org/10.1039/c8se00146d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A hybrid photoanode, made of a multilayered heterostructured WO3/BiVO4 semiconductor, a carbon nanotube fibre and a rugged and highly active molecular water oxidation catalyst is described.
4

Selopal, Gurpreet Singh, Mahyar Mohammadnezhad, Fabiola Navarro-Pardo, François Vidal, Haiguang Zhao, Zhiming M. Wang, and Federico Rosei. "A colloidal heterostructured quantum dot sensitized carbon nanotube–TiO2 hybrid photoanode for high efficiency hydrogen generation." Nanoscale Horizons 4, no. 2 (2019): 404–14. http://dx.doi.org/10.1039/c8nh00227d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Deng, Jianping, Minqiang Wang, Chengao Yang, Jing Liu, and Xiaohui Song. "TiO2 nanoparticle/ZnO nanowire hybrid photoanode for enhanced quantum dot-sensitized solar cell performance." RSC Adv. 4, no. 77 (2014): 41141–47. http://dx.doi.org/10.1039/c4ra05033a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Huang, Chan-yan, Yan Sun, Xin Chen, and Ning Dai. "Multilayer Hybrid Structure of ZnO Nanorod Arrays Imbedded in TiO2 Network as Photoanode." MRS Proceedings 1493 (2013): 111–16. http://dx.doi.org/10.1557/opl.2013.420.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRACTWe developed a multilayer hybrid structure by imbedding ZnO nanorod arrays in TiO2 network for each layer, for the pourese of taking ZnO nanorods as the highway of electron transport. ZnO nanorods can be prepared by hydrothermal process, which is simple, low cost and easy control. The ZnO nanorod arrays were grown by reported hydrothermal method, then TiO2 network was constructed by spin-coating titanium precursor sol on ZnO nanorod arrays and calcining. The electrochemical impedance spectrum measurements were taken to study the electrical properties of this kind of hybrids, and the results indicated that the effective electron lifetime reaches a magnitude of microsecond which is similar to the pure ZnO nanorod arrays. It reveals to us that ZnO nanorods may dominate the electrical properties of this nano-hybrid structure.
7

Devadoss, Anitha, Asako Kuragano, Chiaki Terashima, P. Sudhagar, Kazuya Nakata, Takeshi Kondo, Makoto Yuasa, and Akira Fujishima. "Single-step electrospun TiO2–Au hybrid electrodes for high selectivity photoelectrocatalytic glutathione bioanalysis." Journal of Materials Chemistry B 4, no. 2 (2016): 220–28. http://dx.doi.org/10.1039/c5tb01740h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
One-step electrospun Au nanoparticle decorated TiO2 nanofiber membrane served as effective photoanode for highly selective glutathione analysis with a photoelectrocatalytic oxidation process.
8

Krishnapriya, R., S. Praneetha, and A. Vadivel Murugan. "Energy-efficient, microwave-assisted hydro/solvothermal synthesis of hierarchical flowers and rice grain-like ZnO nanocrystals as photoanodes for high performance dye-sensitized solar cells." CrystEngComm 17, no. 43 (2015): 8353–67. http://dx.doi.org/10.1039/c5ce01438g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Hierarchical ZnO with different morphologies have been synthesized via rapid microwave-solvothermal method. Innovative ZnO nano-hybrid architecture photoanode based DSSCs showed remarkable enhancement in solar power conversion efficiency as high as 5.64%.
9

Kumagai, Hiromu, Go Sahara, Kazuhiko Maeda, Masanobu Higashi, Ryu Abe, and Osamu Ishitani. "Hybrid photocathode consisting of a CuGaO2 p-type semiconductor and a Ru(ii)–Re(i) supramolecular photocatalyst: non-biased visible-light-driven CO2 reduction with water oxidation." Chemical Science 8, no. 6 (2017): 4242–49. http://dx.doi.org/10.1039/c7sc00940b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new Ru(ii)–Re(i)/CuGaO2 hybrid photocathode was developed and combined with a CoOx/TaON photoanode to drive non-biased visible-light-driven CO2 reduction with water oxidation.
10

Liu, Xiaolin, Min Guo, Jia Lin, Xianfeng Chen, and Haitao Huang. "Design of multi-layered TiO2 nanotube/nanoparticle hybrid structure for enhanced efficiency in dye-sensitized solar cells." RSC Adv. 4, no. 85 (2014): 45180–84. http://dx.doi.org/10.1039/c4ra08340g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Hybrid photoanode":

1

Liu, Mengdi. "Ta₃N₅/Polymeric g-C₃N₄ as Hybrid Photoanode for Solar Water Splitting:." Thesis, Boston College, 2018. http://hdl.handle.net/2345/bc-ir:108366.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis advisor: Dunwei Wang
Water splitting has been recognized as a promising solution to challenges associated with the intermittent nature of solar energy for over four decades. A great deal of research has been done to develop high efficient and cost-effective catalysts for this process. Among which tantalum nitride (Ta₃N₅) has been considered as a promising candidate to serve as a good catalyst for solar water splitting based on its suitable band structure, chemical stability and high theoretical efficiency. However, this semiconductor is suffered from its special self-oxidation problem under photoelectrochemical water splitting conditions. Several key unique properties of graphitic carbon nitride (g-C₃N₄) render it an ideal choice for the protection of Ta₃N₅. In this work, Ta₃N₅/g-C₃N₄ hybrid photoanode was successfully synthesized. After addition of co-catalyst, the solar water splitting performance of this hybrid photoanode was enhanced. And this protection method could also act as a potential general protection strategy for other unstable semiconductors
Thesis (MS) — Boston College, 2018
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Chemistry
2

Nguyen, Thi Quyen. "Développement de photoélectrodes hybrides via l'assemblage d'un photosensibilisateur à base de ruthénium et d'un nanocatalyseur métal-oxyde métallique pour la génération d'O2 solaire." Thesis, Toulouse 3, 2021. http://www.theses.fr/2021TOU30046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans ce travail, différents systèmes catalytiques nanostructurés ont été synthétisés par une approche organométallique pour obtenir des nanoparticules de petite taille et de distribution de taille étroite, et leur activité catalytique dans la réaction d'oxydation de l'eau a été évaluée. Premièrement, des NPs de fer stabilisées par l'acide oléique ont été synthétisées qui présentaient une taille moyenne d'env. 10 nm ± 1,1 nm. Une couche d'oxyde, gamma-Fe_2O_3, d'env. 2,6 nm d'épaisseur a été formée à leur surface pour obtenir des structures cœur-coquille Fe@FeOx d'env. 11,5 ± 2,3 nm de diamètre. Malgré leur hydrophobicité, ces nanoparticules ont montré une bonne activité électrocatalytique en conditions alcalines. La coquille d'oxyde gamma-Fe_2O_3 étant bien adaptée au greffage de groupements phosphoniques, ces NPs Fe@FeOx ont été greffées avec différents acides aminophosphoniques afin de les transférer dans l'eau. Une évaluation préliminaire de leur activité catalytique montre une amélioration lorsque les NPs sont greffées avec l'acide 3-aminopropyl phosphonique, ce qui ouvre des perspectives prometteuses. En outre, un photosensibilisateur, un complexe Ru-phénanthroline avec un groupe phosphonate pendant, a été synthétisé et greffé sur les NPs Fe@FeOx pour former une photoanode hybride et catalyser la photoélectrodécomposition de l'eau. Des processus mono et biphasiques ont été étudiés pour greffer le complexe à la surface des nanoparticules. Le processus monophasique s'est avéré plus efficace car il a fourni une densité de greffage plus élevée (respectivement 56 et 9 Ru par NP pour les processus mono et biphasiques). Des mesures photoélectrochimiques ont montré que le nanocatalyseur hybride comprenant la teneur en Ru la plus élevée était env. 9 fois plus actif qu'un simple mélange entre un photosensibilisateur au ruthénium sans fonction de greffage et les nanoparticules Fe@FeOx, et env. 40 fois plus actif que les NPs Fe@FeOx. L'amélioration des performances pourrait être attribuée à un transfert d'électrons plus efficace entre le photosensibilisateur et le catalyseur Fe@FeOx grâce à la liaison covalente entre ces deux composants. Le greffage covalent s'est avéré améliorer non seulement l'activité photocatalytique mais également la stabilité du système. Enfin, des NPs NiFe amorphes (diamètre env. 4 nm) avec deux compositions différentes (Ni_0,5Fe_0,5 NPs et Ni_0,68Fe_0,32 NPs) ont été synthétisées, oxydées à l'air et fonctionnalisées avec de l'acide 3-aminopropyl phosphonique. L'activité électrocatalytique de ces NP hydrosolubles a été étudiée en milieu alcalin, en comparaison avec des NPs NiOx, FeOx et Ni_0.1Fe_0.9Ox. Les NPs hydrosolubles contenant 32% de Fe (Ni_0,68Fe_0,32Ox) ont montré l'activité la plus élevée et une bonne durabilité en solution alcaline. Ces caractéristiques rendent ces NP amorphes potentiellement applicables dans les cellules photoélectrochimiques pour la photodécomposition de l'eau
In this work, different nanostructured catalytic systems have been synthesized by an organometallic approach to produce nanoparticles (NPs) of small size and narrow size distribution, and their catalytic activity in the water oxidation reaction has been evaluated. First Fe NPs stabilized by oleic acid were synthesized that displayed an average size of ca. 10 nm ± 1.1 nm. A gamma-Fe_2O_3 oxide layer ca. 2.6 nm thick has been formed at their surface to obtain Fe@FeOx core-shell structure of ca. 11.5 ± 2.3 nm in diameter. Despite their hydrophobicity, these nanoparticles showed good electrocatalytic activity in alkaline conditions. As the gamma-Fe_2O_3 oxide shell is well adapted to the grafting of phosphonic groups, these Fe@FeOx NPs were grafted with different aminophosphonic acids in order to transfer them into water. Preliminary assessment of their catalytic activity showed improved activity for the NPs functionalized by 3-aminopropylphosphonic acid which opens promising prospects. Subsequently, a Ru-phenanthroline light-harvester with a pendant phosphonate group was synthesized and grafted onto the Fe@FeOx core/shell NPs to afford a novel hybrid photoanode for solar-driven water splitting. Mono- and biphasic processes were investigated to graft the Ru-complex at the surface of the NPs. The monophasic process was found to be more efficient as it provided a higher grafting density at the surface of the NPs (respectively 56 and 9 Ru per nanoparticles for the mono and biphasic processes). Photoelectrochemical measurements showed that the hybrid nanocatalyst comprising the highest Ru content was ca. 9-fold more catalytically active than a simple mixture between a ruthenium polypyridyl photosensitizer bearing no grafting group and the Fe@FeOx nanoparticles, and 40-fold more active than the pristine Fe@FeOx NPs. The performance enhancement could be attributed to a more efficient electron transfer between the ruthenium polypyridyl photosensitizer and the Fe@FeOx water oxidation catalyst thanks to the covalent bonding between these two components. The covalent grafting was found to improve not only the photocatalytic activity but also the stability of the system. Finally, amorphous NiFe NPs (diameter ca. 4 nm) with two different ratios between Ni and Fe (Ni_0.5Fe_0.5 NPs and Ni_0.68Fe_0.32 NPs) were synthesized, oxidized in air and grafted with 3-aminopropylphosphonic acid in order to obtain hydrophilic systems. The electrocatalytic activity of these water-soluble NPs was studied in alkaline solution, in comparison with that of crude NiOx NPs, FeOx NPs, and Ni_0.1Fe_0.9Ox NPs. The water soluble NPs containing 32 % of Fe (Ni_0.68Fe_0.32Ox) showed the highest activity and a good durability in alkaline solution. These characteristics make these amorphous NPs potentially applicable in photoelectrochemical cells for water splitting
3

Błędowski, Michał [Verfasser], Radim [Gutachter] Beránek, and Wolfgang [Gutachter] Schuhmann. "Visible light-driven photooxidation of water at hybrid photoanodes / Michał Błędowski ; Gutachter: Radim Beránek, Wolfgang Schuhmann ; Fakultät für Chemie und Biochemie." Bochum : Ruhr-Universität Bochum, 2014. http://d-nb.info/1201553652/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Song, Lin [Verfasser], Peter [Akademischer Betreuer] [Gutachter] Müller-Buschbaum, and Friedrich [Gutachter] Simmel. "Tailoring titania photoanodes for application in solid-state dye-sensitized solar cells and hybrid solar cells / Lin Song ; Gutachter: Peter Müller-Buschbaum, Friedrich Simmel ; Betreuer: Peter Müller-Buschbaum." München : Universitätsbibliothek der TU München, 2017. http://d-nb.info/1137010592/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

CHIU, HSUAN-YANG, and 邱絢揚. "The study of TiO2 nanorods/nanoparticles hybrid composite photoanode." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/89720014576782197325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立臺灣科技大學
化學工程系
97
In this study, hydrothermal method was employed to grow 1-D titanate nanorods, which is annealed at 700oC for 2 hours to transfer 1-D titanate to anatase titanium dioxide (TiO2) nanorods. Difference TiO2 photoanodes were make by mixing TiO2 nanorods and P25 particles and different TiCl4(aq) treated time. In order to find out the optimum mixture condition of TiO2 photoanode, different kinds of TiO2 photoanodes were sensitized with N3 dye. The absorbed amount of N3 dye was analyzed by UV-visible absorption spectroscopy. Based on the optimum condition of TiO2 photoanode, quantum dots sensitized photoanode was studied by using home-made CdSeS quantum dots (QDs). In this study, two different kinds of linker, 3-mercaptoproponic acid (MPA) and 11-mercaptoundecanoic acid (MUA), were used to anchor CdSeS QDs on the surface of TiO2 photoanode. The properties of CdSeS QDs sensitized photoanode were characterized by absorption spectroscopy, photoluminescence and lifetime analysis, the band gap structure of CdSeS and MPA or MUA were decided by cyclic voltammetry (CV), and the cell performances were characterized by incident-photocurrent efficiency (IPCE) and current-voltage (I-V) measurement.
6

Hsu, Ho-Chun, and 許賀鈞. "Study on Hybrid Nanostructure Photoanode for Dye-Sensitized Solar Cells." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/53464254905373216837.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立雲林科技大學
光學電子工程研究所
99
In this study, we propose the hybrid nanostructure photoanode for dye-sensitized solar cells, which is made by sol-gel method. It is coated by spin coating on transparent conductive glass (TCO) substrates. The ZnO seeds layer is formed on TCO glass and the ZnO nanorods array is growth on ZnO seeds layer by hydrothermal method.at the temperatures of 80˚C for an hour. The TiO2 nano particles are above on ZnO nanorods array by spin coating. Finally, the solar cell is characteristic by I-V curve measurement and other thin film measurements, such as scanning electron microscopy, X-ray diffractometer, ultraviolet-visible spectroscopy, four point probe measurement. We also demonstrated the effect on the different thermal treatment on ITO and FTO glass, and optimal the recipe of the electrolytes and dye solutions to improve the solar cell energy converting efficiency. As the experimental results shown, in the optimal experiment, it suggest that when the acetonitrile is the major solvent in dye solutions and electrolytes, the cell’s dye adsorption and electron transport efficiency are improved, the solar cell energy converting efficiency is approach 3.95% (TiO2 photoanode) and 0.95%(hybrid nanostructure photoanode).
7

Liu, Po-Wei, and 劉柏緯. "The Study of Aligned Rutile Titanium Dioxide Nanorods/Nanoparticles Hybrid Photoanode." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/79661540393377381936.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立臺灣科技大學
化學工程系
98
In this study, one-dimensioanl vertical aligned single crystalline rutile phase titanium dioxide (TiO2) nanorods were grown on transparent conductive fluorine-doped tin-oxide (FTO) glass substrate by hydrothermal method. The diameters, lengths and densities of the nanorods could be controlled by changing the experiment conditions. We also found that vertical aligned TiO2 nanorods could be grown on glass substrates by adding seed layer. Comparing with conventional TiO2 nanoparticles photoanode, one-dimensional vertical aligned single crystalline TiO2 nanorods have directly electrical pathways for photogenerated electrons and enhance the electron transport behavior. However, the dye loading amount decreases due to the effect of surface-to-volume ratio. In order to maintain the dye loading amount, we decorate TiO2 nanoparticles between the gaps of nanorods by using titanium tetrachloride (TiCl4) solution. The efficiency the nanorods/nanoparticles hybrid photoanode around 3~4 μm thickness approaches 3.6%. The photogenerated electron transit time and recombination lifetime are also studied by intensity modulated photocurrent spectroscopy (IMPS) and intensity modulated photovoltage spectroscopy (IMVS).

