Статті в журналах з теми "Injection locking of optical frequency comb"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Injection locking of optical frequency comb.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Injection locking of optical frequency comb".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Kuse, Naoya, Akira Ozawa, Yutaka Nomura, Isao Ito, and Yohei Kobayashi. "Injection locking of Yb-fiber based optical frequency comb." Optics Express 20, no. 10 (April 23, 2012): 10509. http://dx.doi.org/10.1364/oe.20.010509.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shortiss, Kevin, Maryam Shayesteh, William Cotter, Alison Perrott, Mohamad Dernaika, and Frank Peters. "Mode Suppression in Injection Locked Multi-Mode and Single-Mode Lasers for Optical Demultiplexing." Photonics 6, no. 1 (March 8, 2019): 27. http://dx.doi.org/10.3390/photonics6010027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Optical injection locking has been demonstrated as an effective filter for optical communications. These optical filters have advantages over conventional passive filters, as they can be used on active material, allowing them to be monolithically integrated onto an optical circuit. We present an experimental and theoretical study of the optical suppression in injection locked Fabry–Pérot and slotted Fabry–Pérot lasers. We consider both single frequency and optical comb injection. Our model is then used to demonstrate that improving the Q factor of devices increases the suppression obtained when injecting optical combs. We show that increasing the Q factor while fixing the device pump rate relative to threshold causes the locking range of these demultiplexers to asymptotically approach a constant value.
3

Shortiss, Kevin, Benjamin Lingnau, Fabien Dubois, Bryan Kelleher, and Frank H. Peters. "Harmonic frequency locking and tuning of comb frequency spacing through optical injection." Optics Express 27, no. 25 (December 5, 2019): 36976. http://dx.doi.org/10.1364/oe.27.036976.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Nazarikov, Gleb, Simon Rommel, Weiming Yao, and Idelfonso Tafur Monroy. "Optical Injection Locking for Generation of Tunable Low-Noise Millimeter Wave and THz Signals." Applied Sciences 11, no. 21 (October 30, 2021): 10185. http://dx.doi.org/10.3390/app112110185.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This article presents the experimental demonstration of synchronization of two integrated semiconductor distributed Bragg reflector lasers, fabricated with a generic multiproject wafer platform, by means of injection locking. Substantial linewidth reduction and frequency stabilization of the lasers were shown during locking of the lasers to an optical frequency comb. Phase noise was measured for different injected powers and different laser cavities. For a generation of millimeter-wave signals up to 80 GHz, two lasers were simultaneously locked to the comb. Fine-tuning was performed by tuning the repetition rate of the comb and coarse-tuning was carried out by switching to another comb line. A suppression ratio of 37 dB was achieved for unwanted comb lines. The achieved signal purity, phase noise, and suppression of unwanted components demonstrate the viability of injection locking for the generation of high-quality signals at sub-THz and THz frequencies and with substantial tunability.
5

D. Lakshmijayasimha, Prajwal D., Prince M. Anandarajah, Pascal Landais, and Aleksandra Kaszubowska-Anandarajah. "Optical Frequency Comb Expansion Using Mutually Injection-Locked Gain-Switched Lasers." Applied Sciences 11, no. 15 (July 31, 2021): 7108. http://dx.doi.org/10.3390/app11157108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We propose a novel scheme for the expansion and comb densification of gain-switched optical frequency combs (GS-OFC). The technique entails mutual injection locking of two gain-switched lasers with a common master to generate a wider bandwidth OFC. Subsequently, the OFC is further expanded and/or densified using a phase modulator with optimum drive conditions. We experimentally demonstrate the generation of an OFC with 45 highly correlated lines separated by 6.25 GHz with an expansion factor ~3. In addition, operating in comb densification mode, the channel spacing of the OFC is tuned from 6.25 GHz to 390.625 MHz. Finally, a detailed characterization of the lines, across the entire expanded comb, is reported highlighting the excellent spectral purity with linewidths of ~40 kHz, a relative intensity noise better than –152 dB/Hz, and a high degree of phase correlation between the comb lines. The proposed method is simple, highly flexible and the architecture is suitable for photonic integration, all of which make such an OFC extremely attractive for the employment in a multitude of applications.
6

Al-Hosiny, Najm M. "Dynamics of the Frequency Shifts in Semiconductor Lasers under the Injection of a Frequency Comb." Photonics 9, no. 12 (November 22, 2022): 886. http://dx.doi.org/10.3390/photonics9120886.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We have numerically investigated the dynamics of frequency shifts in semiconductor lasers under the injection of a frequency comb. We have studied the effect of comb spacing on the locking bandwidth. Frequency comb spacing was found to play an important role in the boundaries of the locking bandwidth as well as in the frequency shift of the SL peak.
7

Freeman, Joshua R., Lalitha Ponnampalam, Haymen Shams, Reshma A. Mohandas, Cyril C. Renaud, Paul Dean, Lianhe Li, A. Giles Davies, Alwyn J. Seeds, and Edmund H. Linfield. "Injection locking of a terahertz quantum cascade laser to a telecommunications wavelength frequency comb." Optica 4, no. 9 (September 1, 2017): 1059. http://dx.doi.org/10.1364/optica.4.001059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ramond, T. M., L. Hollberg, P. W. Juodawlkis, and S. D. Calawa. "Low-noise optical injection locking of a resonant tunneling diode to a stable optical frequency comb." Applied Physics Letters 90, no. 17 (April 23, 2007): 171124. http://dx.doi.org/10.1063/1.2734368.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bordonalli, Aldário Chrestani, Martyn J. Fice, and Alwyn J. Seeds. "Optical injection locking to optical frequency combs for superchannel coherent detection." Optics Express 23, no. 2 (January 22, 2015): 1547. http://dx.doi.org/10.1364/oe.23.001547.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Forrer, Andres, Lorenzo Bosco, Mattias Beck, Jérôme Faist, and Giacomo Scalari. "RF Injection of THz QCL Combs at 80 K Emitting over 700 GHz Spectral Bandwidth." Photonics 7, no. 1 (January 16, 2020): 9. http://dx.doi.org/10.3390/photonics7010009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We report about RF injection locking of an homogeneous THz quantum cascade laser operating at 3 THz central frequency. The extremely diagonal nature of the optical transition, combined with low-loss copper-based double-metal waveguides, allow CW operation up to 105 K and CW power in excess of 5.6 mW measured at 80 K. Terahertz emission spanning up to 600 GHz, together with a narrow beatnote, indicate comb operation at 80 K, and strong RF injection clearly modifies the laser spectrum up to 700 GHz spectral bandwidth making these devices ideal candidates for an on-chip dual comb spectrometer.
11

Shao, Shuai, Jiachen Li, Hongwei Chen, Sigang Yang, and Minghua Chen. "Gain-Switched Optical Frequency Comb Source Using a Hybrid Integrated Self-Injection Locking DFB Laser." IEEE Photonics Journal 14, no. 1 (February 2022): 1–6. http://dx.doi.org/10.1109/jphot.2022.3141424.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Ó Dúill, Sean P., Prince M. Anandarajah, Rui Zhou, and Liam P. Barry. "Numerical investigation into the injection-locking phenomena of gain switched lasers for optical frequency comb generation." Applied Physics Letters 106, no. 21 (May 25, 2015): 211105. http://dx.doi.org/10.1063/1.4921852.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

linghuan Liang, 梁凌寰, 宋英雄 Yingxiong Song, and 林如俭 Rujian Lin. "Demonstration of Coherent Orthogonal Frequency Division Multiplexing Passive Optical Network System Based on Optical Frequency Comb and Injection Locking Local Laser." Acta Optica Sinica 39, no. 9 (2019): 0906004. http://dx.doi.org/10.3788/aos201939.0906004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Hillbrand, Johannes, Aaron Maxwell Andrews, Hermann Detz, Gottfried Strasser, and Benedikt Schwarz. "Coherent injection locking of quantum cascade laser frequency combs." Nature Photonics 13, no. 2 (December 10, 2018): 101–4. http://dx.doi.org/10.1038/s41566-018-0320-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Prior, E., C. de Dios, R. Criado, M. Ortsiefer, P. Meissner, and P. Acedo. "Dynamics of dual-polarization VCSEL-based optical frequency combs under optical injection locking." Optics Letters 41, no. 17 (August 29, 2016): 4083. http://dx.doi.org/10.1364/ol.41.004083.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Moon, H. S., E. B. Kim, S. E. Park, and C. Y. Park. "Selection and amplification of modes of an optical frequency comb using a femtosecond laser injection-locking technique." Applied Physics Letters 89, no. 18 (October 30, 2006): 181110. http://dx.doi.org/10.1063/1.2374680.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Sooudi, Ehsan, Stylianos Sygletos, Andrew D. Ellis, Guillaume Huyet, John G. McInerney, François Lelarge, Kamel Merghem, et al. "Optical Frequency Comb Generation Using Dual-Mode Injection-Locking of Quantum-Dash Mode-Locked Lasers: Properties and Applications." IEEE Journal of Quantum Electronics 48, no. 10 (October 2012): 1327–38. http://dx.doi.org/10.1109/jqe.2012.2210389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Di Gaspare, Alessandra, Leonardo Viti, Harvey E. Beere, David D. Ritchie, and Miriam S. Vitiello. "Homogeneous quantum cascade lasers operating as terahertz frequency combs over their entire operational regime." Nanophotonics 10, no. 1 (September 28, 2020): 181–86. http://dx.doi.org/10.1515/nanoph-2020-0378.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractWe report a homogeneous quantum cascade laser (QCL) emitting at terahertz (THz) frequencies, with a total spectral emission of about 0.6 THz, centered around 3.3 THz, a current density dynamic range Jdr = 1.53, and a continuous wave output power of 7 mW. The analysis of the intermode beatnote unveils that the devised laser operates as an optical frequency comb (FC) synthesizer over the whole laser operational regime, with up to 36 optically active laser modes delivering ∼200 µW of optical power per optical mode, a power level unreached so far in any THz QCL FC. A stable and narrow single beatnote, reaching a minimum linewidth of about 500 Hz, is observed over a current density range of 240 A/cm2 and even across the negative differential resistance region. We further prove that the QCL FC can be injection locked with moderate radio frequency power at the intermode beatnote frequency, covering a locking range of 1.2 MHz. The demonstration of stable FC operation, in a QCL, over the full current density dynamic range, and without any external dispersion compensation mechanism, makes our proposed homogenous THz QCL an ideal tool for metrological applications requiring mode-hop electrical tunability and a tight control of the frequency and phase jitter.
19

Shitikov, A. E., A. S. Voloshin, I. K. Gorelov, E. A. Lonshakov, K. N. Min’kov, N. Yu Dmitriev, N. M. Kondrat’ev, V. E. Lobanov, and I. A. Bilenko. "Generation of Optical Frequency Combs in an Optical Microresonator Pumped by a 780-nm Laser Diode in Self-Injection Locking Regime." Journal of Experimental and Theoretical Physics 134, no. 5 (May 2022): 583–89. http://dx.doi.org/10.1134/s1063776122030177.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Xiang, Chao, Junqiu Liu, Joel Guo, Lin Chang, Rui Ning Wang, Wenle Weng, Jonathan Peters, et al. "Laser soliton microcombs heterogeneously integrated on silicon." Science 373, no. 6550 (July 1, 2021): 99–103. http://dx.doi.org/10.1126/science.abh2076.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si3N4) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor–compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si3N4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms.
21

Xu, Bingxin, Xinyu Fan, Shuai Wang, and Zuyuan He. "Wideband and high-resolution spectroscopy based on an ultra-fine electro-optic frequency comb with seed lightwave selection via injection locking." Optics Letters 46, no. 8 (April 9, 2021): 1876. http://dx.doi.org/10.1364/ol.420377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Yang, Jiang, Weilin Xie, Tao Wang, Yuxiang Feng, Yinxia Meng, Qiang Yang, Wei Wei, and Yi Dong. "Enhanced frequency-modulated continuous-wave generation by injection-locking period-one oscillation in a semiconductor laser with an intensity modulated comb." Optics Express 30, no. 9 (April 20, 2022): 14886. http://dx.doi.org/10.1364/oe.454944.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Gat, Omri, and David Kielpinski. "Frequency comb injection locking of mode locked lasers." New Journal of Physics 15, no. 3 (March 26, 2013): 033040. http://dx.doi.org/10.1088/1367-2630/15/3/033040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Bimberg, Dieter. "Semiconductor nanostructures for flying q-bits and green photonics." Nanophotonics 7, no. 7 (May 28, 2018): 1245–57. http://dx.doi.org/10.1515/nanoph-2018-0021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractBreakthroughs in nanomaterials and nanoscience enable the development of novel photonic devices and systems ranging from the automotive sector, quantum cryptography to metropolitan area and access networks. Geometrical architecture presents a design parameter of device properties. Self-organization at surfaces in strained heterostructures drives the formation of quantum dots (QDs). Embedding QDs in photonic and electronic devices enables novel functionalities, advanced energy efficient communication, cyber security, or lighting systems. The recombination of excitons shows twofold degeneracy and Lorentzian broadening. The superposition of millions of excitonic recombinations from QDs in real devices leads to a Gaussian envelope. The material gain of QDs in lasers is orders of magnitude larger than that of bulk material and decoupled from the index of refraction, controlled by the properties of the carrier reservoir, thus enabling independent gain and index modulation. The threshold current density of QD lasers is lowest of all injection lasers, is less sensitive to defect generation, and does not depend on temperature below 80°C. QD lasers are hardly sensitive to back reflections and exhibit no filamentation. The recombination from single QDs inserted in light emitting diodes with current confining oxide apertures shows polarized single photons. Emission of ps pulses and date rates of 1010+bit upon direct modulation benefits from gain recovery within femtoseconds. Repetition rates of several 100 GHz were demonstrated upon mode-locking. Passively mode-locked QD lasers generate hat-like frequency combs, enabling Terabit data transmission. QD-based semiconductor optical amplifiers enable multi-wavelength amplification and switching and support multiple modulation formats.
25

Doumbia, Yaya, Delphine Wolfersberger, Krassimir Panajotov, and Marc Sciamanna. "Two Polarization Comb Dynamics in VCSELs Subject to Optical Injection." Photonics 9, no. 2 (February 18, 2022): 115. http://dx.doi.org/10.3390/photonics9020115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Optical frequency comb technologies have received intense attention due to their numerous promising applications ranging from optical communications to optical comb spectroscopy. In this study, we experimentally demonstrate a new approach of broadband comb generation based on the polarization mode competition in single-mode VCSELs. More specifically, we analyze nonlinear dynamics and polarization properties in VCSELs when subject of optical injection from a frequency comb. When varying injection parameters (injection strength and detuning frequency) and comb properties (comb spacing), we unveil several bifurcation sequences enabling the excitation of free-running depressed polarization mode. Interestingly, for some injection parameters, the polarization mode competition induces a single or a two polarization comb with controllable properties (repetition rate and power per line). We also show that the performance of the two polarization combs depends crucially on the injection current and on the injected comb spacing. We explain our experimental findings by utilizing the spin-flip VCSEL model (SFM) supplemented with terms for parallel optical injection of frequency comb. We provide a comparison between parallel and orthogonal optical injection in the VCSEL when varying injection parameters and SFM parameters. We show that orthogonal comb dynamics can be observed in a wide range of parameters, as for example dichroism linear dichroism (γa=−0.1 ns−1 to γa=−0.8 ns−1), injection current (μ=2.29 to μ=5.29) and spin-flip relaxation rate (γs=50 ns−1 to γs=2300 ns−1).
26

Hendrie, James, Ning Hsu, and Jean-Claude Diels. "Control of Frequency Combs with Passive Resonators." Sensors 23, no. 3 (January 17, 2023): 1066. http://dx.doi.org/10.3390/s23031066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Tailored optical frequency combs are generated by nesting passive etalons within mode-locked oscillators. In this work, the oscillator generates a comb of 6.8 GHz with 106 MHz side-bands. This tailored comb results from the self-synchronized locking of two cavities with precision optical frequency tuning. In this manuscript, it is demonstrated that these combs can be precisely predicted utilizing a temporal ABCD matrix method and precise comb frequency tuning by scanning over the D1 transition line of 87Rb and observing the fluorescence.
27

Chan, Sze-Chun, Guang-Qiong Xia, and Jia-Ming Liu. "Optical generation of a precise microwave frequency comb by harmonic frequency locking." Optics Letters 32, no. 13 (June 25, 2007): 1917. http://dx.doi.org/10.1364/ol.32.001917.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Tistomo, Arfan Sindhu, and Sangyoun Gee. "Laser frequency fixation by multimode optical injection locking." Optics Express 19, no. 2 (January 10, 2011): 1081. http://dx.doi.org/10.1364/oe.19.001081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Chae, Eunmi, Kota Nakashima, Takuya Ikeda, Kei Sugiyama, and Kosuke Yoshioka. "Direct phase-locking of a Ti:Sapphire optical frequency comb to a remote optical frequency standard." Optics Express 27, no. 11 (May 17, 2019): 15649. http://dx.doi.org/10.1364/oe.27.015649.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Koliada, N. A., V. S. Pivtsov, S. A. Kuznetsov, A. A. Filonov, S. A. Farnosov, I. M. Kolyada, D. Yu Primakov, A. S. Dychkov, D. S. Kharenko, and I. S. Zhdanov. "Er:fiber-based femtosecond frequency comb stabilized to an Yb+ single-ion optical frequency standard." Laser Physics Letters 19, no. 1 (December 2, 2021): 015102. http://dx.doi.org/10.1088/1612-202x/19/1/015102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract An erbium fiber-based femtosecond optical frequency comb stabilized to an Yb+ single-ion optical frequency standard was created. For the first time, a combination of an extra-cavity acousto-optic frequency modulator with fiber outputs and an intracavity electro-optic phase modulator based on a KTP crystal were used to stabilize offset frequency and one of the optical components of the Er:fiber femtosecond comb. As a result a locking bandwidth of 30 kHz for the optical comb offset frequency has been obtained. It is shown that the relative instability introduced by the stabilization and measurement systems into the output radio frequencies (in addition to the instability of the reference optical signal) is no worse than 5 × 10−14 for averaging times of 1 s and 2 × 10−16 for averaging times of 400 s.
31

Savchenkov, Anatoliy, Skip Williams, and Andrey Matsko. "On Stiffness of Optical Self-Injection Locking." Photonics 5, no. 4 (October 30, 2018): 43. http://dx.doi.org/10.3390/photonics5040043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Spectrally pure semiconductor lasers produced via self-injection locking to high quality factor monolithic optical resonators demonstrate sub-kHz instantaneous linewidth. The lasers are used in photonic sensor systems and microwave photonic oscillators benefitting from the improved spectral purity, the stability and the reduced environmental sensitivity of the lasers. The laser frequency stability is defined by both the optical resonator and the optical path of the entire system comprising the laser, the resonator, and the miscellaneous optical components. The impacts of the various destabilization factors are usually convoluted, and it is hardly possible to separate them. In this paper, we report on an experimental study of an influence of the variations of the optical path on the laser frequency stability. We have created a whispering gallery mode optical resonator having the record small thermal sensitivity, on the order of 0.1 ppm/ ∘ C, and demonstrated a self-injection locked laser based on this resonator. The measured laser stability is characterized with 1 s Allan deviation of 10 − 12 , limited by the thermal sensitivity of the optical path between the laser and the resonator. The thermal stabilization on the order of 10 μ K at 1 s is achieved using a standard thermo-electric element. The long term drift of the laser frequency is determined by both the fluctuations of the atmospheric pressure in the laboratory impacting the monolithic resonator and by the optical path instability.
32

Cole, Z., and R. Krishna Mohan. "Optical frequency chirp generation by swept sideband injection locking." Journal of Luminescence 107, no. 1-4 (May 2004): 146–49. http://dx.doi.org/10.1016/j.jlumin.2003.12.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Deng, Zejiang, Yang Liu, Zhiwei Zhu, Daping Luo, Chenglin Gu, Lian Zhou, Gehui Xie, and Wenxue Li. "Ultra-precise optical phase-locking approach for ultralow noise frequency comb generation." Optics & Laser Technology 138 (June 2021): 106906. http://dx.doi.org/10.1016/j.optlastec.2020.106906.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Hunkin, D. J., G. R. Hill, and W. A. Stallard. "Frequency-locking of external cavity semiconductor lasers using an optical comb generator." Electronics Letters 22, no. 7 (1986): 388. http://dx.doi.org/10.1049/el:19860264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Inaba, H., T. Ikegami, Feng-Lei Hong, A. Onae, Y. Koga, T. R. Schibli, K. Minoshima, et al. "Phase locking of a continuous-wave optical parametric oscillator to an optical frequency comb for optical frequency synthesis." IEEE Journal of Quantum Electronics 40, no. 7 (July 2004): 929–36. http://dx.doi.org/10.1109/jqe.2004.830211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Xu, Mingyang, Hanzhong Wu, Yurong Liang, Dan Luo, Panpan Wang, Yujie Tan, and Chenggang Shao. "Weak-Light Phase-Locking Time Delay Interferometry with Optical Frequency Combs." Sensors 22, no. 19 (September 28, 2022): 7349. http://dx.doi.org/10.3390/s22197349.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the future space-borne gravitational wave (GW) detector, the optical transponder scheme, i.e., the phase-locking scheme, will be utilized so as to maintain the signal-to-noise ratio (SNR). In this case, the whole constellation will share one common laser equivalently, which enables the considerable simplification of time-delay interferometry (TDI) combinations. Recently, and remarkably, the unique combination of TDI and optical frequency comb (OFC) has shown a bright prospect for the future space-borne missions. When the laser frequency noise and the clock noise are synchronized using OFC as the bridge, the data streams will be reasonably simplified. However, in the optical transponder scheme, the weak-light phase-locking (WLPL) loops could bring additional noises. In this work, we analyze the phase-locking scheme with OFC and transfer characteristics of the noises including the WLPL noise. We show that the WLPL noise can be efficiently reduced by using the specific TDI combination, and the cooperation of phase-locking and frequency combs can greatly simplify the post-processing.
37

Okubo, Sho, Atsushi Onae, Kazumoto Hosaka, Hideyuki Sera, Hajime Inaba, and Feng-Lei Hong. "Novel phase-locking schemes for the carrier envelope offset frequency of an optical frequency comb." Applied Physics Express 8, no. 11 (October 15, 2015): 112402. http://dx.doi.org/10.7567/apex.8.112402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Yang, Ruitao, Haisu Lv, Jing Luo, Pengcheng Hu, Hongxing Yang, Haijin Fu, and Jiubin Tan. "Ultrastable Offset-Locking Continuous Wave Laser to a Frequency Comb with a Compound Control Method for Precision Interferometry." Sensors 20, no. 5 (February 25, 2020): 1248. http://dx.doi.org/10.3390/s20051248.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A simple and robust analog feedforward and digital feedback compound control system is presented to lock the frequency of a slave continuous wave (CW) laser to an optical frequency comb. The beat frequency between CW laser and the adjacent comb mode was fed to an acousto-optical frequency shifter (AOFS) to compensate the frequency dithering of the CW laser. A digital feedback loop was achieved to expand the operation bandwidth limitation of the AOFS by over an order of magnitude. The signal-to-noise ratio of the interference signal was optimized using a grating-based spectral filtering detection unit. The complete system achieved an ultrastable offset-locking of the slave CW laser to the frequency comb with a relative stability of ±3.62 × 10−14. The Allan deviations of the beat frequency were 8.01 × 10−16 and 2.19 × 10−16 for a gate time of 10 s and 1000 s, respectively. The findings of this study may further improve laser interferometry by providing a simple and robust method for ultrastable frequency control.
39

Forrer, Andres, Martin Franckié, David Stark, Tudor Olariu, Mattias Beck, Jérôme Faist, and Giacomo Scalari. "Photon-Driven Broadband Emission and Frequency Comb RF Injection Locking in THz Quantum Cascade Lasers." ACS Photonics 7, no. 3 (February 21, 2020): 784–91. http://dx.doi.org/10.1021/acsphotonics.9b01629.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Maatoq, Saja Jafer, and H. A. Sultan. "OPTICAL FREQUENCY COMB GENERATION IN SEMICONDUCTOR LASERS USING QSWITCHING AND MODE LOCKING TECHNIQUES." International Journal of Applied Science and Engineering Review 02, no. 04 (2021): 84–90. http://dx.doi.org/10.52267/ijaser.2021.2408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Schreiber, K. U., A. Gebauer, and J. P. R. Wells. "Closed-loop locking of an optical frequency comb to a large ring laser." Optics Letters 38, no. 18 (September 9, 2013): 3574. http://dx.doi.org/10.1364/ol.38.003574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Shao, X. D., H. N. Han, Y. B. Su, H. B. Wang, Z. Y. Zhang, S. B. Fang, G. Q. Chang, and Z. Y. Wei. "Precision locking CW laser to ultrastable optical frequency comb by feed-forward method." AIP Advances 9, no. 11 (November 1, 2019): 115003. http://dx.doi.org/10.1063/1.5121860.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Shortiss, Kevin, Mohamad Dernaika, Maryam Shayesteh, and Frank H. Peters. "The Effect of Relaxation Oscillations in Integrated Optical Comb Demultiplexers Based on Injection Locking." IEEE Journal of Quantum Electronics 55, no. 6 (December 2019): 1–6. http://dx.doi.org/10.1109/jqe.2019.2942053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Weng, Wenle, Aleksandra Kaszubowska-Anandarajah, Junqiu Liu, Prince M. Anandarajah, and Tobias J. Kippenberg. "Frequency division using a soliton-injected semiconductor gain-switched frequency comb." Science Advances 6, no. 39 (September 2020): eaba2807. http://dx.doi.org/10.1126/sciadv.aba2807.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
With optical spectral marks equally spaced by a frequency in the microwave or the radio frequency domain, optical frequency combs have been used not only to synthesize optical frequencies from microwave references but also to generate ultralow-noise microwaves via optical frequency division. Here, we combine two compact frequency combs, namely, a soliton microcomb and a semiconductor gain-switched comb, to demonstrate low-noise microwave generation based on a novel frequency division technique. Using a semiconductor laser that is driven by a sinusoidal current and injection-locked to microresonator solitons, our scheme transfers the spectral purity of a dissipative soliton oscillator into the subharmonic frequencies of the microcomb repetition rate. In addition, the gain-switched comb provides dense optical spectral emissions that divide the line spacing of the soliton microcomb. With the potential to be fully integrated, the merger of the two chipscale devices may profoundly facilitate the wide application of frequency comb technology.
45

Feng, Zitong, Xi Zhang, Rui Wu, Yanguang Sun, Fang Wei, Fei Yang, Youzhen Gui, and Haiwen Cai. "High-Gain Optical Injection Locking Amplifier in Phase-Coherent Optical Frequency Transmission." IEEE Photonics Journal 11, no. 1 (February 2019): 1–9. http://dx.doi.org/10.1109/jphot.2019.2892067.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Xu, Yongchi, Huanfa Peng, Rui Guo, Huayang Du, Qing Yin, Guoqing Hu, Jin He, and Zhangyuan Chen. "Injection-Locked Millimeter Wave Frequency Divider Utilizing Optoelectronic Oscillator Based Optical Frequency Comb." IEEE Photonics Journal 11, no. 3 (June 2019): 1–8. http://dx.doi.org/10.1109/jphot.2019.2916919.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Consolino, Luigi, Annamaria Campa, Michele De Regis, Francesco Cappelli, Giacomo Scalari, Jérôme Faist, Mattias Beck, Markus Rösch, Saverio Bartalini, and Paolo De Natale. "Controlling and Phase‐Locking a THz Quantum Cascade Laser Frequency Comb by Small Optical Frequency Tuning." Laser & Photonics Reviews 15, no. 6 (April 23, 2021): 2000417. http://dx.doi.org/10.1002/lpor.202000417.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Yokota, Nobuhide, and Hiroshi Yasaka. "Spin Laser Local Oscillators for Homodyne Detection in Coherent Optical Communications." Micromachines 12, no. 5 (May 18, 2021): 573. http://dx.doi.org/10.3390/mi12050573.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We numerically investigate spin-controlled vertical-cavity surface-emitting lasers (spin-VCSELs) for local oscillators, which are based on an injection locking technique used in coherent optical communications. Under the spin polarization modulation of an injection-locked spin-VCSEL, frequency-shifted and phase-correlated optical sidebands are generated with an orthogonal polarization against the injection light, and one of the sidebands is resonantly enhanced due to the linear birefringence in the spin-VCSEL. We determine that the peak strength and peak frequency in the spin polarization modulation sensitivity of the injection-locked spin-VCSEL depend on detuning frequency and injection ratio conditions. As a proof of concept, 25-Gbaud and 16-ary quadrature amplitude modulation optical data signals and a pilot tone are generated, and the pilot tone is used for the injection locking of a spin-VCSEL. An orthogonally-polarized modulation sideband generated from the injection-locked spin-VCSEL is used as a frequency-shifted local oscillator (LO). We verify that the frequency-shifted LO can be used for the homodyne detection of optical data signals with no degradation. Our findings suggest a novel application of spin-VCSELs for coherent optical communications.
49

Ren, Huiping, Li Fan, Na Liu, Zhengmao Wu, and Guangqiong Xia. "Generation of Broadband Optical Frequency Comb Based on a Gain-Switching 1550 nm Vertical-Cavity Surface-Emitting Laser under Optical Injection." Photonics 7, no. 4 (October 23, 2020): 95. http://dx.doi.org/10.3390/photonics7040095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this work, broadband optical frequency comb (OFC) generation by a gain-switching vertical-cavity surface-emitting laser (VCSEL) subject to optical injection is investigated experimentally. During implementing the experiment, a 1550 nm VCSEL under a large signal current modulation is driven into the gain-switching state with a broad noisy spectrum. By further introducing an optical injection, a high performance OFC can be produced. The experimental results demonstrate that the power and wavelength of the injection light seriously affect the performance of the produced OFC. Under proper optical injection parameters, two sub-combs originating from two orthogonal polarization components of the VCSEL can splice into a broadband total-OFC. By selecting optimized operation parameters, a high quality total-OFC can be acquired, with stable comb lines, high coherence, wide bandwidth of 70.0 GHz (56.0 GHz) within 10 dB (3 dB) amplitude variation and low single sideband phase noise at the fundamental frequency below −120.6 dBc/Hz @ 10 kHz.
50

Brothers, L. R., D. Lee, and N. C. Wong. "Terahertz optical frequency comb generation and phase locking of an optical parametric oscillator at 665 GHz." Optics Letters 19, no. 4 (February 15, 1994): 245. http://dx.doi.org/10.1364/ol.19.000245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії