Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Integrated quantum nanophotonics.

Статті в журналах з теми "Integrated quantum nanophotonics"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Integrated quantum nanophotonics".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Osborne, Ian S. "Integrated quantum nanophotonics." Science 354, no. 6314 (2016): 843.11–845. http://dx.doi.org/10.1126/science.354.6314.843-k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hausmann, Birgit J. M., Brendan Shields, Qimin Quan, et al. "Integrated Diamond Networks for Quantum Nanophotonics." Nano Letters 12, no. 3 (2012): 1578–82. http://dx.doi.org/10.1021/nl204449n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Altug, Hatice. "Nanophotonic Metasurfaces for Biosensing and Imaging." EPJ Web of Conferences 215 (2019): 12001. http://dx.doi.org/10.1051/epjconf/201921512001.

Повний текст джерела
Анотація:
Nanophotonics excels at confining light into nanoscale optical mode volumes and generating dramatically enhanced light matter interactions. These unique aspects have been unveiling a plethora of fundamentally new optical phenomena, yet a critical issue ahead for nanophotonics is the development of novel devices and applications that can take advantage of these nano-scale effects. It is expected that nanophotonics will lead to disruptive technologies in energy harvesting, quantum and integrated photonics, optical computing and including biosensing. To this end, our research is focused on the ap
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chen, Yueyang, David Sharp, Abhi Saxena, Hao Nguyen, Brandi M. Cossairt, and Arka Majumdar. "Integrated Quantum Nanophotonics with Solution‐Processed Materials." Advanced Quantum Technologies 5, no. 1 (2021): 2100078. http://dx.doi.org/10.1002/qute.202100078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pérez, Daniel, Ivana Gasulla, and José Capmany. "Programmable multifunctional integrated nanophotonics." Nanophotonics 7, no. 8 (2018): 1351–71. http://dx.doi.org/10.1515/nanoph-2018-0051.

Повний текст джерела
Анотація:
AbstractProgrammable multifunctional integrated nanophotonics (PMIN) is a new paradigm that aims at designing common integrated optical hardware configurations, which by suitable programming can implement a variety of functionalities that can be elaborated for basic or more complex operations in many application fields. The interest in PMIN is driven by the surge of a considerable number of emerging applications in the fields of telecommunications, quantum information processing, sensing and neurophotonics that will be calling for flexible, reconfigurable, low-cost, compact and low-power-consu
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vaidya, V. D., B. Morrison, L. G. Helt, et al. "Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device." Science Advances 6, no. 39 (2020): eaba9186. http://dx.doi.org/10.1126/sciadv.aba9186.

Повний текст джерела
Анотація:
We report demonstrations of both quadrature-squeezed vacuum and photon number difference squeezing generated in an integrated nanophotonic device. Squeezed light is generated via strongly driven spontaneous four-wave mixing below threshold in silicon nitride microring resonators. The generated light is characterized with both homodyne detection and direct measurements of photon statistics using photon number–resolving transition-edge sensors. We measure 1.0(1) decibels of broadband quadrature squeezing (~4 decibels inferred on-chip) and 1.5(3) decibels of photon number difference squeezing (~7
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Sipahigil, A., R. E. Evans, D. D. Sukachev, et al. "An integrated diamond nanophotonics platform for quantum-optical networks." Science 354, no. 6314 (2016): 847–50. http://dx.doi.org/10.1126/science.aah6875.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Roques-Carmes, Charles, Steven E. Kooi, Yi Yang, et al. "Free-electron–light interactions in nanophotonics." Applied Physics Reviews 10, no. 1 (2023): 011303. http://dx.doi.org/10.1063/5.0118096.

Повний текст джерела
Анотація:
When impinging on optical structures or passing in their vicinity, free electrons can spontaneously emit electromagnetic radiation, a phenomenon generally known as cathodoluminescence. Free-electron radiation comes in many guises: Cherenkov, transition, and Smith–Purcell radiation, but also electron scintillation, commonly referred to as incoherent cathodoluminescence. While those effects have been at the heart of many fundamental discoveries and technological developments in high-energy physics in the past century, their recent demonstration in photonic and nanophotonic systems has attracted
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mattioli, Francesco, Sara Cibella, Alessandro Gaggero, Francesco Martini, and Roberto Leoni. "Waveguide-integrated niobium- nitride detectors for on-chip quantum nanophotonics." Nanotechnology 32, no. 10 (2020): 104001. http://dx.doi.org/10.1088/1361-6528/abcc97.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chin, Lip Ket, Yuzhi Shi, and Ai-Qun Liu. "Optical Forces in Silicon Nanophotonics and Optomechanical Systems: Science and Applications." Advanced Devices & Instrumentation 2020 (October 26, 2020): 1–14. http://dx.doi.org/10.34133/2020/1964015.

Повний текст джерела
Анотація:
Light-matter interactions have been explored for more than 40 years to achieve physical modulation of nanostructures or the manipulation of nanoparticle/biomolecule. Silicon photonics is a mature technology with standard fabrication techniques to fabricate micro- and nano-sized structures with a wide range of material properties (silicon oxides, silicon nitrides, p- and n-doping, etc.), high dielectric properties, high integration compatibility, and high biocompatibilities. Owing to these superior characteristics, silicon photonics is a promising approach to demonstrate optical force-based int
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Shiue, Ren-Jye, Dmitri K. Efetov, Gabriele Grosso, Cheng Peng, Kin Chung Fong, and Dirk Englund. "Active 2D materials for on-chip nanophotonics and quantum optics." Nanophotonics 6, no. 6 (2017): 1329–42. http://dx.doi.org/10.1515/nanoph-2016-0172.

Повний текст джерела
Анотація:
AbstractTwo-dimensional materials have emerged as promising candidates to augment existing optical networks for metrology, sensing, and telecommunication, both in the classical and quantum mechanical regimes. Here, we review the development of several on-chip photonic components ranging from electro-optic modulators, photodetectors, bolometers, and light sources that are essential building blocks for a fully integrated nanophotonic and quantum photonic circuit.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Xavier, Jolly, Deshui Yu, Callum Jones, Ekaterina Zossimova, and Frank Vollmer. "Quantum nanophotonic and nanoplasmonic sensing: towards quantum optical bioscience laboratories on chip." Nanophotonics 10, no. 5 (2021): 1387–435. http://dx.doi.org/10.1515/nanoph-2020-0593.

Повний текст джерела
Анотація:
Abstract Quantum-enhanced sensing and metrology pave the way for promising routes to fulfil the present day fundamental and technological demands for integrated chips which surpass the classical functional and measurement limits. The most precise measurements of optical properties such as phase or intensity require quantum optical measurement schemes. These non-classical measurements exploit phenomena such as entanglement and squeezing of optical probe states. They are also subject to lower detection limits as compared to classical photodetection schemes. Biosensing with non-classical light so
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Harris, Nicholas C., Darius Bunandar, Mihir Pant, et al. "Large-scale quantum photonic circuits in silicon." Nanophotonics 5, no. 3 (2016): 456–68. http://dx.doi.org/10.1515/nanoph-2015-0146.

Повний текст джерела
Анотація:
AbstractQuantum information science offers inherently more powerful methods for communication, computation, and precision measurement that take advantage of quantum superposition and entanglement. In recent years, theoretical and experimental advances in quantum computing and simulation with photons have spurred great interest in developing large photonic entangled states that challenge today’s classical computers. As experiments have increased in complexity, there has been an increasing need to transition bulk optics experiments to integrated photonics platforms to control more spatial modes
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Picardi, Michela F., Cillian P. T. McPolin, Jack J. Kingsley-Smith, et al. "Integrated Janus dipole source for selective coupling to silicon waveguide networks." Applied Physics Reviews 9, no. 2 (2022): 021410. http://dx.doi.org/10.1063/5.0085487.

Повний текст джерела
Анотація:
The efficient selective and directional coupling of light to waveguiding circuitry at the nanoscale is one of the key challenges in nanophotonics, as it constitutes a prerequisite for many applications, including information processing, routing, and quantum technologies. Various exotic nanostructures and nanoparticle arrangements have been designed to achieve directional coupling with compact on-chip integration remaining one of the foremost hurdles to realizing many real-world devices. At the same time, selective coupling to one of several neighboring waveguides is much more difficult to achi
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Huang, Can, Chen Zhang, Shumin Xiao, et al. "Ultrafast control of vortex microlasers." Science 367, no. 6481 (2020): 1018–21. http://dx.doi.org/10.1126/science.aba4597.

Повний текст джерела
Анотація:
The development of classical and quantum information–processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Rodt, S., and S. Reitzenstein. "Integrated nanophotonics for the development of fully functional quantum circuits based on on-demand single-photon emitters." APL Photonics 6, no. 1 (2021): 010901. http://dx.doi.org/10.1063/5.0031628.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Zhang, Ziheng, Tong Li, Xiaofei Jiao, Guofeng Song, and Yun Xu. "High-Efficiency All-Dielectric Metasurfaces for the Generation and Detection of Focused Optical Vortex for the Ultraviolet Domain." Applied Sciences 10, no. 16 (2020): 5716. http://dx.doi.org/10.3390/app10165716.

Повний текст джерела
Анотація:
The optical vortex (OV) has drawn considerable attention owing to its tremendous advanced applications, such as optical communication, quantum entanglement, and on-chip detectors. However, traditional OV generators suffer from a bulky configuration and limited performance, especially in the ultraviolet range. In this paper, we utilize a large bandgap dielectric material, niobium pentoxide (Nb2O5), to construct ultra-thin and compact transmission-type metasurfaces to generate and detect the OV at a wavelength of 355 nm. The meta-atom, which operates as a miniature half-wave plate and demonstrat
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Niu, Xinxiang, Xiaoyong Hu, Cuicui Lu, Yan Sheng, Hong Yang, and Qihuang Gong. "Broadband dispersive free, large, and ultrafast nonlinear material platforms for photonics." Nanophotonics 9, no. 15 (2020): 4609–18. http://dx.doi.org/10.1515/nanoph-2020-0420.

Повний текст джерела
Анотація:
AbstractBroadband dispersion free, large and ultrafast nonlinear material platforms comprise the essential foundation for the study of nonlinear optics, integrated optics, intense field optical physics, and quantum optics. Despite substantial research efforts, such material platforms have not been established up to now because of intrinsic contradictions between large nonlinear optical coefficient, broad operating bandwidth, and ultrafast response time. In this work, a broadband dispersion free, large and ultrafast nonlinear material platform based on broadband epsilon-near-zero (ENZ) material
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Serna, Rosalia, Jose Gonzalo, Antonio Mariscal-Jimenez, Pilar Gomez Rodriguez, and Andres Caño. "(Invited) Nanocrystalline Oxide-Based Luminescent Nanophotonic Structures." ECS Meeting Abstracts MA2022-01, no. 20 (2022): 1095. http://dx.doi.org/10.1149/ma2022-01201095mtgabs.

Повний текст джерела
Анотація:
Light nanoemiters are the cornerstone of photonic integrated applications including displays for consumer products such as phones and smartwatches, and for advanced application such as quantum emitters. In this context it is appealing to have access to a single material platform suitable for tunable wavelength emission, and if possible, that can provide broadband white light emission. Solid state light emitting nanostructures based on Europium ions are a promising solution. When imbedded in a solid they can have two oxidation states Eu3+ or Eu2+ which upon excitation show a either a high purit
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Atwater, Harry. "(Keynote) Van Der Waals Active Metasurfaces and Heterostructures for Phase Modulation and Polarization Conversion." ECS Meeting Abstracts MA2022-01, no. 12 (2022): 861. http://dx.doi.org/10.1149/ma2022-0112861mtgabs.

Повний текст джерела
Анотація:
A grand challenge for nanophotonics is the realization of tunable metasurfaces enabling active control of the key constitutive properties of light – amplitude, phase, wavevector and polarization. Active metasurfaces that enable dynamic modulation of reflection amplitude, phase and polarization have been recently explored using several active materials and modulation phenomena, including carrier index in plasmonic ENZ structures, reorientation of liquid crystal molecules, electrooptic effects in quantum well heterostructures and index change in phase change materials. The rapid advances in unde
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Фотиади, А. А. "Лазерные источники с низким уровнем шума: от микроволновой фотоники до плазмоники и биотехнологий". Nanoindustry Russia 14, № 3-4 (2021): 168–73. http://dx.doi.org/10.22184/1993-8578.2021.14.3-4.168.173.

Повний текст джерела
Анотація:
Исследования в области оптоэлектроники, нелинейной оптики, волоконных лазеров не ограничиваются только фундаментальными задачами, на их основе создаются различные датчики, приборы и устройства для широкого круга применений – от микроволновой фотоники до биотехнологий. Ряд направлений, таких как создание интегрированных оптических чипов, требует уменьшения уровня шума лазерных источников, другие нуждаются в разработке новых принципов создания распределенных датчиков физических величин, методик фотодинамической терапии различных поверхностных новообразований и управления биохимическими процессам
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Kang, Jang-Won, Byeong-Hyeok Kim, Hui Song, et al. "Radial multi-quantum well ZnO nanorod arrays for nanoscale ultraviolet light-emitting diodes." Nanoscale 10, no. 31 (2018): 14812–18. http://dx.doi.org/10.1039/c8nr03711f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Goltsman, Gregory. "Quantum photonic integrated circuits with waveguide integrated superconducting nanowire single-photon detectors." EPJ Web of Conferences 190 (2018): 02004. http://dx.doi.org/10.1051/epjconf/201819002004.

Повний текст джерела
Анотація:
We show the design, a history of development as well as the most successful and promising approaches for QPICs realization based on hybrid nanophotonic-superconducting devices, where one of the key elements of such a circuit is a waveguide integrated superconducting single-photon detector (WSSPD). The potential of integration with fluorescent molecules is discussed also.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Matsuda, Nobuyuki, and Hiroki Takesue. "Generation and manipulation of entangled photons on silicon chips." Nanophotonics 5, no. 3 (2016): 440–55. http://dx.doi.org/10.1515/nanoph-2015-0148.

Повний текст джерела
Анотація:
AbstractIntegrated quantum photonics is now seen as one of the promising approaches to realize scalable quantum information systems. With optical waveguides based on silicon photonics technologies, we can realize quantum optical circuits with a higher degree of integration than with silica waveguides. In addition, thanks to the large nonlinearity observed in silicon nanophotonic waveguides, we can implement active components such as entangled photon sources on a chip. In this paper, we report recent progress in integrated quantum photonic circuits based on silicon photonics. We review our work
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Uppu, Ravitej, Freja T. Pedersen, Ying Wang, et al. "Scalable integrated single-photon source." Science Advances 6, no. 50 (2020): eabc8268. http://dx.doi.org/10.1126/sciadv.abc8268.

Повний текст джерела
Анотація:
Photonic qubits are key enablers for quantum information processing deployable across a distributed quantum network. An on-demand and truly scalable source of indistinguishable single photons is the essential component enabling high-fidelity photonic quantum operations. A main challenge is to overcome noise and decoherence processes to reach the steep benchmarks on generation efficiency and photon indistinguishability required for scaling up the source. We report on the realization of a deterministic single-photon source featuring near-unity indistinguishability using a quantum dot in an “on-c
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Splitthoff, Lukas, Martin A. Wolff, Thomas Grottke, and Carsten Schuck. "Tantalum pentoxide nanophotonic circuits for integrated quantum technology." Optics Express 28, no. 8 (2020): 11921. http://dx.doi.org/10.1364/oe.388080.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Stas, P. J., Y. Q. Huan, B. Machielse, et al. "Robust multi-qubit quantum network node with integrated error detection." Science 378, no. 6619 (2022): 557–60. http://dx.doi.org/10.1126/science.add9771.

Повний текст джерела
Анотація:
Long-distance quantum communication and networking require quantum memory nodes with efficient optical interfaces and long memory times. We report the realization of an integrated two-qubit network node based on silicon-vacancy centers (SiVs) in diamond nanophotonic cavities. Our qubit register consists of the SiV electron spin acting as a communication qubit and the strongly coupled silicon-29 nuclear spin acting as a memory qubit with a quantum memory time exceeding 2 seconds. By using a highly strained SiV, we realize electron-photon entangling gates at temperatures up to 1.5 kelvin and nuc
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Chen, Zhi, Valentina Robbiano, Giuseppe M. Paternò, et al. "Nanoscale Photoluminescence Manipulation in Monolithic Porous Silicon Oxide Microcavity Coated with Fluorescent Polyelectrolytes Via Electrostatic Nanoassembling." ECS Meeting Abstracts MA2022-01, no. 47 (2022): 1986. http://dx.doi.org/10.1149/ma2022-01471986mtgabs.

Повний текст джерела
Анотація:
Porous silicon (PSi) is a promising material for future integrated nanophotonics when coupled with guest emitters [1,2], still facing challenges in terms of homogenous distribution and nanometric thickness of the emitter coating within the silicon nanostructure. Herein, it is shown that the nanopore surface of a porous silicon oxide (PSiO2) microcavity (MC) can be conformally coated with a uniform nm-thick layer of a cationic light-emitting polyelectrolyte, e.g., poly(allylamine hydrochloride) labeled with Rhodamine B (PAH-RhoB), leveraging the self-tuned electrostatic interaction of the posit
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Ferrari, Simone, Carsten Schuck, and Wolfram Pernice. "Waveguide-integrated superconducting nanowire single-photon detectors." Nanophotonics 7, no. 11 (2018): 1725–58. http://dx.doi.org/10.1515/nanoph-2018-0059.

Повний текст джерела
Анотація:
AbstractIntegration of superconducting nanowire single-photon detectors with nanophotonic waveguides is a key technological step that enables a broad range of classical and quantum technologies on chip-scale platforms. The excellent detection efficiency, timing and noise performance of these detectors have sparked growing interest over the last decade and have found use in diverse applications. Almost 10 years after the first waveguide-coupled superconducting detectors were proposed, here, we review the performance metrics of these devices, compare both superconducting and dielectric waveguide
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Eich, Alexander, Tobias C. Spiekermann, Helge Gehring, et al. "Single-Photon Emission from Individual Nanophotonic-Integrated Colloidal Quantum Dots." ACS Photonics 9, no. 2 (2022): 551–58. http://dx.doi.org/10.1021/acsphotonics.1c01493.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Türschmann, Pierre, Hanna Le Jeannic, Signe F. Simonsen, et al. "Coherent nonlinear optics of quantum emitters in nanophotonic waveguides." Nanophotonics 8, no. 10 (2019): 1641–57. http://dx.doi.org/10.1515/nanoph-2019-0126.

Повний текст джерела
Анотація:
AbstractCoherent quantum optics, where the phase of a photon is not scrambled as it interacts with an emitter, lies at the heart of many quantum optical effects and emerging technologies. Solid-state emitters coupled to nanophotonic waveguides are a promising platform for quantum devices, as this element can be integrated into complex photonic chips. Yet, preserving the full coherence properties of the coupled emitter-waveguide system is challenging because of the complex and dynamic electromagnetic landscape found in the solid state. Here, we review progress toward coherent light-matter inter
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Zhao, Mengdi, and Kejie Fang. "InGaP quantum nanophotonic integrated circuits with 1.5% nonlinearity-to-loss ratio." Optica 9, no. 2 (2022): 258. http://dx.doi.org/10.1364/optica.440383.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Sugimoto, Y., N. Ikeda, N. Ozaki, et al. "Advanced quantum dot and photonic crystal technologies for integrated nanophotonic circuits." Microelectronics Journal 40, no. 4-5 (2009): 736–40. http://dx.doi.org/10.1016/j.mejo.2008.11.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Huang, L., M. C. Hegg, C. J. Wang, and L. Y. Lin. "Fabrication of a nanophotonic quantum dot waveguide and photodetector integrated device." Micro & Nano Letters 2, no. 4 (2007): 103. http://dx.doi.org/10.1049/mnl:20070053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

HARRIS, JAMES S. "(GaIn)(NAsSb): MBE GROWTH, HETEROSTRUCTURE AND NANOPHOTONIC DEVICES." International Journal of Nanoscience 06, no. 03n04 (2007): 269–74. http://dx.doi.org/10.1142/s0219581x07004699.

Повний текст джерела
Анотація:
Dilute nitride GaInNAs and GaInNAsSb alloys grown on GaAs have quickly become excellent candidates for a variety of lower cost 1.2–1.6 μm lasers, optical amplifiers, and high power Raman pump lasers that will be required in the networks to provide high speed communications to the desktop. Because these quantum well active regions can be grown on GaAs , the distributed mirror technology for vertical cavity surface emitting lasers coupling into waveguides and fibers and photonic crystal structures can be readily combined with GaInNAsSb active regions to produce a variety of advanced photonic dev
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Menon, Shankar G., Kevin Singh, Johannes Borregaard, and Hannes Bernien. "Nanophotonic quantum network node with neutral atoms and an integrated telecom interface." New Journal of Physics 22, no. 7 (2020): 073033. http://dx.doi.org/10.1088/1367-2630/ab98d4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Wei, Hong, and Hongxing Xu. "Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits." Nanophotonics 1, no. 2 (2012): 155–69. http://dx.doi.org/10.1515/nanoph-2012-0012.

Повний текст джерела
Анотація:
AbstractThe fast development of plasmonics have greatly advanced our understanding to the abundant phenomena related to surface plamon polaritons (SPPs) and improved our ability to manipulate light at the nanometer scale. With tightly confined local field, SPPs can be transmitted in waveguides of subwavelength dimensions. Nanophotonic circuits built with plasmonic elements can be scaled down to dimensions compatible with semiconductor-based nanoelectronic circuits, which provides a potential solution for the next-generation information technology. Different structures have been explored as pla
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Siampour, Hamidreza, Ou Wang, Vladimir A. Zenin, et al. "Ultrabright single-photon emission from germanium-vacancy zero-phonon lines: deterministic emitter-waveguide interfacing at plasmonic hot spots." Nanophotonics 9, no. 4 (2020): 953–62. http://dx.doi.org/10.1515/nanoph-2020-0036.

Повний текст джерела
Анотація:
AbstractStriving for nanometer-sized solid-state single-photon sources, we investigate atom-like quantum emitters based on single germanium-vacancy (GeV) centers isolated in crystalline nanodiamonds (NDs). Cryogenic characterization indicated symmetry-protected and bright (>106 counts/s with off-resonance excitation) zero-phonon optical transitions with up to 6-fold enhancement in energy splitting of their ground states as compared to that found for GeV centers in bulk diamonds (i.e. up to 870 GHz in highly strained NDs vs. 150 GHz in bulk). Utilizing lithographic alignment techniques, we d
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Nishigaya, Kosuke, Kodai Kishibe, and Katsuaki Tanabe. "Graphene-Quantum-Dot-Mediated Semiconductor Bonding: A Route to Optoelectronic Double Heterostructures and Wavelength-Converting Interfaces." C — Journal of Carbon Research 6, no. 2 (2020): 28. http://dx.doi.org/10.3390/c6020028.

Повний текст джерела
Анотація:
A semiconductor bonding technique that is mediated by graphene quantum dots is proposed and demonstrated. The mechanical stability, electrical conductivity, and optical activity in the bonded interfaces are experimentally verified. First, the bonding scheme can be used for the formation of double heterostructures with a core material of graphene quantum dots. The Si/graphene quantum dots/Si double heterostructures fabricated in this study can constitute a new basis for next-generation nanophotonic devices with high photon and carrier confinements, earth abundance, environmental friendliness, a
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Häußler, Matthias, Robin Terhaar, Martin A. Wolff, et al. "Scaling waveguide-integrated superconducting nanowire single-photon detector solutions to large numbers of independent optical channels." Review of Scientific Instruments 94, no. 1 (2023): 013103. http://dx.doi.org/10.1063/5.0114903.

Повний текст джерела
Анотація:
Superconducting nanowire single-photon detectors are an enabling technology for modern quantum information science and are gaining attractiveness for the most demanding photon counting tasks in other fields. Embedding such detectors in photonic integrated circuits enables additional counting capabilities through nanophotonic functionalization. Here, we show how a scalable number of waveguide-integrated superconducting nanowire single-photon detectors can be interfaced with independent fiber optic channels on the same chip. Our plug-and-play detector package is hosted inside a compact and porta
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Son, Gyeongho, Seungjun Han, Jongwoo Park, Kyungmok Kwon, and Kyoungsik Yu. "High-efficiency broadband light coupling between optical fibers and photonic integrated circuits." Nanophotonics 7, no. 12 (2018): 1845–64. http://dx.doi.org/10.1515/nanoph-2018-0075.

Повний текст джерела
Анотація:
AbstractEfficient light energy transfer between optical waveguides has been a critical issue in various areas of photonics and optoelectronics. Especially, the light coupling between optical fibers and integrated waveguide structures provides essential input-output interfaces for photonic integrated circuits (PICs) and plays a crucial role in reliable optical signal transport for a number of applications, such as optical interconnects, optical switching, and integrated quantum optics. Significant efforts have been made to improve light coupling properties, including coupling efficiency, bandwi
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Chen, Zehong, Zhonghong Shi, Wenbo Zhang, Zixian Li, and Zhang-Kai Zhou. "High efficiency and large optical anisotropy in the high-order nonlinear processes of 2D perovskite nanosheets." Nanophotonics 11, no. 7 (2022): 1379–87. http://dx.doi.org/10.1515/nanoph-2021-0789.

Повний текст джерела
Анотація:
Abstract Nonlinear nanophotonic devices have brought about great advances in the fields of nano-optics, quantum science, biomedical engineering, etc. However, in order to push these nanophotonic devices out of laboratory, it is still highly necessary to improve their efficiency. Since obtaining novel nanomaterials with large nonlinearity is of crucial importance for improving the efficiency of nonlinear nanodevices, we propose the two-dimensional (2D) perovskites. Different from most previous studies which focused on the 2D perovskites in large scale (such as the bulk materials or the thick fl
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Delaney, Matthew, Ioannis Zeimpekis, Han Du, et al. "Nonvolatile programmable silicon photonics using an ultralow-loss Sb2Se3 phase change material." Science Advances 7, no. 25 (2021): eabg3500. http://dx.doi.org/10.1126/sciadv.abg3500.

Повний текст джерела
Анотація:
The next generation of silicon-based photonic processors and neural and quantum networks need to be adaptable, reconfigurable, and programmable. Phase change technology offers proven nonvolatile electronic programmability; however, the materials used to date have shown prohibitively high optical losses, which are incompatible with integrated photonic platforms. Here, we demonstrate the capability of the previously unexplored material Sb2Se3 for ultralow-loss programmable silicon photonics. The favorable combination of large refractive index contrast and ultralow losses seen in Sb2Se3 facilitat
Стилі APA, Harvard, Vancouver, ISO та ін.
44

He, Li, Huan Li, and Mo Li. "Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices." Science Advances 2, no. 9 (2016): e1600485. http://dx.doi.org/10.1126/sciadv.1600485.

Повний текст джерела
Анотація:
Photons carry linear momentum and spin angular momentum when circularly or elliptically polarized. During light-matter interaction, transfer of linear momentum leads to optical forces, whereas transfer of angular momentum induces optical torque. Optical forces including radiation pressure and gradient forces have long been used in optical tweezers and laser cooling. In nanophotonic devices, optical forces can be significantly enhanced, leading to unprecedented optomechanical effects in both classical and quantum regimes. In contrast, to date, the angular momentum of light and the optical torqu
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Yang, Xiaoyu, Xiaoyong Hu, Hong Yang, and Qihuang Gong. "Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities." Nanophotonics 6, no. 1 (2017): 365–76. http://dx.doi.org/10.1515/nanoph-2016-0118.

Повний текст джерела
Анотація:
AbstractIn this study, nanoscale integrated all-optical XNOR, XOR, and NAND logic gates were realized based on all-optical tunable on-chip plasmon-induced transparency in plasmonic circuits. A large nonlinear enhancement was achieved with an organic composite cover layer based on the resonant excitation-enhancing nonlinearity effect, slow light effect, and field confinement effect provided by the plasmonic nanocavity mode, which ensured a low excitation power of 200 μW that is three orders of magnitude lower than the values in previous reports. A feature size below 600 nm was achieved, which i
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Romeira, Bruno, José M. L. Figueiredo та Julien Javaloyes. "NanoLEDs for energy-efficient and gigahertz-speed spike-based sub-λ neuromorphic nanophotonic computing". Nanophotonics 9, № 13 (2020): 4149–62. http://dx.doi.org/10.1515/nanoph-2020-0177.

Повний текст джерела
Анотація:
AbstractEvent-activated biological-inspired subwavelength (sub-λ) photonic neural networks are of key importance for future energy-efficient and high-bandwidth artificial intelligence systems. However, a miniaturized light-emitting nanosource for spike-based operation of interest for neuromorphic optical computing is still lacking. In this work, we propose and theoretically analyze a novel nanoscale nanophotonic neuron circuit. It is formed by a quantum resonant tunneling (QRT) nanostructure monolithic integrated into a sub-λ metal-cavity nanolight-emitting diode (nanoLED). The resulting optic
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Miri, Mohammad-Ali, and Andrea Alù. "Exceptional points in optics and photonics." Science 363, no. 6422 (2019): eaar7709. http://dx.doi.org/10.1126/science.aar7709.

Повний текст джерела
Анотація:
Exceptional points are branch point singularities in the parameter space of a system at which two or more eigenvalues, and their corresponding eigenvectors, coalesce and become degenerate. Such peculiar degeneracies are distinct features of non-Hermitian systems, which do not obey conservation laws because they exchange energy with the surrounding environment. Non-Hermiticity has been of great interest in recent years, particularly in connection with the quantum mechanical notion of parity-time symmetry, after the realization that Hamiltonians satisfying this special symmetry can exhibit entir
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Shandilya, Prasoon K., Sigurd Flagan, Natalia C. Carvalho, et al. "Diamond Integrated Quantum Nanophotonics: Spins, Photons and Phonons." Journal of Lightwave Technology, 2022, 1–33. http://dx.doi.org/10.1109/jlt.2022.3210466.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Cho, YongDeok, Sung Hun Park, Ji-Hyeok Huh, Ashwin Gopinath, and Seungwoo Lee. "DNA as grabbers and steerers of quantum emitters." Nanophotonics, November 14, 2022. http://dx.doi.org/10.1515/nanoph-2022-0602.

Повний текст джерела
Анотація:
Abstract The chemically synthesizable quantum emitters such as quantum dots (QDs), fluorescent nanodiamonds (FNDs), and organic fluorescent dyes can be integrated with an easy-to-craft quantum nanophotonic device, which would be readily developed by non-lithographic solution process. As a representative example, the solution dipping or casting of such soft quantum emitters on a flat metal layer and subsequent drop-casting of plasmonic nanoparticles can afford the quantum emitter-coupled plasmonic nanocavity (referred to as a nanoparticle-on-mirror (NPoM) cavity), allowing us for exploiting var
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Chen, Zhigang, and Mordechai Segev. "Highlighting photonics: looking into the next decade." eLight 1, no. 1 (2021). http://dx.doi.org/10.1186/s43593-021-00002-y.

Повний текст джерела
Анотація:
AbstractLet there be light–to change the world we want to be! Over the past several decades, and ever since the birth of the first laser, mankind has witnessed the development of the science of light, as light-based technologies have revolutionarily changed our lives. Needless to say, photonics has now penetrated into many aspects of science and technology, turning into an important and dynamically changing field of increasing interdisciplinary interest. In this inaugural issue of eLight, we highlight a few emerging trends in photonics that we think are likely to have major impact at least in
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!