Частини книг з теми "Hybrid photoanode":

1

Kartini, Indriana, and Adhi Dwi Hatmanto. "Natural Dyes: From Cotton Fabrics to Solar Cells." In Dyes and Pigments - Novel Applications and Waste Treatment. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97487.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article will discuss natural dyes’ role, from colouring the cotton fabrics with some functionality to harvesting sunlight in the dye-sensitized solar cells. Natural dye colourants are identical to the low light- and wash-fastness. Therefore, an approach to improving the colourant’s physical properties is necessary. Colouring steps employing silica nanosol and chitosan will be presented. The first part will be these multifunctional natural dye coatings on cotton fabrics. Then, functionality such as hydrophobic surfaces natural dyed cotton fabrics will be discussed. Natural dyes are also potential for electronic application, such as solar cells. So, the second part will present natural dyes as the photosensitizers for solar cells. The dyes are adsorbed on a semiconductor oxide surface, such as TiO2 as the photoanode. Electrochemical study to explore natural dyes’ potential as sensitizer will be discussed, for example, natural dyes for Batik. Ideas in improving solar cell efficiency will be discussed by altering the photoanode’s morphology. The ideas to couple the natural dyes with an organic–inorganic hybrid of perovskite and carbon dots are then envisaged.
2

Gao, Xiang-Dong, Cai-Lu Wang, Xiao-Yan Gan, and Xiao-Min Li. "Ordered Semiconductor Photoanode Films for Dye-Sensitized Solar Cells Based on Zinc Oxide-Titanium Oxide Hybrid Nanostructures." In Solar Cells - Dye-Sensitized Devices. InTech, 2011. http://dx.doi.org/10.5772/19569.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Hybrid photoanode":

1

Druffel, Thad, Venkat Kalyan Vendra, Delaina Amos, and Mahendra Sunkara. "Engineering the Photoanode Using Scalable Hybrid Nanostructures." In ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54433.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dye sensitized solar cells (DSSCs) have garnered a great deal of interest as a cost-effective technology for large-scale manufacturing. Engineered inorganic hybrid nanostructures can improve the performance of DSSC’s without affecting the cost effectiveness of the devices. Here, we present a concept of engineered hybrid nanostructures, incorporating appropriate selection of nanowire and nanoparticle materials, to enhance the charge transport and reduce the recombination within the photoanode. Low recombination properties of this photoanode allow flexibility in choosing the redox couple for increasing open circuit voltage.
2

Lu, Wenhui, and Jun Zhang. "Hybrid Si/PEDOT:PSS Core/Shell Nanowire Array Photoanode for Photoelectrochemical Cells." In 2012 Symposium on Photonics and Optoelectronics (SOPO 2012). IEEE, 2012. http://dx.doi.org/10.1109/sopo.2012.6271127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wang, P. H., S. J. Wang, P. Chen, K. M. Uang, T. M. Chen, and T. C. Wang. "Hybrid TiO2 Nanoparticles and Vertical-Aligned Nanowires Photoanode for Dye-Sensitized Solar Cells." In 2011 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2011. http://dx.doi.org/10.7567/ssdm.2011.p-14-16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Llobet, Antoni. "Hybrid molecular photoanodes for water splitting." In 10th International Conference on Hybrid and Organic Photovoltaics. Valencia: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.hopv.2018.191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Tessore, Francesca, Gabriele Di Carlo, Alessio Orbelli Biroli, Elisabetta Benazzi, and Stefano Caramori. "HIGH-POTENTIAL PORPHYRIN-BASED SnO2 PHOTOANODES for WATER PHOTOOXIDATION." In 11th International Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.hopv.2019.112.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії