Добірка наукової літератури з теми "Inhibiteur de la tyrosine kinase"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Inhibiteur de la tyrosine kinase".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Inhibiteur de la tyrosine kinase"
Faure, Sébastien. "Un nouvel inhibiteur de tyrosine kinase." Actualités Pharmaceutiques 47, no. 473 (April 2008): 8. http://dx.doi.org/10.1016/s0515-3700(08)70234-9.
Повний текст джерелаI*, Al-Ani, Ata T, Daoud E, and Hassan SF. "Pharmacokinetics of the Tyrosine Kinase Inhibitor, Alectinib." Bioequivalence & Bioavailability International Journal 8, no. 2 (August 13, 2024): 1–8. https://doi.org/10.23880/beba-16000241.
Повний текст джерелаTrojanek, Joanna B., Maria M. Klimecka, Anna Fraser, Grazyna Dobrowolska, and Grazyna Muszyńska. "Characterization of dual specificity protein kinase from maize seedlings." Acta Biochimica Polonica 51, no. 3 (September 30, 2004): 635–47. http://dx.doi.org/10.18388/abp.2004_3549.
Повний текст джерелаBISOTTO, Sandra, and Elizabeth D. FIXMAN. "Src-family tyrosine kinases, phosphoinositide 3-kinase and Gab1 regulate extracellular signal-regulated kinase 1 activation induced by the type A endothelin-1 G-protein-coupled receptor." Biochemical Journal 360, no. 1 (November 8, 2001): 77–85. http://dx.doi.org/10.1042/bj3600077.
Повний текст джерелаGuilhot, F. "Inhibiteur de tyrosine-kinase de 1re génération: place des associations." Oncologie 14, no. 10-11 (October 2012): 583–88. http://dx.doi.org/10.1007/s10269-012-2222-1.
Повний текст джерелаSoodvilai, S., S. H. Wright, W. H. Dantzler, and V. Chatsudthipong. "Involvement of tyrosine kinase and PI3K in the regulation of OAT3-mediated estrone sulfate transport in isolated rabbit renal proximal tubules." American Journal of Physiology-Renal Physiology 289, no. 5 (November 2005): F1057—F1064. http://dx.doi.org/10.1152/ajprenal.00185.2005.
Повний текст джерелаZHONG, Hongying, та Kenneth P. MINNEMAN. "Activation of tyrosine kinases by α1A-adrenergic and growth factor receptors in transfected PC12 cells". Biochemical Journal 344, № 3 (8 грудня 1999): 889–94. http://dx.doi.org/10.1042/bj3440889.
Повний текст джерелаRane, M. J., S. L. Carrithers, J. M. Arthur, J. B. Klein, and K. R. McLeish. "Formyl peptide receptors are coupled to multiple mitogen-activated protein kinase cascades by distinct signal transduction pathways: role in activation of reduced nicotinamide adenine dinucleotide oxidase." Journal of Immunology 159, no. 10 (November 15, 1997): 5070–78. http://dx.doi.org/10.4049/jimmunol.159.10.5070.
Повний текст джерелаJin, N., R. A. Siddiqui, D. English, and R. A. Rhoades. "Communication between tyrosine kinase pathway and myosin light chain kinase pathway in smooth muscle." American Journal of Physiology-Heart and Circulatory Physiology 271, no. 4 (October 1, 1996): H1348—H1355. http://dx.doi.org/10.1152/ajpheart.1996.271.4.h1348.
Повний текст джерелаBerleur, M., B. Baroudjian, C. Pages, M. Battistella, I. Chami, N. Basset-Seguin, N. Madjlessi, et al. "Traitement des mélanomes mutés c-kit par inhibiteur de tyrosine kinase." Annales de Dermatologie et de Vénéréologie 142, no. 12 (December 2015): S498—S499. http://dx.doi.org/10.1016/j.annder.2015.10.147.
Повний текст джерелаДисертації з теми "Inhibiteur de la tyrosine kinase"
Chevot, Franciane. "Conception et synthèse d'inhibiteurs de la tyrosine kinase Tyro3." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112024.
Повний текст джерелаAfter heart diseases, cancer is the most important cause of death. Cancerous cells are normal cells which multiplication and regulation system have been affected. They anarchically grow and give tumors. We have investigated in bladder cancer which is fourth cancer among men and ninth cancer among women in industrial countries. Amongst overexpressed receptors in bladder cancerous cells, Tyro3 seems to be essential for the survival of bladder cancerous cells. First goal of this thesis is to synthesize a potent and selective inhibitor of Tyro3 with a purine scaffold. Two approaches have done. The first approach is the synthesis of a type I inhibitor whereas the second approach is the synthesis of a type II inhibitor. Two compounds have shown an interesting activity against Tyro3 at 1 µM and they seem to be type II inhibitors. The second part of the thesis was the functionalization of position 2 and 8 of purine scaffold. We show first the double deprotonation by lithium species of 6-chloro-9-(tétrahydro-2H-pyran-2-yl)-9H-purine following by substitution with different electrophiles. Obtained 2,8-di-iodine compound is engaged in Sonogashira reaction which gives 2-alkyne or 2,8-di-alkyne compunds. And, we investigate in palladium catalyzed amidation and amination of 8-iodo-6-(phénylsulfanyl)-9-(tétrahydro-2H-pyran-2-yl)-9H-purine
Komla-Ebri, Davide Selom Komi. "Nouvelles approches thérapeutiques pour l’achondroplasie." Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB040/document.
Повний текст джерелаMissense mutations in the tyrosine kinase receptor FGFR3 (Fibroblast Growth Factor Receptor 3) lead to its overactivation causing biological dysfunctions in several diseases. Achondroplasia, the most common Fgfr3-related chondrodysplasia, is a rare genetic disorder, affecting 1 in 20000 live births, characterized by particular clinical features: rhizomelic dwarfism, short limbs, macrocephaly, midface hypoplasia, cervicomedullary compression. The abnormal activity of the receptor induces endochondral ossification defects that are responsible for the pathological phenotype. For a long time the only treatment for this disease was the limb lengthening surgery, however in recent years several researchers have developed potential therapeutic strategies based on molecular studies. The objective of my thesis was to evaluate a novel therapeutic approach for achondroplasia. A promising therapeutic strategy involved the use of small chemical inhibitors, known as tyrosine kinase inhibitors, that are able to arrest the FGFR3 activity. I have assessed the effects of one of these compounds, NVP-BGJ398, in a mouse model mimicking the acondroplastic dwarfism (Fgfr3Y367C/+). The experiments performed showed an improvement of all pathological hallmarks in NVP-BGJ398 treated mice. We have also inspected the impact of the activating FGFR3 mutation on the mandibular development. The study established a defect in mandibular growth in both affected patients and mice. Furthermore we could investigate the mandibular bone growth and correct the pathological defect with NVP-BGJ398. Finally I have participated in molecular analyses to describe how three FGFR3 mutations at the same position could lead to three different dwarfisms with increasing severity. The results provided a better understanding of FGFR3 pathological molecular mechanisms and could lead to new targets for therapeutic approaches
Dang-Trung, Khoi͏̈-Nguyên. "Intérêt potentiel en chimiothérapie anticancéreuse des inhibiteurs de protéines à activité tyrosine kinase : exemple de la génistéine." Paris 5, 1995. http://www.theses.fr/1995PA05P119.
Повний текст джерелаHammam, Kahina. "Nouveau concept de resensibilisation à la chimiothérapie en activant la nucléoside kinase dCK par le masitinib, un inhibiteur de protéines tyrosine kinases." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM5047.
Повний текст джерелаResistance to chemotherapy is considered as one of the major blockers of its efficacy. Recently, our team demonstrated that masitinib, a new tyrosine kinases inhibitor, possesse a resensitization activity of cell lines resistant to chemotherapy when associated with chemodrugs.The aim of this work is to determine signaling pathways, modulated by masitinib action, that could explain the resensitization to chemotherapy and improvement of anti-tumoral activity.In the first part of this work, we identified the nucleoside kinase dCK (deoxycytidine kinase), a chemotherapy activating protein, as a new target of masitinib. In summary, this first part of the work allowed us to describe a new and never described concept: masitinib, a small molecule belonging to tyrosine kinases group, can also play a role as nucleoside kinase activator.We were able to demonstrate through the second part of the work that the combined treatment of the epidrug decitabine and masitinib can be more effective than decitabine treatment for the re-expression of some genes non or weakly induced by decitabine when used alone.In conclusion, These data allowed us to introduce an interaction between a tyrosine kinases inhibitor and a nucleoside kinase, as an enzymatic activation new concept. This could be used as a base for the design of new small chemical molecules specific for dCK or other nucleoside kinases essential for the activation of chemodrugs. This concept will obviously help to imagine and evaluate more potential therapeutic combinations of chemodrugs and small chemical molecules to overcome the resistance to chemotherapy dependent on nucleoside kinases
Bencteux, Edith. "Conception et synthese d'inhibiteurs d'activite proteine tyrosine kinase potentiellement actifs dans le traitement du cancer." Lille 2, 1997. http://www.theses.fr/1997LIL2P264.
Повний текст джерелаLeroux, Florence. "Etude in vitro d'inhibiteurs de tyrosine kinases et de phosphodiesterases et d'un analogue du vasoactive intestinal peptide potentiellement actifs dans l'asthme." Lille 2, 1996. http://www.theses.fr/1996LIL2P253.
Повний текст джерелаNguyen, Van tai. "Physiopathologie des toxicités hématologiques et vasculaires des inhibiteurs de récepteurs à activité tyrosine kinase anti-angiogénique dans le traitement du cancer." Electronic Thesis or Diss., Paris 13, 2025. http://www.theses.fr/2025PA131002.
Повний текст джерелаAnti-angiogenic tyrosine kinase inhibitors (TKIs) have become major drugs for the treatment of various cancer types, but with an overall high incidence of severe toxicities, particularly haematological toxicities including severe anemia. Considerable differences have been observed across TKIs.In this thesis, we performed a meta-analysis to more efficiently assess the toxicity prevalence of the different anti-angiogenic TKIs among cancer patients, and in sub-populations of interest including patients with renal cell carcinoma. Using preclinical murine models, we demonstrated that anti-angiogenic TKIs induced a broad range of toxic effects on normal tissues through a cytotoxic effect on normal endothelial cells. Haematological toxicities were particulary marked with sunitinib. We showed that sunitinib-induced hypoxia through the destruction of normal vessels in the bone marrow mainly affected erythrocyte and myeloid lineages, and this was associated with a blockage in erythrocyte maturation. Althought sunitinib-induced anemia was associated with an adaptative response to systemic hypoxia, we demonstrated that erythropoietin (EPO) concentrations in the total bone marrow of sunitinib-treated mice were significantly lower than in untreated mice. This is coherent with the destruction of microvessels in the bone marrow under sunitinib treatment, preventing circulating EPO from reaching the bone marrow at relevant concentrations. We demonstrated an additional effect specific to sunitinib that induced autophagy flux inhibition in erythroid progenitors, with a blockage of erythrocyte maturation, leading to more severe anemia.In our study, we deciphered the pathophysiology of anti-angiogenic TKI-induced anemia, which we found to be mainly linked to a direct effect on bone-marrow normal vessels and also to autophagy flux inhibition in erythroid progenitors under sunitinib. Our study has potential translational applications for the choice of anti-angiogenic TKIs and the management of treatment-induced anemia
Mésange, Paul. "Influence d’inhibiteurs tyrosine kinase sur la biologie et la survie de cellules de cancer colorectal." Thesis, Paris 5, 2014. http://www.theses.fr/2014PA05P635/document.
Повний текст джерелаThe aim of the work is to characterize the influence of VEGF signaling , especially autocrine VEGF signaling , the biology and susceptibility / resistance to anticancer drugs of colorectal cancer cells. We wished to characterize the impact of the autocrine VEGF signaling in CRC models with natural resistance to bevacizumab , an anti -VEGF antibody. Although this compound is active in the CRC, a subpopulation of patients do not respond to treatment. Our results show an autocrine regulatory pathway HIF- VEGF- VEGFR in response to prolonged exposure to bevacizumab in bevacizumab resistant cells. If the resistance to the antibody is established, other inhibitos of VEGF pathway remain active (such as small molecule nintedanib ) and can inhibit the mTOR pathway. Autocrine VEGF signaling plays a role in CRC cell survival. In subjects resistant to bevacizumab, it would be interesting to introduce the nintedanib alone or in combination to enhance the angiogenic inhibition. Another combination of targeted agents ( anti-VEGF (R) and anti EGFR) has shown efficacy in preclinical models of CRC. The combination of bevacizumab and a small molecule targeting EGFR (erlotinib) showed greater efficacy than bevacizumab alone in CRC models regardless of KRAS status. Bevacizumab induces activation of the EGFR survival pathway in tumor cells and in endothelial cells associated with the tumor. This activation is decreased with the introduction of erlotinib. The results indicate that the combination of bevacizumab and erlotinib are more active in maintenance therapy than bevacizumab alone, even for patients mutated KRAS . These findings led to the positive Phase III clinical study GERCOR DREAM in metastatic colon cancer
Losson, Hélène. "Combinaisons de nouveaux inhibiteurs de désacétylase d’histones 6 avec des inhibiteurs de tyrosine kinase pour le traitement de la leucémie myéloïde chronique." Thesis, Université de Lorraine, 2020. http://www.theses.fr/2020LORR0003.
Повний текст джерелаBreakpoint cluster region-Abelson (BCR-ABL)+ chronic myeloid leukemia (CML) patients receive tyrosine kinase inhibitors (TKIs) such as imatinib as the first-line treatment; however, some patients develop resistances and severe adverse effects. Combination treatments, especially with histone deacetylase (HDAC)6 inhibitors (HDAC6i), appear as an attractive option to prevent TKI resistances considering the capacity of HDAC6i to downregulate BCR-ABL. Moreover, HDAC6 is implicated in protein degradation pathways, so that its inhibition combined with that of the proteasome could sensitize cells to TKIs. Thus, we hypothesized that HDAC6i combined to TKIs could be effective for CML treatment. In the first part, we compared the anti-CML effects of a HDAC6i identified in our laboratory, compound 7b, to the reference HDAC6i tubacin, in combination with imatinib. Results showed that the imatinib-7b combination generated stronger anti- CML effects than imatinib-tubacin. Especially, the imatinib-7b combination elicited a potent synergistic caspase- dependent apoptotic cell death and drastically reduced the proportion of cancer stem cells in K562 CML cells, whereas it only moderately impacted various healthy cell models. Ultimately, the imatinib-7b combination decreased more potently the colony forming capacities and tumor mass formation of CML cells in a semisolid methylcellulose medium and in xenografted zebrafishes, respectively, compared to each compound alone. Mechanistically, the combination induced BCR-ABL ubiquitination and downregulation leading to a dysregulation of multiple key proteins of its downstream pathways involved in CML proliferation and survival. Results tend to demonstrate that 7b could target the second site. In the second part, we initiated a study of a novel hydroxamate-based HDAC6i, MAKV-15, and preliminary results demonstrated it triggered BCR-ABL downregulation. Accordingly, in pre-treatment with bortezomib it sensitizes CML cells to imatinib leading to enhanced caspase-dependent apoptotic death in imatinib-sensitive and imatinib-resistant CML cells. Considering that HDAC6 is reported to possess two functional catalytic sites, we finally attempted to determine which catalytic site is targeted by these HDAC6i. Taken together, our results suggest that HDAC6i potentiate the effect of imatinib and could overcome TKI resistance in CML cells and therefore such combination may represent a promising therapeutic approach for CML patients
Peyressatre, Marion. "Développement de biosenseurs fluorescents et d’inhibiteurs pour suivre et cibler CDK5/p25 dans le glioblastome." Thesis, Montpellier, 2016. http://www.theses.fr/2016MONT3513/document.
Повний текст джерелаCDK5 is a protein kinase ubiquitously expressed but mainly activated in the central nervous system, where it plays an important role in neuronal functions such as synaptic transmission, axonal guidance and migration, synaptic plasticity and neuronal development. CDK5 is associated with p35 protein at the cell membrane, then activated by calpain-mediated cleavage of p35 into p25, which promotes relocalization of CDK5/p25 into the cytoplasm. CDK5/p25 phosphorylates a wide variety of substrates including Tau, thereby contributing to appearance of neurofibrillary plaques responsable for neurodegenerative pathologies such as comme Alzheimer’s et Parkinson’s, when hyperactivated. More recent studies suggest that CDK5 expression and hyperactivation are involved in glioblastoma during cell invasion and CDK5 expression has been reported to be correlated with the pathological grade of gliomas. However there are currently no tools available to monitor CDK5/p25 activity in its native cellular environment, in tissues or in tumours, due to an overall lack of reliable tools to quantify dynamic changes in its kinase activity in a sensitive and continuous fashion. Furthermore, few inhibitors are currently available to target CDK5/p25 in a specific fashion and most of them are ATP competitive inhibitors.The first goal of my thesis was to develop a fluorescent peptide biosensor named CDKACT5, that specifically reports on recombinant CDK5/p25 and on endogenous CDK5 activity in cell extracts in a dynamic and reversible fashion following stimulation or inhibition of this kinase. Once validated in vitro, this biosensor was applied to detect alterations in CDK5/p25 activity in different glioblastoma cell lines in fluorescent kinase activity assays. Finally CDKACT5 was introduced into cultured neuronal cells to monitor dynamic changes in CDK5/p25 activity by fluorescence imaging and time-lapse microscopy.The second goal of my thesis project consisted in developing a conformational fluorescent biosensor to identify non-ATP competitive inhibitors targeting the activation loop of CDK5. CDKCONF5 was implemented to perform a high throughput screen of three small molecule libraries. The hits identified were validated and characterized to determine their inhibitory potential in kinase activity and proliferation assays, as well as their mechanism of action. These compounds constitute promising for selective chemotherapy in glioblastoma
Книги з теми "Inhibiteur de la tyrosine kinase"
Focosi, Daniele, ed. Resistance to Tyrosine Kinase Inhibitors. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46091-8.
Повний текст джерелаMustelin, Tomas. Src family tyrosine kinases in leukocytes. Austin: R.G. Landes, 1994.
Знайти повний текст джерелаHeilmeyer, L. M. G. 1937- and NATO Advanced Study Institute on Tyrosine Phosphorylation/Dephosphorylation and Downstream Signalling (1992 : Acquafredda di Maratea, Italy), eds. Tyrosine phosphorylation/dephosphorylation and downstream signalling. Berlin: Springer-Verlag, 1993.
Знайти повний текст джерелаD, Fabbro, and McCormick Frank 1950-, eds. Protein tyrosine kinases: From inhibitors to useful drugs. Totowa, N.J: Humana Press, 2006.
Знайти повний текст джерелаGermano, Serena. Receptor tyrosine kinases: Methods and protocols. New York: Humana Press, 2015.
Знайти повний текст джерелаShulman, Johanna. Biochemical analysis of activating mutations of the Kit receptor tyrosine kinase. Ottawa: National Library of Canada, 1998.
Знайти повний текст джерелаGibson, Spencer Bruce. Role of the TEC family tyrosine kinase EMT in T cell activation. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1997.
Знайти повний текст джерелаEasterfield, Howard James. Analogues of phosphotyrosine: New components of ligands for protein tyrosine kinase enzymes. Birmingham: University of Birmingham, 1999.
Знайти повний текст джерелаCudmore, Stephen Bruce. The effect of postnatal development on synaptic tyrosine kinase of rat forebrain. Ottawa: National Library of Canada, 1991.
Знайти повний текст джерелаHo, Jacqueline. A requirement for the receptor tyrosine kinase, Flk1, in hematopoiesis and vasculogenesis. Ottawa: National Library of Canada = Bibliothèque nationale du Canada, 1999.
Знайти повний текст джерелаЧастини книг з теми "Inhibiteur de la tyrosine kinase"
Moses, Marsha A. "Tyrosine Kinase Inhibitor." In Encyclopedia of Systems Biology, 2307–8. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-9863-7_1558.
Повний текст джерелаBozec, A., and G. Milano. "Monoclonaux contre inhibiteurs de tyrosine kinase." In Les thérapies ciblées, 81–97. Paris: Springer Paris, 2008. http://dx.doi.org/10.1007/978-2-287-36008-4_6.
Повний текст джерелаBhaskar, L. V. K. S., and L. Saikrishna. "Drug Resistance Against Tyrosine Kinase Inhibitor in Gastrointestinal Malignancies." In Role of Tyrosine Kinases in Gastrointestinal Malignancies, 191–224. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1486-5_14.
Повний текст джерелаKariya, Yoshiaki, Masashi Honma, and Hiroshi Suzuki. "Systems Pharmacology of Tyrosine Kinase Inhibitor-Associated Toxicities." In Systems Pharmacology and Pharmacodynamics, 353–70. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44534-2_16.
Повний текст джерелаKriegsmann, Katharina, Mark Kriegsmann, and Mathias Witzens-Harig. "Acalabrutinib, A Second-Generation Bruton’s Tyrosine Kinase Inhibitor." In Small Molecules in Hematology, 285–94. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91439-8_14.
Повний текст джерелаIsfort, Susanne, Martina Crysandt, Deniz Gezer, Steffen Koschmieder, Tim H. Brümmendorf, and Dominik Wolf. "Bosutinib: A Potent Second-Generation Tyrosine Kinase Inhibitor." In Small Molecules in Hematology, 87–108. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91439-8_4.
Повний текст джерелаIsfort, Susanne, Gunhild Keller-v. Amsberg, Philippe Schafhausen, Steffen Koschmieder, and Tim H. Brümmendorf. "Bosutinib: A Novel Second-Generation Tyrosine Kinase Inhibitor." In Recent Results in Cancer Research, 81–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54490-3_4.
Повний текст джерелаMotyckova, Gabriela, and Richard M. Stone. "Development of Midostaurin as a Tyrosine Kinase Inhibitor." In Targeted Therapy of Acute Myeloid Leukemia, 201–14. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1393-0_10.
Повний текст джерелаGrüllich, Carsten. "Cabozantinib: A MET, RET, and VEGFR2 Tyrosine Kinase Inhibitor." In Recent Results in Cancer Research, 207–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-54490-3_12.
Повний текст джерелаZhang, Ji, and Jie Jack Li. "Pazopanib (Votrient): A VEGFR Tyrosine Kinase Inhibitor for Cancer." In Modern Drug Synthesis, 111–22. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470768594.ch9.
Повний текст джерелаТези доповідей конференцій з теми "Inhibiteur de la tyrosine kinase"
Abid, H., N. Siddiqui, and V. Thirukonda. "Tyrosine Kinase Inhibitor Induced Interstitial Lung Disease." In American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a3137.
Повний текст джерелаHenzler, Tanja, Stefanie Pohl, Nicole Schneiderhan-Mara, Stefanie Rimmele, April Livengood, Robert Kovelman, and Thomas Herget. "Abstract LB-227: Receptor tyrosine kinase phosphorylation: Simultaneous detection of 10 kinases upon inhibitor treatment." In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-lb-227.
Повний текст джерелаFuhrmann, T., M. Krumbholz, U. Steffen, S. Sembill, and M. Metzler. "Effects of the allosteric tyrosine kinase inhibitor asciminib on bone metabolism." In 35. Jahrestagung der Kind-Philipp-Stiftung für pädiatrisch onkologische Forschung. Georg Thieme Verlag KG, 2024. http://dx.doi.org/10.1055/s-0044-1786576.
Повний текст джерелаSuzuki, Toshihiro, Risa Ito, Toshimitsu Yamaoka, Tohru Ohmori, Kazuto Nishio, and Yuki Ogasawara. "Abstract 4098: Tyrosine kinase inhibitor resistance were decreased in spheroid culture platform." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-4098.
Повний текст джерелаEiring, Anna M., Rebecca Ellwood, Carme Ripoll Fiol, Robert K. Hills, Georgios Nteliopoulos, Alistair Reid, Dragana Milojkovic, Jane Apperley, and Jamshid Sorouri-Khorashad. "Abstract 3018: Mechanisms of tyrosine kinase inhibitor resistance in chronic myeloid leukemia." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-3018.
Повний текст джерелаXin, Y., M. Cereda, K. T. Martin, S. Humayun, I. Duncan, H. Profka, S. Kadlecek, and R. R. Rizi. "Tyrosine Kinase Inhibitor Imatinib Alleviates the Progression of Ventilator-Induced Lung Injury." In American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a1301.
Повний текст джерелаIyer, Sudarshan R., Igor Odintsov, Adam J. Schoenfeld, Hiroki Sato, Evan Siau, Alexander Drilon, Gregory J. Riely, Romel Somwar, Marc Ladanyi, and Monika A. Davare. "Abstract 1111: MYC promotes tyrosine kinase inhibitor resistance inROS1fusion positive lung cancers." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-1111.
Повний текст джерелаEiring, Anna M., Rebecca Ellwood, Carme Ripoll Fiol, Robert K. Hills, Georgios Nteliopoulos, Alistair Reid, Dragana Milojkovic, Jane Apperley, and Jamshid Sorouri-Khorashad. "Abstract 3018: Mechanisms of tyrosine kinase inhibitor resistance in chronic myeloid leukemia." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-3018.
Повний текст джерелаPerez, Michael, Andrew Morrison, and Kelly Sloane. "Bruton Tyrosine Kinase Inhibitor Associated Cryptococcal Meningitis Manifesting as Stroke (P1-10.002)." In 2023 Annual Meeting Abstracts. Lippincott Williams & Wilkins, 2023. http://dx.doi.org/10.1212/wnl.0000000000202063.
Повний текст джерелаWang, Lei G., Antonio Montaño, Allison Solanki, Nathan McMahon, Kenneth M. Tichauer, Kimberley S. Samkoe, and Summer L. Gibbs. "Quantitative imaging of tyrosine kinase inhibitor distribution in live cells and tissues." In Frontiers in Biological Detection: From Nanosensors to Systems XIV, edited by Benjamin L. Miller, Sharon M. Weiss, Amos Danielli, Ramesh Raghavachari, and Mikhail Y. Berezin. SPIE, 2022. http://dx.doi.org/10.1117/12.2612233.
Повний текст джерелаЗвіти організацій з теми "Inhibiteur de la tyrosine kinase"
Sawada, Takashi, and Mamoru Narukawa. A systematic review of treatment-related adverse events for combination therapy of multiple tyrosine kinase inhibitor and immune checkpoint inhibitor. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, September 2023. http://dx.doi.org/10.37766/inplasy2023.9.0011.
Повний текст джерелаKim, Dong W. Molecular Profiling of Prostate Cancer to Determine Predictive Markers of Response to Radiation and Receptor Tyrosine Kinase Inhibitor Therapy. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada468523.
Повний текст джерелаGuo, Wenpei, Jianwei Diao, Zhenyuan Jiang та Zhankui Wang. Comparative efficacy and safety of tyrosine kinase inhibitor for systemic sclerosis - associated interstitial lung diseases A Bayesian network meta-analysis protocol. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, грудень 2020. http://dx.doi.org/10.37766/inplasy2020.12.0150.
Повний текст джерелаZheng, Jiaxi, and Haihua Yang. Clinical Benefits of Immune Checkpoint Inhibitors and Predictive Value of Tumor Mutation Burden in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, January 2022. http://dx.doi.org/10.37766/inplasy2022.1.0008.
Повний текст джерелаKim, Beong Ki, Ye Seul Seong, Eunyoung Kim, Sehyun Kwak, Sanghoon Lee, Eunhye Lee, Yoonsoo Jang, and Chi Young Kim. Optimizing Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitor Treatment in Lung Cancer: The Influence of Gastric Acid Suppressants – An Updated Systematic Review and Meta-Analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, May 2024. http://dx.doi.org/10.37766/inplasy2024.5.0108.
Повний текст джерелаWang, Zexian, Yaru Guo, Xiaojin Wu, Xiaohan Qin, Zhiling Wan, and Chen Liu. Bevacizumab plus Epidermal Growth Factor Receptor (EGFR)-Tyrosine Kinase Inhibitor versus EGFR-TKI alone for advanced EGFR-mutant non-small cell lung cancer: a meta-analysis of randomized clinical trials. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, December 2023. http://dx.doi.org/10.37766/inplasy2023.12.0059.
Повний текст джерелаQin, Xiaohan, Yaru Guo, Xiaojin Wu, Zexian Wang, Zhiling Wan, and Chen Liu. Chemotherapy plus Epidermal Growth Factor Receptor (EGFR)-Tyrosine Kinase Inhibitor versus EGFR-TKI alone for advanced EGFR-mutant non-small cell lung cancer: a meta-analysis of randomized clinical trials. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, January 2024. http://dx.doi.org/10.37766/inplasy2024.1.0128.
Повний текст джерелаWeier, Heinz-Ulrich. Expression Profiling of Tyrosine Kinase Genes. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada423672.
Повний текст джерелаWeier, Heinz U. Expression Profiling of Tyrosine Kinase Genes. Fort Belvoir, VA: Defense Technical Information Center, August 2000. http://dx.doi.org/10.21236/ada391061.
Повний текст джерелаMiller, Tod. Peptide-Bassed Inhibitors of Neu Tyrosine Kinase. Fort Belvoir, VA: Defense Technical Information Center, June 1999. http://dx.doi.org/10.21236/ada375133.
Повний текст джерела