Добірка наукової літератури з теми "Independent Spanning Trees"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Independent Spanning Trees".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Independent Spanning Trees"

1

Khuller, Samir, and Baruch Schieber. "On independent spanning trees." Information Processing Letters 42, no. 6 (1992): 321–23. http://dx.doi.org/10.1016/0020-0190(92)90230-s.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hoyer, Alexander, and Robin Thomas. "Four Edge-Independent Spanning Trees." SIAM Journal on Discrete Mathematics 32, no. 1 (2018): 233–48. http://dx.doi.org/10.1137/17m1134056.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ali, Alonso, and Orlando Lee. "Five edge-independent spanning trees." Procedia Computer Science 223 (2023): 223–30. http://dx.doi.org/10.1016/j.procs.2023.08.232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Araki, Toru, Masayoshi Matsushita, and Yota Otachi. "Completely independent spanning trees in (partial) k-trees." Discussiones Mathematicae Graph Theory 35, no. 3 (2015): 427. http://dx.doi.org/10.7151/dmgt.1806.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hong, Xia. "Mimimal graphs for completely independent spanning trees and completely independent spanning trees in complete t-partite graph." Contributions to Discrete Mathematics 19, no. 2 (2024): 23–35. http://dx.doi.org/10.55016/ojs/cdm.v19i2.62694.

Повний текст джерела
Анотація:
Let $T_{1},T_{2},\dots,T_{k}$ be spanning trees of a graph $G$. For any two vertices$u,v$ of $G$, if the paths from $u$ to $v$ in these $k$ trees are pairwise openly disjoint, then we say that $T_{1},T_{2},\dots,T_{k}$ are completely independent spanning trees. In this paper, we give the definition of Minimal graph for $k$ completely independent spanning trees and we characterized all Minimal graphs for $k$ completely independent spanning trees. Finally, we obtain the number of completely independent spanning trees in complete $t(t\geq 2)$-partite graph $K_{n_{1},n_{2},\cdots,n_{t}}$, which is
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lin, Jia-Cian, Jinn-Shyong Yang, Chiun-Chieh Hsu, and Jou-Ming Chang. "Independent spanning trees vs. edge-disjoint spanning trees in locally twisted cubes." Information Processing Letters 110, no. 10 (2010): 414–19. http://dx.doi.org/10.1016/j.ipl.2010.03.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Darties, Benoît, Nicolas Gastineau, and Olivier Togni. "Almost disjoint spanning trees: Relaxing the conditions for completely independent spanning trees." Discrete Applied Mathematics 236 (February 2018): 124–36. http://dx.doi.org/10.1016/j.dam.2017.11.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Yan, Jianxi Fan, Guodong Zhou, and Xiaohua Jia. "Independent spanning trees on twisted cubes." Journal of Parallel and Distributed Computing 72, no. 1 (2012): 58–69. http://dx.doi.org/10.1016/j.jpdc.2011.09.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Iwasaki, Yukihiro, Yuka Kajiwara, Koji Obokata, and Yoshihide Igarashi. "Independent spanning trees of chordal rings." Information Processing Letters 69, no. 3 (1999): 155–60. http://dx.doi.org/10.1016/s0020-0190(98)00205-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kim, Jong-Seok, Hyeong-Ok Lee, Eddie Cheng, and László Lipták. "Independent spanning trees on even networks." Information Sciences 181, no. 13 (2011): 2892–905. http://dx.doi.org/10.1016/j.ins.2011.02.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Дисертації з теми "Independent Spanning Trees"

1

Avram, Florin, and Dimitris J. Bertsimas. "The Minimum Spanning Tree Constant in Geometrical Probability and Under the Independent Model; A Unified Approach." Massachusetts Institute of Technology, Operations Research Center, 1990. http://hdl.handle.net/1721.1/5189.

Повний текст джерела
Анотація:
Given n uniformly and independently points in the d dimensional cube of unit volume, it is well established that the length of the minimum spanning tree on these n points is asymptotic to /3MsT(d)n(d-l)/d,where the constant PMST(d) depends only on the dimension d. It has been a major open problem to determine the constant 3MST(d). In this paper we obtain an exact expression of the constant MST(d) as a series expansion. Truncating the expansion after a finite number of terms yields a sequence of lower bounds; the first 3 terms give a lower bound which is already very close to the empirically es
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Jhen-Ding, and 王溱鼎. "Independent Spanning Trees on Crossed Cubes." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/59244316344879651711.

Повний текст джерела
Анотація:
碩士<br>國立臺北商業技術學院<br>資訊與決策科學研究所<br>102<br>A set of spanning trees in a graph is said to be independent (ISTs for short) if all the trees are rooted at the same node r and for any other node v(≠r), the paths from v to r in any two trees are node-disjoint except the two end nodes v and r. For an n-connected graph, the independent spanning trees problem asks to construct n ISTs rooted at an arbitrary node of the graph. Recently, Zhang et al. [Y.-H. Zhang, W. Hao, and T. Xiang, Independent spanning trees in crossed cubes, Information Processing Letters, 113 (2013) 653–658] proposed an algorithm to
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lin, Bo-yen, and 林伯岩. "The Independent Spanning Trees of Torus." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/11833018537185261805.

Повний текст джерела
Анотація:
碩士<br>國立臺灣科技大學<br>資訊管理系<br>90<br>The study on independent spanning trees finds applications in fault-tolerant protocols for distributed computing networks. For example, the broadcasting in a network is sending a message from a given node to all other nodes in the network. We can design a fault-tolerant broadcasting scheme based on independent spanning trees [2] [8]. The fault-tolerance can be achieved by sending k copies of the message along k independent spanning trees rooted at the source node. If the source node is faultless, this scheme can tolerate up to k-1 faulty nodes. Two-dimension to
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yang, Jinn-shyong, and 楊進雄. "Independent Spanning Trees on Some Interconnection Networks." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/97253205773167631658.

Повний текст джерела
Анотація:
博士<br>國立臺灣科技大學<br>資訊管理系<br>95<br>The vertex set and the edge set of a graph G are denoted by V (G) and E(G), respectively.Two paths P and Q connecting a vertex x to a vertex y are said to be internally disjoint, denoted by P||Q. A tree T is called a spanning tree of a graph G if V (T) = V (G). Further, T is a rooted spanning tree if it provides a specified vertex called the root of T. Let x and y be two vertices in T. We denote T[x, y] as the unique path from x to y in T. Two spanning trees T and T0 of a graph G are said to be independent if they are rooted at the same vertex, say r, and such
Стилі APA, Harvard, Vancouver, ISO та ін.
5

MengYu-Lin and 林孟玉. "Independent Spanning Trees on Recursive Circulant Graphs." Thesis, 2003. http://ndltd.ncl.edu.tw/handle/94651256289912105016.

Повний текст джерела
Анотація:
碩士<br>國立臺灣科技大學<br>資訊管理系<br>91<br>Two spanning trees of a given graph G = (V, E) are said to be independent if they are rooted at the same vertex, say r, and for each vertex v Î V\{r} the two paths from r to v, one path in each tree, are internally disjoint. A set of spanning trees of G is said to be independent if they are pairwise independent. Zehavi and Itai conjectured that any k-connected graph has k independent spanning trees rooted at an arbitrary vertex. This conjecture is still open for k > 3. Broadcasting in a distributed system is the message dissemination from a source no
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yao, Sing-Chen, and 姚星辰. "Completely independent spanning trees on chordal rings." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/66628288254938285812.

Повний текст джерела
Анотація:
碩士<br>國立臺北商業技術學院<br>資訊與決策科學研究所<br>101<br>Let T1,T2,...,Tk be spanning trees in a graph G. If, for any two vertices u,v of G, the paths joining u and v on the k trees are mutually vertex-disjoint, then T1,T2,...,Tk are called completely independent spanning trees in G. The construction of completely independent spanning trees can be applied in fault-tolerant broadcasting and secure message distribution on interconnection networks. Hasunuma first introduced the concept of completely independent spanning trees and conjectured that there are k completely independent spanning trees in any 2k-connec
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chih-TeChan and 詹智德. "Constructing Independent Spanning Trees on Pancake Network." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/z356kd.

Повний текст джерела
Анотація:
碩士<br>國立成功大學<br>資訊工程學系<br>107<br>For any graph G, the set of independent spanning trees (ISTs) is defined as the set of spanning trees in $G$. All ISTs have the same root, paths from the root to another vertex between distinct trees are vertex-disjoint and edge-disjoint. The construction of multiple independent trees on a graph has numerous applications, such as fault-tolerant broadcasting and secure message distribution. The pancake graph is a subclass of Cayley graphs and since Cayley graphs are crucial for designing interconnection networks, constructing ISTs on these graphs is necessary fo
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chien-FuLin and 林建夫. "Constructing Independent Spanning Trees on Transposition Network." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/twky2p.

Повний текст джерела
Анотація:
碩士<br>國立成功大學<br>資訊工程學系<br>107<br>In interconnection networks, data distribution and fault tolerance are crucial services. This study proposes an effective algorithm for improving connections between networks. Transposition networks are a type of Cayley graphs and have been widely used in current networks. Whenever any connection node fails, users want to reconnect as rapidly as possible, it is urgently in need to construct a new path. Thus, searching node-disjoint paths is crucial for finding a new path in networks. In this thesis, we expand the target to construct independent spanning trees t
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yang, Sheng Feng, and 楊昇峰. "On the Independent Spanning Trees of Bi-Rotator Graph." Thesis, 2004. http://ndltd.ncl.edu.tw/handle/28121247306385394702.

Повний текст джерела
Анотація:
碩士<br>國立臺灣科技大學<br>資訊管理系<br>92<br>Rotator graphs, first proposed by Corbett in 1994, have been studied in recent years. Later, traditional rotator graphs were modified by adding generation functions to make all edges bi-directional called bi-rotator graphs. Like star graphs, Bi-Rotator graphs also possess rich structure properties, such as symmetry, low diameter and recursive construction. This thesis focuses on the problems of constructing independent spanning trees for a given scale of the bi-rotator graphs. A bi-rotator graph of scale n contains n! nodes and degree of each node
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Xiao-QiangChen and 陳小強. "Constructing Independent Spanning Trees on (n,k)-Star Graphs." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/rjh72w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел

Частини книг з теми "Independent Spanning Trees"

1

Obokata, Koji, Yukihiro Iwasaki, Feng Bao, and Yoshihide Igarashi. "Independent spanning trees of product graphs." In Graph-Theoretic Concepts in Computer Science. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-62559-3_27.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nakano, Shin-ichi. "(t, s)-Completely Independent Spanning Trees." In WALCOM: Algorithms and Computation. Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0566-5_26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Iwasaki, Yukihiro, Yuka Kajiwara, Koji Obokata, and Yoshihide Igarashi. "Independent spanning trees of chordal rings." In Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0045110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhou, Xiao, and Takao Nishizeki. "Finding Independent Spanning Trees in Partial k-Trees." In Algorithms and Computation. Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-40996-3_15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lukkien, Johan J., and Jan L. A. Snepscheut. "Topology-Independent Algorithms Based on Spanning Trees." In Beauty Is Our Business. Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4612-4476-9_33.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Huang, Jie-Fu, and Sun-Yuan Hsieh. "Constructing Independent Spanning Trees in Alternating Group Networks." In Lecture Notes in Computer Science. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-58150-3_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hasunuma, Toru. "Completely Independent Spanning Trees in Maximal Planar Graphs." In Graph-Theoretic Concepts in Computer Science. Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-36379-3_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kao, Shih-Shun, Jou-Ming Chang, Kung-Jui Pai, and Ro-Yu Wu. "Constructing Independent Spanning Trees on Bubble-Sort Networks." In Lecture Notes in Computer Science. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94776-1_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Georgiadis, Loukas, and Robert E. Tarjan. "Dominators, Directed Bipolar Orders, and Independent Spanning Trees." In Automata, Languages, and Programming. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31594-7_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Georgiadis, Loukas, Luigi Laura, Nikos Parotsidis, and Robert E. Tarjan. "Dominator Certification and Independent Spanning Trees: An Experimental Study." In Experimental Algorithms. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38527-8_26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Independent Spanning Trees"

1

Yang, Jinn-Shyong, Jou-Ming Chang, and Hung–Chang Chan. "Independent Spanning Trees on Folded Hypercubes." In 2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks. IEEE, 2009. http://dx.doi.org/10.1109/i-span.2009.55.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Póczos, Barnabás, and András Lõrincz. "Independent subspace analysis using geodesic spanning trees." In the 22nd international conference. ACM Press, 2005. http://dx.doi.org/10.1145/1102351.1102436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yan Wang, Jianxi Fan, and Yuejuan Han. "Construction of independent spanning trees on twisted-cubes." In 2011 IEEE International Conference on Computer Science and Automation Engineering (CSAE). IEEE, 2011. http://dx.doi.org/10.1109/csae.2011.5952464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chang, Yu-Huei, Jinn-Shyong Yang, Jou-Ming Chang, and Yue-Li Wang. "Parallel Construction of Independent Spanning Trees on Parity Cubes." In 2014 IEEE 17th International Conference on Computational Science and Engineering (CSE). IEEE, 2014. http://dx.doi.org/10.1109/cse.2014.225.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cheng, Bao lei, Jian xi Fan, Shu kui Zhang, Yan Wang, Xi Wang, and Wen jun Liu. "Towards the Independent Spanning Trees in Conditional BC Networks." In 2013 International Conference on Advanced Computer Science and Electronics Information. Atlantis Press, 2013. http://dx.doi.org/10.2991/icacsei.2013.20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pan, Ting, Baolei Cheng, Jianxi Fan, Cheng-Kuan Lin, and Dongfang Zhou. "Toward the completely independent spanning trees problem on BCube." In 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN). IEEE, 2017. http://dx.doi.org/10.1109/iccsn.2017.8230281.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Umrao, Lokendra Singh, Dharmendra Prasad Mahato, and Ravi Shankar Singh. "Fault tolerance for hypercube networks via independent spanning trees." In 2014 International Conference on Parallel, Distributed and Grid Computing (PDGC). IEEE, 2014. http://dx.doi.org/10.1109/pdgc.2014.7030740.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zhang, Huanwen, Yan Wang, Jianxi Fan, and Ruyan Guo. "Parallel Construction of Independent Spanning Trees on Folded Crossed Cubes." In 2021 IEEE 32nd International Conference on Application-specific Systems, Architectures and Processors (ASAP). IEEE, 2021. http://dx.doi.org/10.1109/asap52443.2021.00038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Baolei Cheng, Jianxi Fan, Jiwen Yang, and Yuejuan Han. "An algorithm to construct independent spanning trees on crossed cubes." In 2010 2nd International Conference on Information Science and Engineering (ICISE). IEEE, 2010. http://dx.doi.org/10.1109/icise.2010.5691221.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liu, Yi-Jiun, Well Y. Chou, James K. Lan, and Chiuyuan Chen. "Constructing Independent Spanning Trees for Hypercubes and Locally Twisted Cubes." In 2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks. IEEE, 2009. http://dx.doi.org/10.1109/i-span.2009.97.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!